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6. Appendix
6.1. Modified Backpropogation

For notion simplicity, we consider stochastic gradient de-
scent. The objective function we want to minimize is as
following:
dp(x) Jp(x
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Notice that the objective function includes derivative of the
learned function with respect to the input features, if we use
neural network to learn the model, the conventional back-
propagation algorithm can’t be applied directly. Therefore,
we developed a modified version of the backpropagation
algorithm to find the gradient of the objective.
We keep the notation consistent with the notation used in
the book of (Bishop, 1995). n is the total layers (including
input and out put layer) number of the network, a” is the
pre-activation units in layer k, k1 is the number of hidden
units in hidden layer &k, m is the number of output units,
and h(x) stands for the non-linear activation function.
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To find the gradient of (12), we define 5% as the Jacobian
of the learned function with respect to pre-activations at the
layer k:
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8" for all k can be achieved by the following backpropaga-

tion equation.
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Where © stands for the element wise multiplication of a
column vector to every column of the matrix.

W@y 0 .. 0
/ n
o — 0 ' (ad) .. 0 (16)
0 0 B (a®)

Defining the term ¢ in such a away, we can rewrite the reg-
ularizer term in equation (12) as following:
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If the network only has one hidden layer, we can derive
derivative of the regularizer with respect to weights using
6 and (15). When hidden layer’s number is more than one,
we need to introduce two more term, one to the backward
path and one to the forward path: Define G* as the jaco-
bian of pre-activation unit at layer k£ with respect to pre-
activation at first hidden layer, note layer £ = 1 corre-
sponding to first hidden layer.
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We know that:
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And GF for all k can be achieved during forward path by
the following forward propagation equation and G
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Define B¥ which gives the derivative of the §* with respect
to the pre-activation units in the first hidden layers:
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We know that:
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B for all k can be obtained by the following propagating
equation during backward path using B” as following:
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Finally, the gradient of the regularizer, i.e. second term of
the equation (12), can be calculated as follwoing:
For k = 1, i.e. first hidden layer:
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Gradient with respect to bias term, forall k = 1, ..., n:
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The gradient of the first part of the objective which is some
loss function we chose, is same as in the standard Back-
propagation algorithm, here we just need to rewrite it in
terms of the newly defined . For example, if we use sig-
moid on all layers as activation function and cross entropy
loss, we have the following:
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Now we can find the gradient of the loss with respect
to weights in all layers. Compared to the conventional
back propagation algorithm, except we have ¢ term which
is defined differently than the conventional backprop
algorithm, we have one more extra term B to add to the
backward path and one more term G" to the forward path.



