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Abstract
Neural networks have been successfully applied
in applications with a large amount of labeled
data. However, the task of rapid generalization
on new concepts with small training data while
preserving performances on previously learned
ones still presents a significant challenge to neu-
ral network models. In this work, we intro-
duce a novel meta learning method, Meta Net-
works (MetaNet), that learns a meta-level knowl-
edge across tasks and shifts its inductive bi-
ases via fast parameterization for rapid gener-
alization. When evaluated on Omniglot and
Mini-ImageNet benchmarks, our MetaNet mod-
els achieve a near human-level performance and
outperform the baseline approaches by up to
6% accuracy. We demonstrate several appealing
properties of MetaNet relating to generalization
and continual learning.

1. Introduction
Deep neural networks have shown great success in sev-
eral application domains when a large amount of labeled
data is available for training. However, the availability of
such large training data has generally been a prerequisite
in a majority of learning tasks. Furthermore, the standard
deep neural networks lack the ability to continuous learn-
ing or incrementally learning new concepts on the fly, with-
out forgetting or corrupting previously learned patterns. In
contrast, humans can rapidly learn and generalize from a
few examples of the same concept. Humans are also very
good at incremental (i.e. continuous) learning. These abil-
ities have been mostly explained by the meta learning (i.e.
learning to learn) process in the brain (Harlow, 1949).

Previous work on meta learning has formulated the prob-
lem as two-level learning, a slow learning of a meta-level
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Figure 1. Overall architecture of Meta Networks.

model performing across tasks and a rapid learning of a
base-level model acting within each task (Mitchell et al.,
1993; Vilalta & Drissi, 2002). The goal of a meta-level
learner is to acquire generic knowledge of different tasks.
The knowledge can then be transferred to the base-level
learner to provide generalization in the context of a single
task. The base and meta-level models can be framed in a
single learner (Schmidhuber, 1987) or in separate learners
(Bengio et al., 1990; Hochreiter et al., 2001).

In this work we introduce a meta learning model called
MetaNet (for Meta Networks) that supports meta-level con-
tinual learning by allowing neural networks to learn and to
generalize a new task or concept from a single example on
the fly. The overall architecture of MetaNet is shown in
Figure 1. MetaNet consists of two main learning compo-
nents, a base learner and a meta learner, and is equipped
with an external memory. Learning occurs at two levels
in separate spaces (i.e. meta space and task space). The
base learner performs in the input task space whereas the
meta learner operates in a task-agnostic meta space. By
operating in the abstract meta space, the meta learner sup-
ports continual learning and performs meta knowledge ac-
quisition across different tasks. Towards this end, the base
learner first analyzes the input task. The base learner then
provides the meta learner with a feedback in the form of
higher order meta information to explain its own status in
the current task space. Based on the meta information,
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the meta learner rapidly parameterizes both itself and the
base learner so that the MetaNet model can recognize the
new concepts of the input task. Specifically, the training
weights of MetaNet evolve at different time-scales: stan-
dard slow weights are updated through a learning algo-
rithm (i.e. REINFORCE), task-level fast weights are up-
dated within the scope of each task, and example-level fast
weights are updated for a specific input example. Finally
MetaNet equipped with external memory allows for rapid
learning and generalization.

Under the MetaNet framework, it is important to define the
types of the meta information which can be obtained from
the learners. While other representations of meta informa-
tion are also applicable, we use loss gradients as meta in-
formation. MetaNet has two types of loss functions with
distinct objectives: a representation (i.e. embedding) loss
defined for the good representation learner criteria and a
main (task) loss used for the input task objective.

We extensively studied the performance and the charac-
teristics of MetaNet on one-shot supervised learning (SL)
problems under several different settings. Our proposed
method not only improves the state-of-the-art results on
the standard benchmarks, but also shows some interesting
properties related to generalization and continual learning.

