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Abstract

We introduce new families of Integral Probabil-
ity Metrics (IPM) for training Generative Adver-
sarial Networks (GAN). Our IPMs are based on
matching statistics of distributions embedded in
a finite dimensional feature space. Mean and co-
variance feature matching IPMs allow for sta-
ble training of GANs, which we will call Mc-
Gan. McGan minimizes a meaningful loss be-
tween distributions.

1. Introduction

Unsupervised learning of distributions is an important
problem, in which we aim to learn underlying features that
unveil the hidden the structure in the data. The classic ap-
proach to learning distributions is by explicitly parametriz-
ing the data likelihood and fitting this model by maximiz-
ing the likelihood of the real data. An alternative recent ap-
proach is to learn a generative model of the data without ex-
plicit parametrization of the likelihood. Variational Auto-
Encoders (VAE) (Kingma & Welling, 2013) and Generative
Adversarial Networks (GAN) (Goodfellow et al., 2014) fall
under this category.

We focus on the GAN approach. In a nutshell GANs learn
a generator of the data via a min-max game between the
generator and a discriminator, which learns to distinguish
between “real” and “fake” samples. In this work we focus
on the objective function that is being minimized between
the learned generator distribution Py and the real data dis-
tribution P,..

The original work of (Goodfellow et al., 2014) showed that
in GAN this objective is the Jensen-Shannon divergence.
(Nowozin et al., 2016) showed that other ¢-divergences can
be successfully used. The Maximum Mean Discrepancy
objective (MMD) for GAN training was proposed in (Li
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et al., 2015; Dziugaite et al., 2015). As shown empirically
in (Salimans et al., 2016), one can train the GAN discrimi-
nator using the objective of (Goodfellow et al., 2014) while
training the generator using mean feature matching. An en-
ergy based objective for GANs was also developed recently
(Zhao et al., 2017). Finally, closely related to our paper,
the recent work Wasserstein GAN (WGAN) of (Arjovsky
et al., 2017) proposed to use the Earth Moving distance
(EM) as an objective for training GANs. Furthermore (Ar-
jovsky et al., 2017) show that the EM objective has many
advantages as the loss function correlates with the quality
of the generated samples and the mode dropping problem
is reduced in WGAN.

In this paper, inspired by the MMD distance and the kernel
mean embedding of distributions (Muandet et al., 2016) we
propose to embed distributions in a finite dimensional fea-
ture space and to match them based on their mean and co-
variance feature statistics. Incorporating first and second
order statistics has a better chance to capture the various
modes of the distribution. While mean feature matching
was empirically used in (Salimans et al., 2016), we show in
this work that it is theoretically grounded: similarly to the
EM distance in (Arjovsky et al., 2017), mean and covari-
ance feature matching of two distributions can be written
as a distance in the framework of Integral Probability Met-
rics (IPM) (Muller, 1997). To match the means, we can
use any £, norm, hence we refer to mean matching IPM, as
IPM,, ,. For matching covariances, in this paper we con-
sider the Ky-Fan norm, which can be computed cheaply
without explicitly constructing the full covariance matrices,
and refer to the corresponding IPM as IPMy.

Our technical contributions can be summarized as follows:

a) We show in Section 3 that the £, mean feature matching
IPM,, 4 has two equivalent primal and dual formulations
and can be used as an objective for GAN training in both
formulations.

b) We show in Section 3.3 that the parametrization used in
Wasserstein GAN corresponds to /1 mean feature matching
GAN (IPM,, ; GAN in our framework).

¢) We show in Section 4.2 that the covariance feature
matching IPMy, admits also two dual formulations, and can
be used as an objective for GAN training.
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d) Similar to Wasserstein GAN, we show that mean feature
matching and covariance matching GANs (McGan) are sta-
ble to train, have a reduced mode dropping and the IPM loss
correlates with the quality of the generated samples.

