
Regularising Non-linear Models Using Feature Side-information

6. Appendix
6.1. Modified Backpropogation

For notion simplicity, we consider stochastic gradient de-
scent. The objective function we want to minimize is as
following:

E = L(y,φ(x)) + λ1

∑

ij

||∂φ(x)
∂xi

− ∂φ(x)

∂xj
||2Sij (12)

Notice that the objective function includes derivative of the
learned function with respect to the input features, if we use
neural network to learn the model, the conventional back-
propagation algorithm can’t be applied directly. Therefore,
we developed a modified version of the backpropagation
algorithm to find the gradient of the objective.
We keep the notation consistent with the notation used in
the book of (Bishop, 1995). n is the total layers (including
input and out put layer) number of the network, ak is the
pre-activation units in layer k, k1 is the number of hidden
units in hidden layer k, m is the number of output units,
and h(x) stands for the non-linear activation function.

z0 = x

ak = wkzk−1 + bk

zk = h(ak)

φ(x) = zn

(13)

To find the gradient of (12), we define δk as the Jacobian
of the learned function with respect to pre-activations at the
layer k:

δk =

⎡

⎢⎢⎢⎢⎢⎣

∂φ1

∂ak
1

∂φ2

∂ah
1

· · · . ∂φm

∂ak
1

∂φ1

∂ak
2

∂φ2

∂ak
2

· · · ∂φm

∂ak
2

...
...

...
∂φ1

∂ak
k1

∂φ2

∂ak
k1

· · · ∂φm

∂ak
k1

⎤

⎥⎥⎥⎥⎥⎦
(14)

δk for all k can be achieved by the following backpropaga-
tion equation.

δk = ((Wk+1)T δk+1)⊙h′(ak) ∀k = 1, 2, ..., n−1 (15)

Where ⊙ stands for the element wise multiplication of a
column vector to every column of the matrix.

δn =

⎡

⎢⎢⎣

h′(an1) 0 ... 0
0 h′(an2) ... 0
...
0 0 ... h′(anm)

⎤

⎥⎥⎦ (16)

Defining the term δ in such a away, we can rewrite the reg-
ularizer term in equation (12) as following:

∑

ij

||(W1(:, i))−W1(:, j))T δ1||2Sij (17)

If the network only has one hidden layer, we can derive
derivative of the regularizer with respect to weights using
δ and (15). When hidden layer’s number is more than one,
we need to introduce two more term, one to the backward
path and one to the forward path: Define Gk as the jaco-
bian of pre-activation unit at layer k with respect to pre-
activation at first hidden layer, note layer k = 1 corre-
sponding to first hidden layer.

Gk
mg =

∂akm
∂a1g

∀k = 1, 2, 3, ..., n (18)

We know that:

G1
mg =

∂a1m
∂a1g

=

{
1 if m=g
0 others (19)

And Gk for all k can be achieved during forward path by
the following forward propagation equation and G1

Gk
mg =

∑

l

W k
mlG

k−1
lg h′(ak−1

l) ∀k = 2, 3, ..., n (20)

Define Bk which gives the derivative of the δk with respect
to the pre-activation units in the first hidden layers:

Bk
ljg =

∂δklj
∂a1g

∀k = 1, 2, ..., n (21)

We know that:

Bn
ljg =

∂δnlj
∂a1g

= h′′(anl)1ljG
n
lg (22)

Bk for all k can be obtained by the following propagating
equation during backward path using Bn as following:

Bk
ljg = h′′(akl)G

k
lg

∑
p δ

k+1
pj W k+1

pl + h′(akl)
∑

p W
k+1
pl Bk+1

pjg (23)

∀k = 1, 2, ..., n− 1

Finally, the gradient of the regularizer, i.e. second term of
the equation (12), can be calculated as follwoing:
For k = 1, i.e. first hidden layer:

∂R
∂W 1

lm
= 4λ1

∑
s Sms

∑
j(W

1(:,m)−W1(:, s))T δ1(:, j)δ1(lj)

+2λ1
∑

ks Sks
∑

j(W
1(:, k)−W 1(:, s))T δ1(:, j)

∑
g(W

1(g, k)−W 1(g, s))B1
ljgz

0
m)

(24)

For k = 2, ..., n:

∂R
∂Wk

lm
= 2λ1

∑
ks Sks

∑
j(W

1(:, k)−W1(:, s))T δ1(:, j)
∑

g(W
1(g, k)−W 1(g, s))(zk−1

m Bk
ljg + δkljh

′(ak−1
m)Gk−1

mg)
(25)

Regularising Non-linear Models Using Feature Side-information

Gradient with respect to bias term, for all k = 1, ..., n:

∂R

∂bklm
= 2λ1

∑

ks

Sks

∑

j

(W1(:, k)−W1(:, s))T δ1(:, j)

∑

g

(W 1(g, k)−W 1(g, s))Bk
ljg

(26)

The gradient of the first part of the objective which is some
loss function we chose, is same as in the standard Back-
propagation algorithm, here we just need to rewrite it in
terms of the newly defined δ. For example, if we use sig-
moid on all layers as activation function and cross entropy
loss, we have the following:

E = −
m∑

i=1

(yi log φ(x)i + (1− yi) log(1− φ(x)i))

(27)
∂E

∂Wk
= δk

φ− y

φ(1− φ)
(zk−1)T (28)

∂E

∂bk
= δk

φ− y

φ(1− φ)
(29)

Now we can find the gradient of the loss with respect
to weights in all layers. Compared to the conventional
back propagation algorithm, except we have δ term which
is defined differently than the conventional backprop
algorithm, we have one more extra term Bk to add to the
backward path and one more term Gh to the forward path.