2. Related Work
Our work connects different threads of research in order to
model neural architectures for rapid learning and general-
ization. Rapid learning and generalization refers to a one-
shot learning scenario where a learner is introduced to a
sequence of tasks, where each task entails multi-class clas-
sification with a single or few labeled example per class.
A key challenge in this setting is that the classes or con-
cepts vary across the tasks. Due to this, one-shot learning
problems have been widely addressed by generative mod-
els and metric learning methods. One notable success is
reported by a probabilistic programming approach (Lake
et al., 2015). They used specific knowledge of how pen
strokes are composed to produce characters of different al-
phabets. Koch (2015) applied Siamese Networks to per-
form one-shot classification. Recently, Vinyals et al. (2016)
unified the training and testing of a one-shot learner under
the same procedure and developed an end-to-end differen-
tiable nearest neighbor method for one-shot learning. San-
toro et al. (2016) proposed a memory-based approach and
trained Neural Turing Machines (Graves et al., 2014) for
one-shot learning, although the meta-learner and the one-
shot learner in this work are not separable explicitly. The
training procedure used by Santoro et al. (2016) adapted the
work of Hochreiter et al. (2001) in which they use LSTMs
as the meta-level model. More recently an LSTM-based
one-shot optimizer was proposed (Ravi & Larochell, 2017).

By taking in the loss, the gradient and the parameters of the
base learner, the meta optimizer was trained to update the
parameters for one-shot classification.

A related line of work focuses on building meta opti-
mizers (Hochreiter et al., 2001; Maclaurin et al., 2015;
Andrychowicz et al., 2016; Li & Malik, 2017). As the main
interest here is to train an optimization algorithm within
the meta learning framework, these efforts have mainly fo-
cused on tasks with large datasets. In contrast, with the ab-
sence of large datasets, our experimental setup emphasizes
the difficulties of optimizing a neural network with a large
number of parameters to generalize with limited examples
of a new concept. Our work proposes a novel rapid param-
eterization approach by employing meta information. By
following the success of the previous work (Mitchell et al.,
1993; Younger et al., 1999; Andrychowicz et al., 2016;
Ravi & Larochell, 2017), we study the meta information
present in the loss gradient of neural nets. Fast weights
and utilizing one neural network to generate parameters
for another neural network have previously been studied
separately. Hinton & Plaut (1987) suggested the usage of
fast weights for rapid learning. Ba et al. (2016) recently
used fast weights to replace soft attention mechanism. Fast
weights have also been used to implement recurrent nets
(Schmidhuber, 1992; 1993a) and self-referential networks
(Schmidhuber, 1987; 1993b). These usages of fast weights
are well motivated by the fact that synapses have dynamics
at many different time-scales (Greengard, 2001).

The approach proposed by Gomez & Schmidhuber (2005)
is more closely related to our work. They used recurrent
nets to generate fast weights for a single-layer network
controller. De Brabandere et al. (2016) used one network
to generate slow filter weights for a convolutional neural
net. More recently David Ha & Le (2017) generated slow
weights for recurrent nets. Our MetaNet generates fast
weights at two time-scales by operating in meta space. To
integrate the fast weights with the slow weights, we pro-
pose a novel layer augmentation approach.

Finally, we note that our MetaNet equipped with an ex-
ternal memory can be seen as a memory augmented neu-
ral network (MANN). MANNs have shown promising re-
sults on a range of tasks starting from small programming
problems (Graves et al., 2014) to large-scale language tasks
(Weston et al., 2015; Sukhbaatar et al., 2015; Munkhdalai
& Yu, 2017).

