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Abstract

We present a deterministic nearly-linear time algo-
rithm for approximating any point inside a convex
polytope with a sparse convex combination of the
polytope’s vertices. Our result provides a con-
structive proof for the Approximate Carathéodory
Problem (Barman, 2015), which states that any
point inside a polytope contained in the £, ball
of radius D can be approximated to within € in
¢, norm by a convex combination of O (D?p/€?)
vertices of the polytope for p > 2. While for the
particular case of p = 2, this can be achieved by
the well-known Perceptron algorithm, we follow a
more principled approach which generalizes to ar-
bitrary p > 2; furthermore, this naturally extends
to domains with more complicated geometry, as it
is the case for providing an approximate Birkhoft-
von Neumann decomposition. Secondly, we show
that the sparsity bound is tight for £, norms, us-
ing an argument based on anti-concentration for
the binomial distribution, thus resolving an open
question posed by Barman. Experimentally, we
verify that our deterministic optimization-based
algorithms achieve in practice much better spar-
sity than previously known sampling-based algo-
rithms. We also show how to apply our techniques
to SVM training and rounding fractional points in
matroid and flow polytopes.

1. Introduction

The (exact) Carathéodory Theorem is a fundamental
result in convex geometry which states that any point
u in a polytope P C R”™ can be expressed as a convex
combination of n + 1 vertices of P. The approximate
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version states that if one is willing to tolerate an error of
e in ¢, norm, O (D2p/ 62) vertices suffice to approximate
u, where D is the radius of the smallest ¢,, ball enclosing
P. The key significance of the approximate Carathéodory
Theorem is that the bound it provides is dimension-free, and
consequently allows us to approximate any point inside the
polytope with a sparse convex combination of vertices.

The Approximate Carathéodory Problem Given a poly-
tope P contained inside the £, ball of radius D, and u € P,
find vertices vy, ..., v; of P such that k = O (D?p/e?)

I’
and H% S v — u’ , <e

The ¢, version of this result is quite an old observation.
The earliest record is perhaps due to Novikoff (1962) who
showed that the {5 version of Approximate Carathéodory
can be obtained as a byproduct of the analyis of the Percep-
tron Algorithm (as pointed out by (Blum et al., 2016)). The
fact that a sparse approximation can be obtained by a very
simple and efficient algorithms found many applications in
Machine Learning. Shalev-Shwartz et al. (2010) use it to
minimize the loss of a linear predictor using a small num-
ber of features. Garber & Hazan (2013) use it to speed up
conditional grandient methods.

The results described above focus on the /5 norm. The
interest for approximate Caratheodory in higher £,,-norms
was sparked by a recent result of Barman (2015) who used
it to improve algorithms for computing Nash equilibria in
game theory and algorithms for the k-densest subgraph in
combinatorial optimization. Another area where higher
norms are widely applied is in functional analysis where
the approximate Caratheodory Theorem is often referred as
Maurey’s Lemma (Pisier, 1980).

Both Barman’s proof and Maurey’s original proof start from
a solution u = Z?:ll A;v; of the exact Carathéodory prob-
lem, interpret the coefficients \; of the convex combination
as a probability distribution and generate a sparse solution
by sampling from the distribution induced by A. Concentra-
tion inequalities are then applied to argue that the average
sampled solution is close to u in £,,-norm. The proof is clean
and elegant, but is computationally expensive since it in-
volves first computing a solution to the exact Carathéodory
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problem, which can take O(n*) even if the vertices are
given explicitly. The situation becomes even worse for
polytopes where it is not desirable to maintain an explicit
representation of all its vertices (e.g. the matching polytope)
since there may be exponentially many of them.

This is contrast with simple iterative solutions like the Per-
ceptron for /5, which runs in nearly-linear time. The first
question we explore in this paper is how to obtain a deter-
ministic nearly-linear time algorithm for higher ¢, norms.
Our algorithm runs in O(D?p/¢?) iterations, each of which
takes linear time.'