2. Integral Probability Metrics

We define in this Section IPMs as a distance between dis-
tribution. Intuitively each IPM finds a “critic” f (Arjovsky
et al., 2017) which maximally discriminates between the
distributions.

2.1. IPM Definition

Consider a compact space X in RY. Let .# be a set of
measurable and bounded real valued functions on X’. Let
P (X) be the set of measurable probability distributions on
X. Given two probability distributions P,Q € Z(X), the
Integral probability metric (IPM) indexed by the function
space .% is defined as follows (Muller, 1997):

E f(x) - E f()|

Zro z~Q

dg(P,Q) = sup

fez

In this paper we are interested in symmetric function spaces
F,1eVf e F, —f € Z, hence we can write the IPM in
that case without the absolute value:

d7(P,Q) = swp { E f(@) -~ E f@)}. O
feg La~P z~Q
It is easy to see that ds defines a pseudo-metric over
Z(X). (dz non-negative, symmetric and satisfies the tri-
angle inequality. A pseudo metric means that d (P, P) =
0 but d o (P, Q) = 0 does not necessarily imply P = Q).

By choosing .% appropriately (Sriperumbudur et al., 2012;
2009), various distances between probability measures can
be defined. In the next subsection following (Arjovsky
etal.,2017; Li et al., 2015; Dziugaite et al., 2015) we show
how to use IPM to learn generative models of distributions,
we then specify a special set of functions .%# that makes the
learning tractable.

2.2. Learning Generative Models with IPM

In order to learn a generative model of a distribution P, €
P(X), we learn a function

go: Z CR™ & X,

such that for z ~ p,, the distribution of gy(z) is close to the
real data distribution IP,., where p. is a fixed distribution on
Z (for instance z ~ .A4(0, I, )). Let Py be the distribution
of gg(z), z ~ p,. Using an IPM indexed by a function class
Z we shall solve therefore the following problem:

min dgz (]P)r, PQ) (2)

ge

Hence this amounts to solving the following min-max
problem:

minsup E f(z)— E f(go(2))
9o feg x~Pr Z~Ps

Given samples {z;,1...N} from P, and samples
{zi,1... M} from p, we shall solve the following empiri-
cal problem:

ge fez

1 1 &
min sup ; flai) =57 ; f(90(25));
in the following we consider for simplicity M = N.

3. Mean Feature Matching GAN

In this Section we introduce a class of functions .% hav-
ing the form (v, ®,(x)), where vector v € R™ and ®,, :
X — R™ anon linear feature map (typically parametrized
by a neural network). We show in this Section that the IPM
defined by this function class corresponds to the distance
between the mean of the distribution in the ®,, space.

3.1.IPM,, ,: Mean Matching IPM

More formally consider the following function space:

Fowp = {f(2) = (v, @u(x)) [v € R™, [Jo]|, <1,
D,: X - R"weN},

where |||, is the £, norm. .7, ., , is the space of bounded
linear functions defined in the non linear feature space in-
duced by the parametric feature map ®,,. ®,, is typically a
multi-layer neural network. The parameter space {2 is cho-
sen so that the function space .# is bounded. Note that for
a given w, %, ,, , is a finite dimensional Hilbert space.

We recall here simple definitions on dual norms that will be
necessary for the analysis in this Section. Let p, ¢ € [1, o0,
such that % + % = 1. By duality of norms we have: [|z||, =

<

max, || <1 (v, ) and the Holder inequality: ‘ (z,y)
]l llylly-

From Holder inequality we obtain the following bound:

@) =

<v,‘1>wx>‘ <l [@w(@)lly < 19w (@)l -
To ensure that f is bounded, it is enough to consider 2 such
that || @, (z)[|, < B,V 2 € X. Given that the space X is
bounded it is sufficient to control the norm of the weights
and biases of the neural network @, by regularizing the
{ (clamping) or ¢ norms (weight decay) to ensure the
boundedness of .#, ., p.
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a) IPM ,,2: Level sets of f(z) = (v*, @y (x))
o — (D) ()
Trw (P) = (DT *

/7 N\

Level Sets of ¢) (uy, Do, (2)) (v1, P ())

d) (uz, (@) (v2, Pos(2))

b) IPM x: Level sets of f(z) = Zle (uj, Do ()) (v), Puo())
k = 3,u;,v; left and right singular vectors of 3, (P) — £,(Q).