3. Meta Networks
MetaNet learns to fast parameterize underlying neural net-
works for rapid generalizations by processing a higher or-
der meta information, resulting in a flexible AI model that
can adapt to a sequence of tasks with possibly distinct in-



Meta Networks

Algorithm 1 MetaNet for one-shot supervised learning
Require: Support set {x′i, y′i}Ni=1 and Training set {xi, yi}Li=1

Require: Base learner b, Dynamic representation learning func-
tion u, Fast weight generation functions m and d, and Slow
weights θ = {W,Q,Z,G}

Require: Layer augmentation scheme
1: Sample T examples from support set
2: for i = 1, T do
3: Li ← lossemb(u(Q, x

′
i), y

′
i)

4: ∇i ← ∇QLi
5: end for
6: Q∗ = d(G, {∇}Ti=1)
7: for i = 1, N do
8: Li ← losstask(b(W,x

′
i), y

′
i)

9: ∇i ← ∇WLi
10: W ∗i ← m(Z,∇i)
11: Store W ∗i in ith position of memory M
12: r′i = u(Q,Q∗, x′i)
13: Store r′i in ith position of index memory R
14: end for
15: Ltrain = 0
16: for i = 1, L do
17: ri = u(Q,Q∗, xi)
18: ai = attention(R, ri)
19: W ∗i = softmax(ai)

>M
20: Ltrain ← Ltrain + losstask(b(W,W

∗
i , xi), yi)

{Alternatively the base learner can take as input ri instead
of xi}

21: end for
22: Update θ using∇θLtrain

put and output distributions. The model consists of two
main learning modules (Figure 1). The meta learner is re-
sponsible for fast weight generation by operating across
tasks while the base learner performs within each task by
capturing the task objective. The generated fast weights
are integrated into both base learner and meta learner to
shift the inductive bias of the learners. We propose a novel
layer augmentation method to integrate the standard slow
weights and the task or example specific fast weights in a
neural net.

To train MetaNet, we adapt a task formulation procedure by
Vinyals et al. (2016). We form a sequence of tasks, where
each task consists of a support set {x′i, y′i}Ni=1 and a train-
ing set {xi, yi}Li=1. The class labels are consistent for both
support and training sets of the same task, but vary across
distinct tasks. Overall the training of MetaNet consists of
three main procedures: acquisition of meta information,
generation of fast weights and optimization of slow weights,
executed collectively by the base and the meta learner. The
training of MetaNet is described in Algorithm 1.

To test the model for one-shot SL, we sample another se-
quence of tasks from a test dataset with unseen classes.
Then the model is deployed to classify test examples based
on its support set. We assume that we have class labels for
the support set during both training and testing. Note that
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Figure 2. A layer augmented MLP

in one-shot learning setup, the support set contains only
single example per class and thus it is cheap to obtain.

3.1. Meta Learner

The meta learner consists of a dynamic representation
learning function u and fast weight generation functions
m and d. The function u has a representation learning ob-
jective and constructs embeddings of inputs in each task
space by using task-level fast weights. The weight gen-
eration functions m and d are responsible for processing
the meta information and generating the example and task-
level fast weights.

More specifically, the function m learns the mapping from
the loss gradient {∇i}Ni=1, derived from the base learner b,
to fast weights {W ∗i }Ni=1:

W ∗i = m(Z,∇i) (1)

where m is a neural network with parameter Z. The fast
weights are then stored in a memory M = {W ∗i }Ni=1. The
memory M is indexed with task dependent embeddings
R = {r′i}Ni=1 of the support examples {x′i}Ni=1, obtained
by the dynamic representation learning function u.

The representation learning function u is a neural net pa-
rameterized by slow weights Q and task-level fast weights
Q∗. It uses the representation loss lossemb to capture a rep-
resentation learning objective and to obtain the gradients as
meta information. We generate the fast weightsQ∗ on a per
task basis as follows:

Li = lossemb(u(Q, x
′
i), y

′
i) (2)

∇i = ∇QLi (3)

Q∗ = d(G, {∇}Ti=1) (4)
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where d denotes a neural net parameterized by G, that ac-
cepts variable sized input. First, we sample T examples
(T ≤ N ) {x′i, y′i}Ti=1 from the support set and obtain the
loss gradient as meta information. Then d observes the gra-
dient corresponding to each sampled example and summa-
rizes into the task specific parameters. We use LSTM for
d although the order of inputs to d does not matter. Alter-
natively we can take summation or average of the gradients
and use a MLP. However, in our preliminary experiment we
observed that the latter results in a poor convergence.