Secondly, we resolve an open question posed by (Barman,
2015), who observed that the bound for the /5 bound was
tight and asked whether the £, bound was also tight. Barman
gave a Q((D/e)?/P=1)) lower bound for p > 2. We resolve
the question by showing that the O(D?p/€?) is tight by
exhibiting a polytope P in the radius-D £, ball and a point
u inside for which all convex combinations of o(D?p/e?)
vertices are more than e-far from w in £,-norm.

Even though the dependence on e cannot be improved in
general, it can be greatly improved in a special case. If
u is far away from the boundary of P, i.e., if the ball of
radius r around u is contained in P, then there exists a
solution to the approximate Carathéodory problem with

k=0 (208 (2)).

For the positive result, our technique involves writing ap-
proximate Carathéodory as a convex minimization problem
and solving it by running Mirror Descent on a dual convex
function obtained via Sion’s Theorem. Our technique is
inspired by the similarity with the problems of computing
Nash equilibria in games and solving packing-covering LPs.
When p = log n, our bound has the same sparsity as Lipton
and Young (Lipton & Young, 1994) and Plotkin, Shmoys
and Tardos (Plotkin et al., 1991).

The view of approximate Carathéodory as solving a zero-
sum game also leads to our lower-bound, adapting a method
of Klein and Young (Klein & Young, 2015) for proving
conditional lower bounds on the running time for solving
positive LPs.

To show the potential of our technique, we note that a sim-
ple extension of our method implies a new algorithm for
SVM training. More specifically, we obtain O(1/€?) con-
vergence for arbitrary kernels; each iteration only requires
matrix-vector operations involving the kernel matrix, so
we overcome the obstacle of having to explicitly store the

' A reason to consider arbitrary £, norms for p > 2 is that they
are particularly useful for inputs that are bounded in /., and benefit
from extra structure such as k-sparsity. Then, we can run the
algorithm for the 41g , norm and obtain the desired /.. guarantee
using only O(log k/€?) points, which is an improvement over the
O(logn/e?) bound one could obtain by ignoring the sparsity.

kernel or compute its Cholesky factorization.

Finally, we show that our algorithm can also be obtained by
an instantiation of the Frank-Wolfe algorithm. One remark-
able feature of our problem is that it connects three ways
in which sparsification has been done: via Mirror Descent
(or more commonly, via multiplicative weight update) as in
(Plotkin et al., 1991; Arora et al., 2012; Juditsky et al., 2013),
via Frank-Wolfe methods (Garber & Hazan, 2013; Jaggi,
2013) and by sampling (Lipton & Young, 1994; Lipton et al.,
2003).

2. Preliminaries
For z € RY we define its ¢,-norm as lzll, =

d p 1/p .
D i il for p > 1 and { norm by ||z, =

max; |z;|. We note the ¢, ball as B,(r) = {z €
R% ||l <7}
Given a norm ||-||, we define its dual norm ||-||, as ||y||, =

MaXy: ||z =1 yTx so that Holder’s inequality holds with
equality: y'x < |ly||, [|z||. The dual norm of £, norm
is £4 norm for% + % =1.

We also denote the support of x by supp(z) = {i|z; # 0}.

2.1. Approximate Carathéodory problem

The (exact) Carathéodory Theorem is a fundamental re-
sult in linear algebra which bounds the number of points
needed to describe a point in the convex hull of a set.
More precisely, given a finite set of points X C R and
u€conv(X) = {d>  cxA-2:d A =1 >0},
there exist d 4+ 1 points in z1,...,2441 € X such that
u € conv{xy,...,Zq41}. On the plane, in particular, every
point in the interior of a convex polygon can be written as a
convex combination of three of its vertices.