€) {uz, Puy(2)) (v3, Doy (2))

Figure 1. Motivating example on synthetic data in 2D, showing how different components in covariance matching can target different
regions of the input space. Mean matching (a) is not able to capture the two modes of the bimodal “real” distribution P and assigns
higher values to one of the modes. Covariance matching (b) is composed of the sum of three components (c)+(d)+(e), corresponding
to the top three “critic directions”. Interestingly, the first direction (c) focuses on the “fake” data Q, the second direction (d) focuses on
the “real” data, while the third direction (e) is mode selective. This suggests that using covariance matching would help reduce mode
dropping in GAN. In this toy example @, is a fixed random Fourier feature map (Rahimi & Recht, 2008) of a Gaussian kernel (i.e. a

finite dimensional approximation).

Now that we ensured the boundedness of .%,, ,, ,, , we look
at its corresponding IPM:

dz,.,,P,Q) = sup E f(z)— E f(x)
fEFy wp z~P z~Q

= max

P — (0]
wGQ,v,ﬁv||p§1 <’U7xIE]P’ w(l’) a:IEQ w(l’)>

= max{ max <v, E &,(z)— E @w(x)>]
we Lu,|v]|p<1 ~P z~Q

= max|u, () - u (@, ,

where we used the linearity of the function class and ex-
pectation in the first equality and the definition of the dual
norm |||, in the last equality and our definition of the mean
feature embedding of a distribution P € Z(X):

11, (P) = EP[%(QC)} €R™.

T~

We see that the IPM indexed by %, ., ,, corresponds to the
Maximum mean feature Discrepancy between the two dis-
tributions. Where the maximum is taken over the parameter
set €2, and the discrepancy is measured in the ¢, sense be-
tween the mean feature embedding of P and Q. In other
words this IPM is equal to the worst case ¢, distance be-
tween mean feature embeddings of distributions. We refer
in what follows to d.# as IPM,, 4.

v,w,p

3.2. Mean Feature Matching GAN

We turn now to the problem of learning generative models
with IPM,, ,. Setting .7 to .%, , ;, in Equation (2) yields
to the following min-max problem for learning generative
models:

minmax max .Z,(v,w,0 3
90 WD v,||v||,<1 ulv,w,9), @)

where

Zy0.0.0) = (0. B, (o) - E ®u(n(:) ),

2Pz

or equivalently using the dual norm:

min max ([ b0 (Pr) — 1 (Po) [l » “)

go we
where p, (Pg) = 25) @, (g6(2))-

We refer to formulations (3) and (4) as primal and dual for-
mulation respectively.

The dual formulation in Equation (4) has a simple inter-
pretation as an adversarial learning game: while the fea-
ture space ®,, tries to map the mean feature embeddings
of the real distribution PP, and the fake distribution Py to
be far apart (maximize the /, distance between the mean
embeddings), the generator gy tries to put them close one
to another. Hence we refer to this IPM as mean matching
IPM.
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We devise empirical estimates of both formulations in
Equations (3) and (4), given samples {z;,i = 1...N}
from P, and {z;,¢ = 1...N} from p,. The primal for-
mulation (3) is more amenable to stochastic gradient de-
scent since the expectation operation appears in a linear
way in the cost function of Equation (3), while it is non lin-
ear in the cost function of the dual formulation (4) (inside
the norm). We give here the empirical estimate of the pri-
mal formulation by giving empirical estimates D?M(v, w,0)
of the primal cost function:

(P,) : min max
9o we
v, llv][p<1

An empirical estimate of the dual formulation can be also
given as follows:

N N

%Z D, (z;) — %Zfﬁw(ge(%))

i=1 i=1

D,) : min ma
( M) go wES}Z(

In what follows we refer to the problem given in (P,) and
(D) as £y Mean Feature Matching GAN. Note that while
(P,,) does not need real samples for optimizing the gener-
ator, (D,,) does need samples from real and fake. Further-
more we will need a large minibatch of real data in order
to get a good estimate of the expectation. This makes the
primal formulation more appealing computationally.