Once the fast weights are generated, the task dependent in-
put representations {r′i}Ni=1 are computed as:

r′i = u(Q,Q∗, x′i) (5)

where the parameters Q and Q∗ are integrated using the
layer augmentation method described in Section 3.3.

The loss, lossemb does not need to be the same as the main
task loss losstask. However, it should be able to capture
a representation learning objective. We use cross-entropy
loss when the support set has only a single example per
class. When there are more than one examples per class
available, contrastive loss (Chopra et al., 2005) is a natural
choice for lossemb since both positive and negative samples
can be formed. In this case, we randomly draw T number
of pairs to observe the gradients and the loss is

Li = lossemb(u(Q, x
′
1,i), u(Q, x

′
2,i), li) (6)

where li is auxiliary label:

li =

{
1, if y′1,i = y′2,i
0, otherwise

(7)

Once the parameters are stored in the memory M and the
memory index R is constructed, the meta learner parame-
terizes the base learner with the fast weights W ∗i . First it
embeds the input xi in the task space by using the dynamic
representation learning network (i.e. Equation 5) and then
reads the memory with soft attention:

ai = attention(R, ri) (8)

W ∗i = norm(ai)
>M (9)

where attention calculates similarity between the memory
index and the input embedding and we use cosine similar-
ity as attention and norm is a normalization function, for
which we use softmax.

3.2. Base Learner

The base learner, denoted as b, is a function or a neural
net that estimates the main task objective via a task loss

losstask. However, unlike standard neural nets, b is param-
eterized by slow weightsW and example-level fast weights
W ∗. The slow weights are updated via a learning algorithm
during training whereas the fast weights are generated by
the meta learner for every input.

The base learner uses a representation of meta information
obtained by using a support set, to provide the meta learner
with feedbacks about the new input task. The meta infor-
mation is derived from the base learner in form of the loss
gradient information:

Li = losstask(b(W,x
′
i), y

′
i) (10)

∇i = ∇WLi (11)

Here Li is the loss for support examples {x′i, y′i}Ni=1. N is
the number of support examples in the task set (typically
a single instance per class in the one-shot learning setup).
∇i is the loss gradient with respect to parameters W and is
our meta information. Note that the loss function losstask
is generic and can take any form, such as a cumulative re-
ward in reinforcement learning. For our one-shot classifi-
cation setup we use cross-entropy loss. The meta learner
takes in the gradient information ∇i and generates the fast
parameters W ∗ as in Equation 1.

Assuming that the fast weightsW ∗i for input xi are defined,
the base learner performs the one-shot classification as:

P (ŷi|xi,W,W ∗i ) = b(W,W ∗i , xi) (12)

where ŷi is predicted output and {xi}Li=1 is an input drawn
from the training set {xi, yi}Li=1 for the current task. Alter-
natively the base learner can take as input the task specific
representations {ri}Li=1 produced by the dynamic represen-
tation learning network, effectively reducing the number of
MetaNet parameters and leveraging shared representations.
In this case, the base learner is forced to operate in the dy-
namic task space constructed by u instead of building new
representations from the raw inputs {xi}Li=1.

During training, given output labels {yi}Li=1, we minimize
the cross-entropy loss for one-shot SL. The training param-
eters of MetaNet θ consists of the slow weights W and Q
and the meta weights Z and G (i.e. θ = {W,Q,Z,G})
and jointly updated via a training algorithm such as back-
propagation to minimize the task loss losstask (Equation
12).

In a similar way, as defined in the Equation 2-4, we can also
parameterize the base learner with task-level fast weights.
An ablation experiment on different variation of MetaNet
is reported in Section 4.