The approximate version of Carathéodory theorem bounds
the number of points needed to describe u € conv(X) ap-
proximately. Formally, given a norm ||-||, an additive error
parameter € and a set of points X C By (1) C R4, for
given u € conv(X) we want k points 1, ...,z € X such
that there exists v’ € conv{zy,...,z;} and ||lu — /|| <e.

A general result of this type is given by Maurey (Pisier,
1980). For £,, norm, p > 2, Barman (Barman, 2015) showed
that & < 4p/€? points suffice. Notably, this bound is inde-
pendent of the dimension of the ambient space.

Mirror Descent An overview is in the supplementary ma-
terial. We simply state the guarantee here. Let w be o~ !-
strongly convex w.r.t. norm ||-|| and w* be its Fenchel dual.
For p-Lipschitz convex f : Q@ — R (w.r.t. norm ||-|)),
Mirror Descent computes iterates with stepsize 1 as follows:
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z41 = 2=V f () Ye41 = Vw (2e41) (MD)
Let D, (y||z) = w(y) — w(z) — Vw(z) " (y — z) be the
Bregman divergence.

Theorem 2.1. In the setup described above with D
max,cq Do (z|20) and n = €/op? then in T

2Dop? /€ iterations, it holds that 7>,V f(y:) " (y
y) <eVyeQ.

AV

3. Nearly linear time deterministic algorithm

We present a nearly linear time deterministic algorithm
for the approximate Carathéodory Problem. Barman’s
original proof (Barman, 2015) involves solving the exact
Carathéodory problem: (i) write u = >« - A, and inter-
pret A as a probability distribution over X; (iii) sample k
points from X according to A and; (iv) argue by concentra-
tion bounds (Khintchine inequality to be precise) that the

expectation E Hu -z Zle T

< €. From an algorith-

mic point of view, this requires solving a linear program to
compute A and using randomness to sample z;. Our main
theorem shows that neither is necessary. There is a linear
time deterministic algorithm that doesn’t require a solution
A to the exact problem.

Our algorithm is based on Mirror Descent. The idea is
to formulate the Carathéodory problem as an optimization
problem. Inspired by early positive Linear Program solvers
e.g. Plotkin-Shmoys-Tardos (Plotkin et al., 1991), we con-
vert this to a saddle point problem and solve its dual using
Mirror Descent. Using Mirror Descent guarantees a sparse
primal certificate that would act as the desired convex com-
bination.

Recall that we are given a finite set of points X =
{v1,v2,...,9m} € By(1) and u € conv(X). Our goal
is to produce a sparse convex combination of the points in
X that is e-close to u in £,-norm. Dropping the sparsity
constraint for now, we can formulate this problem as:

min ||[Va — u P-CARA

min [V — ull, (P-CARA)
where V is a d X m matrix whose columns are the vec-
tors v, ..., Uy, and A = {z € RY Y, z; = 1,z > 0}
is the unit simplex. We refer to P-CARA as the primal
Carathéodory problem. By writing £, norm as ||z, =
MaXy:|ly|| =1 y "z for % + % = 1, P-CARA is converted to
a saddle point problem:

min max y' (Vz —u) (S-CARA)

T€EA yeB,(1)

Sion’s Theorem (Sion, 1958) is a generalization of von
Neumann’s minimax theorem that allows us to swap

the order of minimization and maximization for any
pair of compact convex sets. This leads to dual prob-
lem: maxyep, (1) (mingea y ' (Va — u)) which can be re-
written as:

. L T

yenll?lqrzl) <f(y) = maxy (u Vx)) (D-CARA)
Sparse solution by solving the dual. Since u €
conv(X), there is a solution z € A such that u = V.
So P-CARA (and equivalent formulations S-CARA and D-
CARA) have an optimal value of 0. Although the optimal
value is known, it still helps to optimize f(y) since in the
process we obtain an e-approximation in few iterations. If
each iteration updates only one coordinate of x, then we will
obtain an approximate solution with sparsity equal to the
number of iterations. As we shall show, while the updates
of y are not sparse, the dual certificate produced by Mirror
Descent will be.