3.3. Related Work

We show in this Section that several previous works on
GAN, can be written within the £, mean feature matching
IPM (IPM,, ;) minimization framework:

a) Wasserstein GAN (WGAN): (Arjovsky et al., 2017) re-
cently introduced Wasserstein GAN. While the main mo-
tivation of this paper is to consider the IPM indexed by
Lipchitz functions on X, we show that the particular
parametrization considered in (Arjovsky et al., 2017) cor-
responds to a mean feature matching IPM.

Indeed (Arjovsky et al., 2017) consider the function set
parametrized by a convolutional neural network with a lin-
ear output layer and weight clipping. Written in our nota-
tion, the last linear layer corresponds to v, and the convo-
lutional neural network below corresponds to ®,,. Since v
and w are simultaneously clamped, this corresponds to re-
stricting v to be in the ¢, unit ball, and to define in 2 con-
straints on the ¢, norms of w. In other words (Arjovsky
et al., 2017) consider functions in .%, ,, ,, where p = oo
. Setting p = oo in Equation (3), and ¢ = 1 in Equation
(4), we see that in WGAN we are minimizing d #, , __, that
corresponds to ¢; mean feature matching GAN.

b) MMD GAN: Let 57 be a Reproducing Kernel Hilbert
Space (RKHS) with k its reproducing kernel. For any valid

1 & 1
<v, N Z@w(%—) -~ Z‘I’w(ge(zi))>

PSD kernel k there exists an infinite dimensional feature
map ® : X — 5 such that: k(z,y) = (®(x), P(y))e.
For an RKHS & is noted usually k(z,.) and satisfies the
reproducing proprety:

f(x) = (f,®(x)) s, forall f € 2.

Setting F = {f’ || /]l < 1} in Equation (1) the IPM d.&
has a simple expression:

d>@Q = s {(£ 200 - Eo@)}]
= ||p® - n@| . 5)

where u(IP) = E]p(b(a:) € S is the so called kernel mean

embedding (Muandet et al., 2016). d & in this case is the so
called Maximum kernel Mean Discrepancy (MMD) (Gret-
ton et al., 2012) . Using the reproducing property MMD
has a closed form in term of the kernel k. Note that IPM,, -
is a special case of MMD when the feature map is finite
dimensional, with the main difference that the feature map
is fixed in case of MMD and learned in the case of IPM,, 5.
(Li et al., 2015; Dziugaite et al., 2015) showed that GANs
can be learned using MMD with a fixed gaussian kernel.

c) Improved GAN: Building on the pioneering work of
(Goodfellow et al., 2014), (Salimans et al., 2016) suggested
to learn the discriminator with the binary cross entropy cri-
terium of GAN while learning the generator with /2 mean
feature matching. The main difference of our IPM,, » GAN
is that both “discriminator” and “generator” are learned us-
ing the mean feature matching criterium, with additional
constraints on ®,,.

4. Covariance Feature Matching GAN
4.1. IPMy: Covariance Matching IPM

As follows from our discussion of mean matching IPM
comparing two distributions amounts to comparing a first
order statistics, the mean of their feature embeddings. Here
we ask the question how to incorporate second order statis-
tics, i.e covariance information of feature embeddings.