3.3. Layer Augmentation

A slow weight layer in the base learner is extended with
its corresponding fast weights for rapid generalization. An
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Table 1. One-shot accuracy on Omniglot previous split
Model 5-way 10-way 15-way 20-way

Pixel kNN (Kaiser et al., 2017) 41.7 - - 26.7
Siamese Net (Koch, 2015) 97.3 - - 88.1
MANN (Santoro et al., 2016) 82.8 - - -
Matching Nets (Vinyals et al., 2016) 98.1 - - 93.8
Neural Statistician (Edwards & Storkey, 2017) 98.1 - - 93.2
Siamese Net with Memory (Kaiser et al., 2017) 98.4 - - 95.0

MetaNet- 98.4 98.32 96.68 96.13
MetaNet 98.95 98.67 97.11 97.0
MetaNet+ 98.45 97.05 96.48 95.08

example of the layer augmentation approach applied to a
MLP is shown in Figure 2. The input of an augmented
layer is first transformed by both slow and fast weights and
then passed through a non-linearity (i.e. ReLU ) resulting
in two separate activation vectors. Finally the activation
vectors are aggregated by an element-wise vector addition.
For the last softmax layer, we first aggregate two trans-
formed inputs and then normalize for classification output.

Intuitively, the fast and slow weights in the layer aug-
mented neural net can be seen as feature detectors oper-
ating in two distinct numeric domains. The application of
the non-linearity maps them into the same domain, which
is [0,∞) in the case of ReLU so that the activations can be
aggregated and processed further. Our aggregation func-
tion here is element-wise sum.

Although it is possible to define the base learner with
only fast weights, in our preliminary experiment we found
that the integration of both slow and fast weights with the
layer augmentation approach is essential in convergence
of MetaNet models. A MetaNet model relying on a base
leaner with only fast weights were failed to converge and
the best performance of this model was reported to be as
equal as that of a constant classifier that assigns the same
label to every input.

4. Results
We carried out one-shot classification experiments on three
datasets: Omniglot, Mini-ImageNet and MNIST. The Om-
niglot dataset consists of images across 1623 classes with
only 20 images per class, from 50 different alphabets (Lake
et al., 2015). It also comes with a standard split of 30 train-
ing and 20 evaluation alphabets. Following (Santoro et al.,
2016), we augmented the training set through 90, 180 and
270 degrees rotations. The images are resized to 28 x 28
pixels for computational efficiency. For the experiment on
Mini-ImageNet data, we evaluated on the same class sub-
set provided by Ravi & Larochell (2017). MNIST images
were used as out-of-domain data. The training details are
described in Appendix A.

4.1. One-shot Learning Test

In this section we will report four groups of benchmark
experiments: Omniglot previous split, Mini-ImageNet,
MNIST as out-of-domain data and Omniglot standard split.

4.1.1. OMNIGLOT PREVIOUS SPLIT

Following the previous setup Vinyals et al. (2016), we split
the Omniglot classes into 1200 and 423 classes for train-
ing and testing. We performed 5, 10, 15 and 20-way one-
shot classification and compared our performance against
the state-of-the-art results. We also studied three variations
of MetaNet as an ablation experiment in order to show how
fast parameterization affects the network dynamics.

In Table 1, we compared the performance of our models
with all published models (as baselines). The first group
of methods are the previously published models. The next
group is MetaNet variations. MetaNet is the main archi-
tecture described in Section 3. MetaNet- is a variant with-
out task-level fast weights Q∗ in the embedding function
u whereas MetaNet+ has additional task-level weights for
the base learner in addition to W ∗. Our MetaNet model
improves the previous best results by 0.5% to 2% accu-
racy. As the number of classes increases (from 5-way to
20-way classification), overall the performance of the one-
shot learners decreases. MetaNet’s performance drop is
relatively small (around 2%) while the drop for the other
models ranges from 3% to 15%. As a result, our model
shows an absolute improvement of 2% on 20-way one-shot
task.