To make this statement precise, consider the gradient
of f, which is obtained by applying the envelope theo-
rem (see (Afriat, 1971)): Vf(y) = uw — Va for x €
argmax,c Yy ' (u — V). This problem corresponds to
maximizing a linear function over the simplex, so the op-
timal solution is a corner of the simplex. In other words,
Vf(y) = u — v; where i = arg max;[—(V Ty);]. We can
then use the Mirror Descent guarantee in Theorem 2.1 to
bound the norm of the average gradient, as formalized in
Theorem 3.2.

Remark 3.1. In fact V does not even have to be explicitly
given. All we need is to solve i = argmax;[—(V Ty);].
For explicitly given V, this can be done in dn time by pick-
ing the best vertex. Sometimes, especially in combinatorial
optimization, we have a polytope (whose vertices are V') rep-
resented by its constraints. Our result states that for these
alternate formulations, we can still obtain a sparse repre-
sentation efficiently if we can solve the linear optimization
problem over it fast.

Theorem 3.2. Consider a (1/0)-strongly convex function
w : By(1) — R with respect to the {y-norm, D =
maxyep, (1) Do(y[|0) and T > 8Do/e*. Let y1 =
0,...,yr be the T first iterates of the Mirror Descent al-
gorithm (Theorem 2.1) with mirror map Vw* minimizing
function f in D-CARA. If V f(y:) = u — v;4), then

1 T
U—T;’U“ﬂ <e.

p

Proof. We consider the space y € B(1) equipped with
the ¢, norm. To apply the Mirror Descent framework, we
need first to show that the dual norm (the £,-norm, in this
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case) of the gradient is bounded. This is easy, since in
the approximate Carathéodory problem, v; € B(1), so
195, = = vil, < lfall, + il < 2. So we can
take p = 2 in Theorem 2.1.

Since f(y) = maxzeany ' (u—Vz)and Vf(y) = (u—Vz)
for z € argmax, A y' (u— V), then f(y) = Vf(y) 'y
Also, since there exists 2* such that u = Vx*, one has that
f(y) >y " (u— Va*) = 0. Plugging those two facts in the
guarantee of Theorem 2.1, we get:

T
Z — Vi) vl

’ﬂ\
IIMH
’ﬂ\

.
y,Vy € By(1)

u — =
t=1 P t=1 »
T
1
= max |—— Vv <e
x| =7 ; fly)| y<

To complete the picture, we need to exhibit a (1/0)-strongly
convex function w : B,(1) — R with a small value of
o - max,ep, (1) Du(y||0) and show that the gradient of
the Fenchel dual Vw* can be computed efficiently. In
supplementary material we show that it suffices to use
w(y) =3 Hy||3 We also discuss the form of the Fenchel
dual w* and how to compute Vw*. We note that because

w is defined in the ball B,(1) its Fenchel dual is different

from that of the function 1 ||y|| defined in RY.

Proposition 3.3. The Fenchel dual of w : By(1) — R,

w(y) = % Hy||§ can be computed explicitly:
2 .
W (2) = sllzlls  if e, <1
Izll, — 3 if [[z], > 1

Also, Vw*(z) = ¢(z) - min(1, [|2||,,) where ¢(z) is a vec-
tor with {y-norm 1 such that z" ¢(z) = |21l This func-
tion can be explicitly computed as: ¢(z); = sgn(z) -
p—1 p—1

EA A (E1

Theorem 3.4. Given n points v1,...,v, € B,(1) C R?
with p > 2 and u € conv{vy,...,v,}, there is a determin-
istic algorithm of running time O(nd - p/€*) that a outputs
a multiset vy, . .., vy for k = 4(p — 1)/€? such that

k
=13 vy and ||[u — ull, <e.