In this Section we will provide a function space .# such
that the IPM in Equation (1) captures second order infor-
mation. Intuitively a distribution of points represented in
a feature space can be approximately captured by its mean
and its covariance. Commonly in unsupervised learning,
this covariance is approximated by its first £ principal com-
ponents (PCA directions), which capture the directions of
maximal variance in the data. Similarly, the metric we de-
fine in this Section will find k& directions that maximize
the discrimination between the two covariances. Adding
second order information would enrich the discrimination
power of the feature space (See Figure 1).



McGan: Mean and Covariance Feature Matching GAN

This intuition motivates the following function space of bi-
linear functions in &, :
k
Fuvew = {f@) =) (uj, 0u(x)) (v, ()
j=1
{u;},{v;} € R™ orthonormal j =1...k,w € Q}.

Note that the set Zy v, is symmetric and hence the IPM
indexed by this set (Equation (1)) is well defined. It is easy
to see that .#y,v, can be written as:

Fove = {1(@) = (UTuf2), VT 0u(2))|
UVeR™*UTU=1,,V'V = I,w e Q}

the parameter set € is such that the function space remains
bounded. Let

be the uncentered feature covariance embedding of P. It is
easy to see that IEP f(z) can be written in terms of U, V,
-y

and X, (P):

r~P

For a matrix A € R™*™, we note by ¢;(A) the singu-
lar value of A, 7 = 1...m in descending order. The 1-
schatten norm or the nuclear norm is defined as the sum of
singular values, || A||, = Z;“:l oj. We note by [A] the
k-th rank approximation of A. We note O,,, = {M €
R™*k|M "M = I;}. Consider the IPM induced by this

function set. Let P, Q € £2(X) we have:

dyu,v,w (P, Q) = Ssup Epf(ﬂﬁ) - y@@f(x)

feFuv,w ™
=max B f(z) - x%f (z)
U, VEOm ik

_ T _
= rf?gU,&%%%,L,?race [U (Zw (]P) Ew (Q))V}

k
= gleaégz gj (Ew(]}b) - Ew(@))
= max [, (F) = Zu (Q)l .

where we used the variational definition of singular val-
ues and the definition of the nuclear norm. Note that U, V'
are the left and right singular vectors of 3, (P) — X, (Q).
Hence d#, ., measures the worst case distance between
the covariance feature embeddings of the two distributions,
this distance is measured with the Ky Fan k-norm (nuclear
norm of truncated covariance difference). Hence we call
this IPM covariance matching IPM, IPMy..

E f(z) = IEP<UT<I>(x),VT<I>(x)> = Trace(U TS, (P)V).

4.2. Covariance Matching GAN

Turning now to the problem of learning a generative model
gp of P, € Z(X) using IPMy, we shall solve:

Hglin dgu,v,w (]P)N PG)v

this has the following primal formulation:

min max %, (U, V,w,0), (6)
go  weQU,VEOD,, \

where %, (U,V,w,0) = E (UT®,(2),V d,(x)))

T~y

— E (UT®u(g6(2)), V' u(gs(2)))

2Pz

or equivalently the following dual formulation:

min max || [Xe, (Pr) — Z (Po)kll, 7
go weq

where ¥, (Pg) = E.p. P (90(2))Pu(g0(2)) T

The dual formulation in Equation (7) shows that learning
generative models with IPMy;, consists in an adversarial
game between the feature map and the generator, when
the feature maps tries to maximize the distance between
the feature covariance embeddings of the distributions, the
generator tries to minimize this distance. Hence we call
learning with IPMy;, covariance matching GAN.

We give here an empirical estimate of the primal formula-
tion in Equation (6) which is amenable to stochastic gra-
dient. The dual requires nuclear norm minimization and is
more involved. Given {z;,z; ~ P, }, and {z;,2; ~ p.},
the covariance matching GAN can be written as follows:

min max %, (U,V,w,0), (8)
g weQU,VEOD, i

N
- 1
where %, (U, V,w,0) = N Z (UT®,(2;), V@ (2;))
i=1

N
S TV ().