Comparing different MetaNet variations, the additional
task-level weights in the base learner (MetaNet+) did not
seem to help and in fact had a negative effect on perfor-
mance. MetaNet- however performed surprisingly well but
still falls behind the MetaNet model as it lacks the dynamic
representation learning function. This performance gap in-
creases when we test them in out-of-the domain setting
(Appendix B).
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Table 2. One-shot accuracy on Mini-ImageNet test set
Model 5-way

Fine-tuning (Ravi & Larochell, 2017) 28.86 ± 0.54
kNN (Ravi & Larochell, 2017) 41.08 ± 0.70
Matching Nets (Vinyals et al., 2016) 43.56 ± 0.84
MetaLearner LSTM (Ravi & Larochell, 2017) 43.44 ± 0.77

MetaNet 49.21 ± 0.96

4.1.2. MINI-IMAGENET

The training, dev and testing sets of 64, 16, and 20 Im-
ageNet classes (with 600 examples per class) were pro-
vided by Ravi & Larochell (2017). By following Ravi &
Larochell (2017), we sampled 15 examples per class for
evaluation. By using the dev set, we set an evaluation
checkpoint where only if the model performance exceeds
the previous best result on random 400 trials produced from
the dev set, we apply the model to another 400 trials ran-
domly produced from the testing set and report the average
accuracy.

In Table 2, we present the results of the 5-way one-shot
evaluation. MetaNet improved the previous result by up to
6% accuracy and obtained the best result.1

4.1.3. OMNIGLOT STANDARD SPLIT

Omniglot data comes with a standard split of 30 train-
ing alphabets with 964 classes and 20 evaluation alphabets
with 659 classes. We trained and tested only the standard
MetaNet model in this setup. In order to best match the
evaluation protocol of Lake et al. (2015), we form 400 tasks
(trials) from the evaluation classes to test the model.

In Table 3, we listed the MetaNet results along with the pre-
vious models and human performance. Our MetaNet out-
performed the human performance by a slight margin, but
underperformed the probabilistic programming approach.
However, the performance gap is rather small between
these top three baselines. In addition while the probabilistic
programming performs slightly better than MetaNet, our
model does not rely on any extra prior knowledge about
how characters and strokes are composed. Comparing the
results on two Omniglot splits in Tables 1 and 3, MetaNet
showed decreasing performances on the standard split. The
later setup seems to be slightly difficult as the number of
classes in the training set is less (1200 vs 964) and test
classes are bigger (423 vs 659).

1Our code and data will be made available at: https://
bitbucket.org/tsendeemts/metanet

4.2. Generalization Test

We conducted a set of experiments to test the generalization
of MetaNet from multiple aspects. The first experiment
tests whether a MetaNet model trained on an N-way one-
shot task could generalize to another K-way task (where
N 6= K) without actually training on the second task.
The second experiment is to test if a meta learner trained
for rapid parameterization of a base learner btrain could
parameterize another base learner beval during evaluation.
The last experimental setup examines whether MetaNet
supports meta-level continual learning.

4.2.1. N-WAY TRAINING AND K-WAY TESTING

In this experiment, MetaNet is trained on N-way one-shot
classification task and then tested on K-way one-shot tasks.
The number of training and test classes are varied (i.e. N 6=
K). To handle this, we inserted a softmax layer into the
base learner during evaluation and then augmented it with
the fast weights generated by the meta learner. If the meta
learner is generic enough, it should be able to parameterize
the new softmax layer on the fly. The new layer weights
remained fixed since no parameter update was performed
for this layer. The K-way test tasks were formed from the
423 unseen classes in the test set.

The MetaNet models were trained on one of 5, 10, 15 and
20-way one-shot tasks and evaluated on the rest. In Table
4, we summarized the results. As a comparison we also
included some results from Table 1, which reports accu-
racy of N-way train and test setting. The MetaNet model
trained on 5-way tasks obtained 93.07% of 20-way test ac-
curacy which is still a closer match to Matching Network
and higher than Siamese Net trained 20-way tasks. An in-
teresting finding is that when N is smaller than K, i.e. the
model is trained on easier tasks than test ones, we observe
a decreasing performance. Conversely the models trained
on harder tasks (i.e. N > K) achieved increasing perfor-
mances when tested on the easier tasks and the performance
is even higher than the ones that were applied to the tasks
with the same level difficulty (i.e. N = K). For exam-
ple, the model skilled on 20-way classification improved
the 5-way one-shot baseline by 0.6% showing a ceiling
performance in this setting. We also conducted a prelim-
inary experiment on more extreme test-time classification.
MetaNet trained on 10-way task achieved around 65% on
100-way one-shot classification task.