3.1. Improved bound when v is far from the boundary

If the point u that we are approximating is sufficiently far
from the boundary of the polytope P, it is possible to make
recursive calls to the algorithm described in the previous
section, doubling the precision in each iteration. This allows
us to obtain a significantly better sparsity guarantee.

Theorem 3.5. Let P be a polytope contained inside the
unit ¢y, ball, and a point w € P. If B,,(r) C P, then there
exists x € 2(1 — €/r) - A supported at k = O (% -log )

<e
P

Corollary 3.6. If v € P satisfies By(u,r) € P C
B,(u,1), » > 2¢ then there exists x € A sup-
ported on k = O (T% -log f) coordinates such that

HZiEsupp(a:) Lili — qu <e

—Uu

coordinates such that szewpp () TiVs

This highlights an interesting feature, namely that we can
achieve linear convergence via an ad-hoc method, even
though the dual formulation we are optimizing does not
immediately exhibit strong convexity. This is achieved via
iteratively rescaling the problem after solving to some fixed
accuracy depending on the parameter r. The description of
the improved algorithm can be found in Section D of the
supplementary material. .

Even more interestingly, the primal version of this problem,
which can be solved via the conditional gradient method
(see Section 3.2), does exhibit strong convexity; this can
then be used to provide a comparable guarantee, using a
purely primal method described in (Garber & Hazan, 2015).
We also mention (Lacoste-Julien & Jaggi, 2015; Shtern &
Beck, 2016; Peiia et al., 2016), which describe a similar
phenomenon occurring under various specific assumptions
involving the domain. Such methods show up under the
name “accelerated Frank-Wolfe”. The regimes in which they
work are however different from the one we are considering
here.

3.2. Sparse solution via conditional gradient methods

The algorithm described in the previous section admits a
completely different analysis via conditional gradient meth-
ods, more precisely, via the Frank-Wolfe algorithm (Jaggi,
2013; Bubeck, 2014). The Frank-Wolfe method solves a
problem of the type min,cx f(x) for a S-smooth convex
function f over a compact convex set X via successive calls
to a linear optimization oracle, that given a vector w € R?
returns x,, € argmax,cx w ' 2. Formally, start with any
point zg € X and define the following iteration:

=(1=n)zt—1+m Y

(FW)
Frank- Wolfe guarantees that if 7, are suitably chosen
(ny = t+1 being a popular choice), then f(x;) — f(z*) <

y; = arg min Vf(xt_l)Ty
yeX
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2B8R?/(t + 1) for -smooth f w.r.t. some norm ||-|| and R
the radius of X w.r.t. the same norm.

A remarkable fact is that the algorithm that we obtain from
instantiating the Frank-Wolfe framework for our problem is
completely isomorphic to the mirror descent version, in the
sense that they produce the same set of vertices.

Theorem 3.7. For f(z) = ||z — u 12), X =Pandn, =1/t
then for each t, the vertex y; output by the Frank-Wolfe algo-

rithm is the same vertex output by Mirror Descent described
in Theorem 3.2.

3.3. Connection between Frank Wolfe and Mirror
Descent

Theorem 3.7 is an example of a setting where the same
algorithm can be obtained from a completely primal view,
through Frank-Wolfe and through a saddle point formula-
tion, via Mirror Descent. The Frank-Wolfe approach is more
standard in optimization while the Mirror Descent approach
is standard in game theory and in first-order methods in Lin-
ear Programming. One might suspect that there is a deeper
connection between the two algorithms.

In what follows we point out a simple but somewhat surpris-
ing observation: Frank-Wolfe methods to minimize f over
a compact set X can be obtained by instantiating the Mirror
Descent framework for minimizing a dualized version of f
when the mirror map is the Fenchel dual of the objective
itself.

A similar connection between Mirror Descent and Frank-
Wolfe methods for a different class of problems was shown
by Bach (Bach, 2015). We believe both observations are
facets of the same phenomenon.