J=1
4.3. Mean and Covariance Matching GAN

In order to match first and second order statistics we pro-
pose the following simple extension:

min max  Z,(v,w,0)+ £ (U, V,w,0),
90 we,||v][p<1
UVeEODn, k

that has a simple dual adversarial game interpretation
min ma |1, (P) — ps (Po) [l + 112 (Pr) — 2 (Po) i

where the discriminator finds a feature space that discrim-
inates between means and variances of real and fake, and
the generator tries to match the real statistics. We can also
give empirical estimates of the primal formulation similar
to expressions given in the paper.
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5. Algorithms

We present in this Section our algorithms for mean and co-
variance feature matching GAN (McGan) with IPM,, , and
IPMs..

Mean Matching GAN. Primal P,: We give in Algorithm
1 an algorithm for solving the primal IPM,, ; GAN (P,,).
Algorithm 1 is adapted from (Arjovsky et al., 2017) and
corresponds to their algorithm for p = co. The main differ-
ence is that we allow projection of v on different £, balls,
and we maintain the clipping of w to ensure boundedness of
®,,. For example for p = 2, projp,_ (v) = min(1, W)v
For p = oo we obtain the same clipping in (Arjovsky et al.,
2017) projg, (v) = clip(v, —c,c) for ¢ = 1.

Dual D,,: We give in Algorithm 2 an algorithm for solv-
ing the dual formulation IPM,, ; GAN (D,,). As mentioned
earlier we need samples from “real” and “fake” for training
both generator and the “critic” feature space.

Covariance Matching GAN. Primal Px;: We give in Al-
gorithm 3 an algorithm for solving the primal of IPMyx,
GAN (Equation (8)). The algorithm performs a stochas-
tic gradient ascent on (w,U, V') and a descent on 6. We
maintain clipping on w to ensure boundedness of ®,,, and
perform a QR retraction on the Stiefel manifold O,;, i (Ab-
sil et al., 2007), maintaining orthonormality of U and V.

Algorithm 1 Mean Matching GAN - Primal (P,)

Input: p to define the ball of v ,n Learning rate, n.
number of iterations for training the critic, ¢ clipping or
weight decay parameter, N batch size
Initialize v, w, 0
repeat
for j = 1ton.do
Sample a minibatch z;,7 =1... N, z; ~ P,
Sample a minibatch z;, = 1... N, z; ~ p,
(Gvs 90) + (Vo Zu(v,w,0), V2, (v,w,0))
(v,w) < (v,w) + n RMSProp ((v,w), (guv, 9u))
{Project v on ¢, ball, By, = {x, |||, < 1}}
v proszp (v)
w < clip(w, —¢, ¢) {Ensure ®,, is bounded}
end for
Sample z;,i =1...N,z; ~ p,

do = =V (v, % i1 Pulgu(z))
0 < 0 — n RMSProp (0, dy)
until 6 converges

6. Experiments

We train McGan for image generation with both Mean
Matching and Covariance Matching objectives. We show
generated images on the labeled faces in the wild (Ifw)

Algorithm 2 Mean Matching GAN - Dual (D)
Input: ¢ the matching ¢, norm ,n Learning rate, n.
number of iterations for training the critic, ¢ clipping or
weight decay parameter, N batch size
Initialize v, w, 0
repeat
for j = 1ton.do
Sample a minibatch z;,i =1... N,z; ~ P,
Sample a minibatch z;,i =1... N, z; ~ p,
Noo e % 50, Bulwi) — £ XL Pulgo(z))
9w < Vu ”Awﬂ”q
w + w + n RMSProp (w, gu)
w + clip(w, —¢, ¢) {Ensure ®,, is bounded}
end for
Sample z;,2 =1...N,z; ~ p,
Sample x;,i =1... M,x; ~P. (M >
Buro = g iy Bu(wi) = & Tty Pusl90(2:))
dg < Vo [Auell,
0 < 0 — n RMSProp (0, dy)
until 6 converges

Algorithm 3 Covariance Matching GAN - Primal (Py)