This flexibility in MetaNet is crucial because one-shot
learning usually involves an online concept identification
scenario. Furthermore we can empirically obtain a perfor-
mance lower or upper bound. Particularly the test perfor-
mance obtained on the tasks with the same level difficulty
that the model was skilled on can be used as a performance
lower or an upper bound depending on a scenario under

 https://bitbucket.org/tsendeemts/metanet
 https://bitbucket.org/tsendeemts/metanet
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Table 3. One-shot accuracy on Omniglot standard split
Model 5-way 10-way 15-way 20-way

Human performance (Lake et al., 2015) - - - 95.5

Pixel kNN (Lake et al., 2013) - - - 21.7
Affine model (Lake et al., 2013) - - - 81.8
Deep Boltzmann Machines (Lake et al., 2013) - - - 62.0
Hierarchial Bayesian Program Learning (Lake et al., 2015) - - - 96.7
Siamese Net (Koch, 2015) - - - 92.0

MetaNet 98.45 97.32 96.4 95.92

which the model will be deployed in the future. For ex-
ample, for the MetaNet model that will deployed under the
N > K scenario, we can obtain the performance lower
bound by testing it on the N = K tasks.

4.2.2. RAPID PARAMETERIZATION OF FIXED WEIGHT
BASE LEARNER

We replaced the entire base learner with a new CNN dur-
ing evaluation. The slow weights of this network remained
fixed. The fast weights are generated by the meta learner
that is trained to parameterize the old base learner and used
to augmented the fixed slow weights.

We tested a small and a large CNN for the base learner.
The small CNN has 32 filters and the large CNN has 128
filters. In Figure 3, the test performances of these CNNs are
compared. The base learner (target CNN) optimized along
within the model performed better than the fixed weight
CNNs. The performance difference between these mod-
els is large in earlier training iterations. However, as the
meta learner sees more one-shot learning trials, the test ac-
curacies of the base learners converge. This results show
that MetaNet effectively learns to parameterize a neural net
with fixed weights.

4.2.3. META-LEVEL CONTINUAL LEARNING

MetaNet operates in two spaces: input problem space and
meta (gradient) space. If the meta space is problem in-
dependent, MetaNet should support meta-level continual
learning or life-long learning. This experiment tests this
in the case of the loss gradient.

Table 4. Accuracy of MetaNet trained on N-way and tested on K-
way one-shot tasks

Test

Train 5-way 10-way 15-way 20-way

5-way 98.95 96.4 93.6 93.07
10-way 99.25 96.87 96.95 96.21
15-way 99.35 98.17 97.11 96.36
20-way 99.55 98.87 97.41 97.0
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Figure 3. Comparison of the test performances of the base learn-
ers on Omniglot 5-way classification.

Following the previous work on catastrophic forgetting in
neural networks (Srivastava et al., 2013; Goodfellow et al.,
2014; Kirkpatrick et al., 2016), we formulated two prob-
lems in a sequential manner. We first trained and tested
the model on the Omniglot sets and then we switched and
continued training on the MNIST data. After training on
a number of MNIST one-shot tasks, we re-evaluated the
model on the same Omniglot test set and compare per-
formance. A decrease in performance here indicates that
the meta weights Z and G of the neural nets m and d are
prone to catastrophic forgetting and the model therefore
does not support continual learning. On the other hand,
an increase in performance indicates that MetaNet supports
reverse transfer learning and continual learning.