In what follows we present a very short and clean argument
for why, in our specific instance, the Frank-Wolfe and Mirror
Descent yield the same results.

By writing f as the dual of its Fenchel dual and applying
Sion’s min-max theorem, we obtain:

. _ . T,. _ pg*
i 1) = iy [T = 12

. T %
= max [minz z — f*(z
s [mig =" /")
Define g(z) = mingecx z'  — f*(2) which is a concave
function over X *. By the envelope theorem:

Vg(z) =y — Vf*(z) where y € arg mi}r{l 2l
€

The mirror descent iteration for maximizing g can be writ-
ten as: xy11 = ¢ + e Vg(ze) and 241 = Vw* (241).
By choosing w*(xz) = f(z), we exactly recover Frank-
Wolfe since: Vg(z) = yo — VIf*(Vf(xr)) = v — 4,

$0 Tpr1 = ¢ + M Vg(z) = (1 — m)xe + niye where
Yy = argmingex z:y = argmingex Vf(:vt)Ty.

While the proof of Bach is similar in spirit to ours, it as-
sumes a different setup. First of all, both his and our proofs
work on the dual objective obtained via Sion’s min-max
theorem. However, instead of directly using f* as a mirror
map, Bach adds an extra strongly-convex regularizer to his
objective, which he carries through as a proximal term. This
guarantees that the dual problem he solves is smooth, thus
achieving 1/t convergence rate. Distinctively, the proof
we have shown above is applied directly on the dualized
objective with f* as mirror map, and only achieves 1/v/¢
convergence rate; however, this rate is tight for the specific
problem we are studying.

4. Experiments

We illustrate the performance of our algorithm in two nu-
merical experiments, presented in the figure below. We
ran both the original sampling algorithm (Barman, 2015;
Pisier, 1980) (where vertices are sampled from an exact
convex combination) and our deterministic mirror-descent
based algorithm on 100 instances. Each of these instances
consisted of 1000 vectors in R19%°, obtained by sampling a
1000 x 1000 Gaussian matrix, then scaling each column by
the maximum /5 (respectively ¢g) column norm. For each
instance we choose a convex combination of u and plot

when we sample v; at random
p
proportionally to the exact convex combination (blue plot),

and when we use the point v; output by the ¢-th iteration of
Mirror Descent (red plot). We do it for both the ¢5 and ¢y
norms, where in each case the input vectors are re-scaled to
have unit £,,-norm and the errors are measured with respect
to the £, norm.

1 t
the error Hu — D em1Us

The plots from the 100 instances are overlapped, in order to
highlight how mirror descent performs systematically better
than random sampling.

One interesting observation is that mirror descent still per-
forms better in practice despite the fact that rescaled Gaus-
sian matrices are the worst-case instances for the problem,
as we show in the next section, in the sense that for those
families of instances, both the sampling and Mirror De-
scent algorithm are guaranteed to be optimal up to constant
factors.

5. Lower bound

We showed that if V' is a d X n matrix whose columns
are contained in the unit ¢, ball B, (1), then for any = €
A, there is & € A,, with |supp (Z)| < O(p/€?) such that
[V —Va'||, < e where supp(z) = {i|lz; # 0}.
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Figure 1. Quality of the solution, i.e. norm of the error ({2, respectively £g) as a function of sparsity. Blue curves correspond to sampling,
red curves correspond to mirror descent. We overlapped the plots from 100 instances, in order to highlight that mirror descent performs
systematically better than random sampling. This is apparent in both cases, where one can see that the red curves approach zero faster

than the blue ones.