Input: £ the number of components ,n Learning rate, n,.
number of iterations for training the critic, ¢ clipping or
weight decay parameter, N batch size
Initialize U, V, w, 0
repeat
for j = 1ton.do
Sample a minibatch z;,i =1... N, z; ~ P,
Sample a minibatch z; ai =1...N,z; ~p,
G+ (VU7 Vv, Vw>$U(U7 V,w, 9)
(U, V,w) < (U, V,w)+n RMSProp ((U,V,w),G)
{ Project U and V on the Stiefel manifold O,;, 1}
Qu, Ry < QR(U) s, <« sign(diag(R,))
Qu, Ry < QR(V) s, < sign(diag(R,))
U + Q,Diag(s,)
V « Q,Diag(s,)
w < clip(w, —¢, ¢) {Ensure ®,, is bounded}
end for
Sample z;,i =1...N,z; ~ p,
dy =V 350, (U (90(2)), Vu(g0(2)))
0 < 0 — n RMSProp (6, dy)
until 6 converges

(Huang et al., 2007), LSUN bedrooms (Yu et al., 2015),
and cifar-10 (Krizhevsky & Hinton, 2009) datasets.

It is well-established that evaluating generative models is
hard (Theis et al., 2016). Many GAN papers rely on a com-
bination of samples for quality evaluation, supplemented
by a number of heuristic quantitative measures. We will
mostly focus on training stability by showing plots of the
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loss function, and will provide generated samples to claim
comparable sample quality between methods, but we will
avoid claiming better sample quality. These samples are all
generated at random and are not cherry-picked.

The design of gp and @, are following DCGAN princi-
ples (Radford et al., 2015), with both gy and @, being
a convolutional network with batch normalization (Ioffe
& Szegedy, 2015) and ReLU activations. &, has out-
put size bs x ' x 4 x 4. The inner product can then
equivalently be implemented as conv (4x4, F->1) or
flatten + Linear (4x4«F -> 1). We generate
64 x 64 images for Ifw and LSUN and 32 x 32 images on
cifar, and train with minibatches of size 64. We follow the
experimental framework and implementation of (Arjovsky
et al., 2017), where we ensure the boundedness of &, by
clipping the weights pointwise to the range [—0.01,0.01].

Primal versus dual form of mean matching. To illus-
trate the validity of both the primal and dual formulation,
we trained mean matching GANs both in the primal and
dual form, see respectively Algorithm 1 and 2. Samples are
shown in Figure 2. Note that optimizing the dual form is
less efficient and only feasible for mean matching, not for
covariance matching. The primal formulation of IPM,, ;
GAN corresponds to clipping v, i.e. the original WGAN,
while for IPM,, » we divide v by its £ norm if it becomes
larger than 1. In the dual, for ¢ = 2 we noticed little differ-
ence between maximizing the ¢ norm or its square.

We observed that the default learning rates from WGAN
(5e-5) are optimal for both primal and dual formulation.
Figure 3 shows the loss (i.e. IPM estimate) dropping
steadily for both the primal and dual formulation indepen-
dently of the choice of the ¢, norm. We also observed
that during the whole training process, samples generated
from the same noise vector across iterations, remain sim-
ilar in nature (face identity, bedroom style), while details
and background will evolve. This qualitative observation
indicates valuable stability of the training process.

For the dual formulation (Algorithm 2), we confirmed the
hypothesis that we need a good estimate of y,, (P,.) in order
to compute the gradient of the generator Vy: we needed to
increase the minibatch size of real threefold to 3 x 64.

Covariance GAN. We now experimentally investigate the
IPM defined by covariance matching. For this section and
the following, we use only the primal formulation, i.e.
with explicit u; and v; orthonormal (Algorithm 3). Fig-
ure 4 and 5 show samples and loss from Ifw and LSUN
training respectively. We use Algorithm 3 with k¥ = 16
components. We obtain samples of comparable quality to
the mean matching formulations (Figure 2), and we found
training to be stable independent of hyperparameters like
number of components k varying between 4 and 64.

