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A. Proof of Theorem 1 and Lemma 2

Proof of Theorem 1. In the specification of £ we have that
E,[In p(B;|Ai—1, pi)] (defined in Equation (7)) can be ex-
panded as (ignoring the base measure) :

Eq[(peAi—1+(1—pr) )t (B,) —ag(ptAi—1+(1—pr) )]
Since a4 is convex we have

ag(ptAi—1+(1—pi)ow,) < prag(Ae—1)+
which combined with Equation (10) gives

Eq[lnp(xt, Z¢]By)] + Eq[(ptAe—1 + (1 — pr) o )t(By)
= prag( A1) = (1 = pr)ag(aw)] + Eq[p(pe]7)]
— Ey[Ing(Zi|h,)] — Eqla(BA0)] — Eqlg(pi|ws)] < L.
Lastly, by exploiting the mean field factorization of ¢ and

using the exponential family form of ps(8;|\:—1) and
pu(8;) we get the desired result. O

(1 *Pt)ag(au)v

Proof of Lemma 2. Firstly, by ignoring the terms in £
(Equation (11)) that do not involve w; we get
L(wr) = Bqlpe] (Bg[n(ps (B, A1) — EqlInpu(B,)])
+ Eq[p(pe|7)] — Eqla(pelwe)]-

Assuming that the sufficient statistics function ¢(p;) for
p(ptly) and q(B;|A¢) is the identity function (£(p:) = pt)
we have

L(we) = Eqlpe] (Bq[In(ps(By|Ai-1)) — Eq[Inpu(B,)])

+ VEqlpe] = (wilEg[pe] — ag(wt)) + cte.

Using Eq[t(pt)] = Eq[pi]

L(wy) = V,ag(w) (Eg[In(ps(B;|Ai-1))
+ ’Yth Qg (wt) -

= th Qg (wt) we get

- Eq[lnpu(ﬂt)])

(Wi Vi, ag(wi) — ag(wt)).
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and thereby
Vi £ = V2, a(w)(E

We can now find the natural gradient by premultiplying
thﬁ by the inverse of the Fisher information matrix,
which for the exponential family corresponds to the inverse
of the Hessian of the log-normalizer:

Vi £ = (V2,05(w) 'V £
— (s (B, M) ~

Lastly, by introducing ¢(B;|A:) q(By|A¢) in-
side the expectation we get the difference in
Kullbach-Leibler divergence KL(g(B;|A:),pu(B:))

KL(q(B|At), ps(By|Ai-1))- U

Inp,(B,)] + v — we.

B. Experimental Evaluation
B.1. Probabilistic Models

We provide a (simplified) graphical description of the prob-
abilistic models used in the experiments. We also detail
the distributional assumptions of the parameters, which are
then used to define the variational approximation family.

ELECTRICITY MODEL

D
)

(i,7v:) ~ NormalGamma(1,1,0,1le — 10)
v ~ Gamma(1,1)
b; ~ N (0, +oc0)
zip ~ N(pis i)

y ~ N (bo + Z bz, 7)

g (ps(Be|Ae—1)) I pu(By) | +7—wr).
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the SVB method. Here, we provides the plots of the abso-
lute values of the T'M L L, series for the different methods

studied in the paper.
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(Hisj,ks Visg k) ~ NormalGamma(1,1,0, le — 10)
Default, ~ Binomial(p)
(ze| Defaulty = k) ~ Multinomial(py)
(wid|ze = j, Daye = k) ~ N (ttij ke, Visjik)

B.2. Real Life Data Sets

In the experimental section of the original paper, we plot
the relative values for the 7'M L L; measure with respect to