In this section we argue that no dimension-independent
bound better then O(p/€?) is possible. This shows that the
sparsity bound in the approximate Carathéodory theorem
is tight and improves Barman’s (1/e?(P=1)) lower bound
(Barman, 2015).% Formally, we show that:

Theorem 5.1. There exists a constant K such that for every
p > 2 and n > no(p), there exists n X n matrix V with
columns of unit £, norm, and a point v = Vz, x € A,,
such that for all & € A with sparsity |supp (%)| < Kp/e?,
one has that ||[VZ — ul|, > 2e > e

In other words, even though u is a convex combination of
columns of V, every (Kp/e?)-sparse convex combination
of columns of V has distance at least € from v in £,-norm.
The full proof is in supplementary material.

Our lower bound incidentally implies that the optimal rate
of conditional gradient applied to a p-smooth function is
O(pR?/¢); this can be seen by considering the function ex-
hibited in Theorem 3.7 and noticing that minimizing it via
conditional gradient to accuracy € requires 2(pR?/€?) iter-
ations, since each iteration increases the number of nonzero
coordinates of the solution by at most 1, but Q(pR?/e?)
nonzeros are required, as shown by our lower bound for
approximate Carathéodory.

Here we present a simple, constructive instance from which
we easily prove a Q(1/€2) lower bound, and sketch a tight

2In addition to this, lower bounds for the case p = 2 were
folklore; some proofs can be found in (Jaggi, 2011; Bubeck, 2014).
‘We point out that in this case, the simple proof from Section 5.1
follows a very different approach from the classical ones.

Q(p/€?) bound based on the probabilistic method.

5.1. A simple lower bound Q(1/¢?)

This relies on Sylvester’s construction of Hadamard matri-
ces, which are defined for n’s that are powers of 2. The
construction is recursive as follows: H; = [1], and for every
n that is a power of 2:

H, H,

Proposition 5.2. The Sylvester matrix H,, defined as above
is Hadamard. In other words, H;; = X1 for all i, j and
HTH = nl (i.e. its columns are mutually orthogonal).

Now we consider the polytope P formed by the convex hull
of the normalized columns of H. One can easily check
that for the construction above the uniform combination of
columns is H - T/ n = e where T is the vector of all 1’s and
e; is the unit basis vector for the i-th component. We show
that e; is at distance greater than e from the convex hull of
any o(1/€?) columns of H.

Theorem 5.3. Let H,, gae as above and P be t@e convex
hull of the columns of H := H/n'/?. Letu = H -1/n =

el/nl/p € P. Thenany x € A, satisfying Hﬁm —ul| <e
P

has sparsity |supp (x)| > min(1/€2,n).

5.2. Tight lower bound Q(p/€?)

We now establish a tight lower bound via a probabilistic
existence argument inspired by the construction of Klein
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and Young (Klein & Young, 2015). The example used to
exhibit the lower bound is very simple. The proof of its
validity, however, is quite involved and requires a careful
probability analysis. We give an overview and provide
details in the supplementary material.

Overview. Recall the formulation S-CARA of the
Carathéodory problem as a saddle point problem described
in Section 3. If we translate all points such that u = 0, then
we can write the problem as:

y' 'V

min max
rEA yeB,(1)

which can be seen as a game between a player controlling
and y. The approximate Carathéodory theorem states that if
the value of the game is O, then the x-player has a k-sparse
strategy that guarantees a value of the game at most € for
k= 0(p/€).

For the lower bound, our goal is to design an instance of
this game with value v such that for all k-sparse strategies
of the x-player with k < Cp/¢€2, the y-player can force the
game to have a value strictly larger than v + €.

Probabilistic Construction: We define the matrix V' =
n~1/P . A where A is an n X n matrix with random +1
entries, i.e. each entry of A is chosen at random from
{—=1,+1} independently with probability 1/2. Note the the
£, norm of the columns of A is equal to D = 1 (as in Ap-
proximate Carathéodory). We will show that the following
events happen with high probability:

1. The center of the polytope defined by the columns of

Vis e-close to 0, i.e., ||V - T/nH <.
P

2. For each set S of k coordinates, if x is restricted to
only S, the y-player can force the value of the game
to be at least 2e. We prove so by exhibiting a strategy
for the y-player such that "V is at least 2¢ for all
coordinates in S.