We allocated separate parameters for the weights W and Q
when we switched the problems so the only meta weights
were updated. We used two three-layer MLPs with 64 hid-
den units as the embedding function and the base learner.
The MNIST image and classes were augmented by ran-
domly permuting the pixels. We created 50 different ran-
dom shuffles and thus the training set for the second one-
shot problem consisted of 500 classes. We conducted mul-
tiple runs and increased the MNIST training trials by mul-
tiples of 400 (i.e. 400, 800, 1200...) in each run giving
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Figure 4. The difference between the two Omniglot test accura-
cies obtained before and after training on MNIST task.

more time for MetaNet to adapt its meta weights on the
second problem so that it may forget the knowledge about
Omniglot. Each run was repeated five times and we report
the average statistics. For every run, the network and the
optimizer were reinitialized and the training started from
scratch.

In Figure 4, we plotted the accuracy difference between two
Omniglot test performances obtained before and after train-
ing on the MNIST task. The performance improvement (y-
axis) after training on the MNIST tasks ranges from -1.7%
to 1.24% depending on the training time (x-axis). The pos-
itive values indicate that the training on the second problem
automatically improves the performance of the earlier task
exhibiting the reverse transfer property. Therefore, we can
conclude that MetaNet successfully performs reverse trans-
fer. At the same time, it is skilled on MNIST one-shot clas-
sification. The MNIST training accuracy reaches over 72%
after 2400 MNIST trials. However, reverse transfer hap-
pens only up to a certain point in MNIST training (2400
trials). After that, the meta weights start to forget the Om-
niglot information. As a result from 2800 trials onwards,
the Omniglot test accuracy drops. Nevertheless even after
7600 MNIST trials, at which point the MNIST training ac-
curacy reached over 90%, the Omniglot performance drop
was only 1.7%.

5. Discussion and Future Work
One-shot learning in combination with a meta learning
framework can be a useful approach to address certain neu-
ral network drawbacks related to rapid generalization with
small data and continual learning. We present a novel meta
learning method, MetaNet, that performs a generic knowl-
edge acquisition in a meta space and shifts the parameters
and inductive biases of underlying neural networks via fast
parameterization for the rapid generalization.

Under the MetaNet framework, an important consideration
is the type of higher order meta information that can be ex-
tracted as a feedback from the model when operating on a
new task. One desirable property here is that the meta in-
formation should be generic and problem independent. It
should also be expressive enough to explain the model set-
ting in the current task space. We explored the use of loss
gradients as meta information in this work. As shown in
the results, using the gradients as meta information seems
to be a promising direction. MetaNet obtains state-of-the
art results on several one-shot SL benchmarks and leads to
a very flexible AI model. For instance, in MetaNet we can
alternate between different softmax layers on the fly dur-
ing test. It supports continual learning up to a certain point.
We observed that neural nets with fixed slow weights can
perform well for new task inputs when augmented with the
fast weights. When the slow weights are updated during
training, it learns domain biases resulting in even better per-
formance on identification of new concepts within the same
domain. However, one could expect a higher performance
from the fixed weight network when aiming for one-shot
generalization across distant domains.

An interesting future direction would be in exploring a new
type of meta information that is more robust and expres-
sive, and in developing synaptic weights that are capable of
maintaining such higher order information. One could take
inspiration from the meta learning process in the brain and
ask whether the brain operates on some kind of higher or-
der information to generalize across tasks and acquire new
skills.

The rapid parameterization approach presented here has
been shown to be an effective alternative to the direct op-
timization methods that learn to update network param-
eters for one-shot generalization. However, a problem
this approach poses is the integration of slow and fast
weights. As a solution to this, we presented a simple
layer augmentation method. Although the layer augmenta-
tion worked reasonably well, this method becomes difficult
when a neural net has many types of parameters operat-
ing in multiple different time-scales. For example, a single
base learner equipped with three types of weights (slow,
example-specific, and task-level weights) integrated under
the layer augmentation paradigm could not perform as well
as a simpler one. Therefore, a potential extension would be
to train MetaNet so it can discover its own augmentation
schema for efficiency.

MetaNet can readily be applied to parameterize policies
in reinforcement learning and imitation learning, leading
to an agent with one-shot and meta learning capabilities.
MetaNet based on recurrent networks as underlying learn-
ers could lead to useful applications in sequence modeling
and language understanding tasks.
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