Figure 2. Samples generated with primal (left) and dual (right)
formulation, in ¢; (top) and ¢2 (bottom) norm. (A) Ifw (B) LSUN.

0 2500 5000 7500 10000 12500 15000 17500 20000
gp updates

Figure 3. Plot of the loss of P, 1 (i.e. WGAN), P, 2 Dy1 Dy 2
during training of 1fw, as a function of number of updates to gs.
Similar to the observation in (Arjovsky et al., 2017), training is
stable and the loss is a useful metric of progress, across the differ-
ent formulations.
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Figure 4. Ifw samples generated with covariance matching and
plot of loss function (IPM estimate) %, (U, V,w, 6).
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Figure 5. LSUN samples generated with covariance matching and
plot of loss function (IPM estimate) .%, (U, V, w, ).

Covariance GAN with labels and conditioning.

Finally, we conduct experiments on the cifar-10 dataset,
where we will leverage the additional label information
by training a GAN with conditional generator gy(z,y)
with label y € [1, K] supppplied as one-hot vector con-
catenated with noise z. Similar to Infogan (Chen et al.,
2016) and AC-GAN (Odena et al., 2016), we add a
new output layer, S € RX*™ and will write the logits
(S, ®,(r)) € RX. We now optimize a combination of
the IPM loss and the cross-entropy loss CE(x, y; S, ®,,) =

—log [Softmax((S ®,,(x)))y]. The critic loss becomes
“Zp = %, - A% 2 (e iyetab CE (@i, yi3 S, @y), with
hyper-parameter Ap. We now sample three minibatches
for each critic update: a labeled batch for the CE term, and
for the IPM a real unlabeled + generated batch.

The generator loss (with hyper-param A¢) becomes: £ =
ga’ + )‘G% Zziwpz’yiwpu CE(QG (Ziv yl)7 Yi; Sa q)w) which
still only requires a single minibatch to compute.

Figure 6. Cifar-10: Class-conditioned generated samples. Within
each column, the random noise z is shared, while within the rows
the GAN is conditioned on the same class: from top to bottom
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck.

Table 1. Cifar-10: inception score of our models and baselines.

Cond (+L) Uncond (+L) | Uncond (-L)
L1+Sigma 7.11+0.04 | 6.93+£0.07 | 6.42+0.09
L2+Sigma 7.274+0.04 | 6.69 £0.08 | 6.35+0.04
Sigma 7.29 +0.06 | 6.97 +£0.10 | 6.73 £+ 0.04
WGAN 32440.02 | 521+£0.07 | 6.39+0.07
BEGAN (Berthelot et al., 2017) 5.62
Impr. GAN “-LS” (Salimans et al., 2016) 6.83 + 0.06
Impr. GAN Best (Salimans et al., 2016) 8.09 £ 0.07

We confirm the improved stability and sample quality of
objectives including covariance matching with inception
scores (Salimans et al., 2016) in Table 1. Samples cor-
responding to the best inception score (Sigma) are given
in Figure 6. Using the code released with WGAN (Ar-
jovsky et al., 2017), these scores come from the DCGAN
model with n_extra_layers=3 (deeper generator and
discriminator) . More samples are in appendix with com-
binations of Mean and Covariance Matching. Notice rows
corresponding to recognizable classes, while the noise z
(shared within each column) clearly determines other ele-
ments of the visual style like dominant color, across label
conditioning.

7. Discussion

We noticed the influence of clipping on the capacity of the
critic: a higher number of feature maps was needed to com-
pensate for clipping. The question remains what alterna-
tives to clipping of ®,, can ensure the boundedness. For
example, we succesfully used an /5 penalty on the weights
of ®,,. Other directions are to explore geodesic distances
between the covariances (Arsigny et al., 2006), and ex-
tensions of the IPM framework to the multimodal setting
(Isola et al., 2017).
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