After bounding the probabilities of the events above, the
result follows by taking the union bound over all (Z) pos-
sible subsets S of cardinality k. This implies that with
nonzero probability, for the matrix constructed the y-player
will always be able to force yTVac > 2¢, regardless of what
o(p/€?)-sparse strategy the x-player chooses.

6. Applications

In the following, we discuss a number of applications of our
results and techniques. We briefly describe each of them
here and refer the reader to the supplementary material for
complete exposition.

Approximate Birkhoff-von Neumann Decomposition
The classical Birkhoff-von Neumann Theorem states that
any n X n doubly stochastic matrix can be decomposed into
a convex combination of at most (n — 1)? + 1 permutation
matrices.

In (Farias et al., 2012), it was observed that such a decom-
position can be used to recover a model for a probability
distribution described by first order marginal information;
furthermore, they showed that an approximate such de-
composition can be recovered using a number of elements
that is only linear in n rather than quadratic. More pre-
cisely, given a doubly stochastic matrix A, one can produce
a convex combination of O(n/e?) permutation matrices
Mjy, ..., Mp which approximates A within € in Frobenius
norm, i.e. [[A =", ,r piM;||r < e. A similar result can
be rederived using (Garber & Hazan, 2016).

Within our framework, this is an immediate corollary. In-
deed, in order to recover the result we can consider the
domain to be the {5 ball of radius /n, and the doubly-
stochastic input be a convex combination of permutation
matrices (each of them being represented as a vector of norm
\/n). Then, our algorithm recovers an approximate decom-
position with the same guarantees, having sparsity O(n/e?).
Each call to the linear optimization oracle requires com-
puting a minimum-cost perfect bipartite matching, which
can be done in time O(m - min(y/n, m3/7)), where m is
the number of nonzeros in the input (Lee & Sidford, 2014;
Cohen et al., 2017).

Furthermore, the bounds easily generalize to higher norms:
if instead we want to obtain a guarantee involving the
element-wise ¢, norm of the error (p > 2), our sparsity
becomes O(n'/? /€?).

Fast rounding in polytopes with linear optimization or-
acles. The most direct application of our approach is to
efficiently round a point in a polytope whenever it admits a
good linear optimization oracle. An obvious such instance
is the matroid polytope. Given an n-element matroid M
of rank r and a fractional point z* inside its base polytope,
our algorithm produces a sparse distribution D over matroid
bases such that marginals are approximately preserved in
expectation. Specifically, for p > 2, D has a support of size

p";z/p sand [|[Ezp [2] — 2*|, < € furthermore, computing

D requires only O (m"2/ Pp/ 62) calls to M’s independence
oracle. Another example is the flow polytope.

Support vector machines (SVM). Training SVM can
also be formulated as minimizing a convex function. We
show that our technique of converting a problem to a sad-
dle point formulation and solving the dual via Mirror De-
scent can be applied to the problem of training ¥-SVMs.
This is based on a formulation introduced by Scholkopf,
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et al. (Scholkopf et al., 2000). Kitamura et al. (Kita-
mura et al., 2014) show how SVMs can be trained using
Wolfe’s algorithm. Replacing Wolfe’s algorithm by Mir-
ror Descent we obtain an e-approximate solution in time
O (max (1, |K[[) / (vne?)), where K is the kernel matrix.
This yields a constant number of iterations for polynomial
and RBF kernels whenever the empirical data belong to the
unit 5 ball. Our method does not need to explicitly store the
kernel matrix, since every iteration only requires a matrix-
vector multiplication, and the entries of the matrix can be
computed on-the-fly as they are needed. In the special case
of linear kernels, each iteration can be implemented in time
linear in input size, yielding a nearly-linear time algorithm
for linear SVM training.
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