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Abstract
Standard forms of coordinate and stochastic gra-
dient methods do not adapt to structure in data;
their good behavior under random sampling is
predicated on uniformity in data. When gradi-
ents in certain blocks of features (for coordinate
descent) or examples (for SGD) are larger than
others, there is a natural structure that can be ex-
ploited for quicker convergence. Yet adaptive
variants often suffer nontrivial computational
overhead. We present a framework that discov-
ers and leverages such structural properties at a
low computational cost. We employ a bandit op-
timization procedure that “learns” probabilities
for sampling coordinates or examples in (non-
smooth) optimization problems, allowing us to
guarantee performance close to that of the opti-
mal stationary sampling distribution. When such
structures exist, our algorithms achieve tighter
convergence guarantees than their non-adaptive
counterparts, and we complement our analysis
with experiments on several datasets.

1. Introduction
Identifying and adapting to structural aspects of problem
data can often improve performance of optimization algo-
rithms. In this paper, we study two forms of such structure:
variance in the relative importance of different features and
observations (as well as blocks thereof). As a motivating
concrete example, consider the `

p

regression problem

minimize

x

(

f(x) := kAx� bkp
p

=

n

X

i=1

|aT

i

x� b
i

|p
)

, (1)

where a
i

denote the rows of A 2 Rn⇥d. When the columns
(features) of A have highly varying norms—say because
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certain features are infrequent—we wish to leverage this
during optimization. Likewise, when rows a

i

have dis-
parate norms, “heavy” rows of A influence the objective
more than others. We develop optimization algorithms that
automatically adapt to such irregularities for general non-
smooth convex optimization problems.

Standard (stochastic) subgradient methods (Nemirovski
et al., 2009), as well as more recent accelerated variants for
smooth, strongly convex incremental optimization prob-
lems (e.g. Johnson and Zhang, 2013; Defazio et al., 2014),
follow deterministic or random procedures that choose data
to use to compute updates in ways that are oblivious to con-
ditioning and structure. As our experiments demonstrate,
choosing blocks of features or observations—for instance,
all examples belonging to a particular class in classifica-
tion problems—can be advantageous. Adapting to such
structure can lead to substantial gains, and we propose
a method that adaptively updates the sampling probabil-
ities from which it draws blocks of features/observations
(columns/rows in problem (1)) as it performs subgradient
updates. Our method applies to both coordinate descent
(feature/column sampling) and mirror descent (observa-
tion/row sampling). Heuristically, our algorithm learns to
sample informative features/observations using their gradi-
ent values and requires overhead only logarithmic in the
number of blocks over which it samples. We show that
our method optimizes a particular bound on convergence,
roughly sampling from the optimal stationary probability
distribution in hindsight, and leading to substantial im-
provements when the data has pronounced irregularity.

When the objective f(·) is smooth and the desired solu-
tion accuracy is reasonably low, (block) coordinate descent
methods are attractive because of their tractability (Nes-
terov, 2012; Necoara et al., 2011; Beck and Tetruashvili,
2013; Lee and Sidford, 2013; Richtárik and Takáč, 2014;
Lu and Xiao, 2015). In this paper, we consider potentially
non-smooth functions and present an adaptive block co-
ordinate descent method, which iterates over b blocks of
coordinates, reminiscent of AdaGrad (Duchi et al., 2011).
Choosing a good sampling distribution for coordinates
in coordinate descent procedures is nontrivial (Lee and
Sidford, 2013; Necoara et al., 2011; Shalev-Shwartz and
Zhang, 2012; Richtárik and Takáč, 2015; Csiba et al., 2015;
Allen-Zhu and Yuan, 2015). Most work focuses on choos-
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ing a good stationary distribution using problem-specific
knowledge, which may not be feasible; this motivates auto-
matically adapting to individual problem instances. For ex-
ample, Csiba et al. (2015) provide an updating scheme for
the probabilities in stochastic dual ascent. However, the up-
date requires O(b) time per iteration, making it impractical
for large-scale problems. Similarly, Nutini et al. (2015) ob-
serve that the Gauss-Southwell rule (choosing the coordi-
nate with maximum gradient value) achieves better perfor-
mance, but this also requires O(b) time per iteration. Our
method roughly emulates this behavior via careful adaptive
sampling and bandit optimization, and we are able to pro-
vide a number of a posteriori optimality guarantees.

In addition to coordinate descent methods, we also consider
the finite-sum minimization problem

minimize

x2X

1

n

n

X

i=1

f
i

(x),

where the f
i

are convex and may be non-smooth. Variance-
reduction techniques for finite-sum problems often yield
substantial gains (Johnson and Zhang, 2013; Defazio et al.,
2014), but they generally require smoothness. More
broadly, importance sampling estimates (Strohmer and Ver-
shynin, 2009; Needell et al., 2014; Zhao and Zhang, 2014;
2015; Csiba and Richtárik, 2016) can yield improved con-
vergence, but the only work that allows online, problem-
specific adaptation of sampling probabilities of which we
are aware is Gopal (2016). However, these updates require
O(b) computation and do not have optimality guarantees.

We develop these ideas in the coming sections, focusing
first in Section 2 on adaptive procedures for (non-smooth)
coordinate descent methods and developing the necessary
bandit optimization and adaptivity machinery. In Section 3,
we translate our development into convergence results for
finite-sum convex optimization problems. Complementing
our theoretical results, we provide a number of experiments
in Section 4 that show the importance of our algorithmic
development and the advantages of exploiting block struc-
tures in problem data.

2. Adaptive sampling for coordinate descent
We begin with the convex optimization problem

minimize

x2X
f(x) (2)

where X = X
1

⇥ · · · ⇥ X
b

⇢ Rd is a Cartesian product
of closed convex sets X

j

⇢ Rd

j with
P

j

d
j

= d, and
f is convex and Lipschitz. When there is a natural block
structure in the problem, some blocks have larger gradi-
ent norms than others, and we wish to sample these blocks
more often in the coordinate descent algorithm. To that

end, we develop an adaptive procedure that exploits vari-
ability in block “importance” online. In the coming sec-
tions, we show that we obtain certain near-optimal guar-
antees, and that the computational overhead over a simple
random choice of block j 2 [b] is at most O(log b). In
addition, under some natural structural assumptions on the
blocks and problem data, we show how our adaptive sam-
pling scheme provides convergence guarantees polynomi-
ally better in the dimension than those of naive uniform
sampling or gradient descent.

Notation for coordinate descent Without loss of gen-
rality we assume that the first d

1

coordinates of x 2 Rd

correspond to X
1

, the second d
2

to X
2

, and so on. We let
U
j

2 {0, 1}d⇥dj be the matrix identifying the jth block, so
that I

d

= [U
1

· · · U
d

]. We define the projected subgradient
vectors for each block j by

G
j

(x) = U
j

U>
j

f 0(x) 2 Rd,

where f 0(x) 2 @f(x) is a fixed element of the subdiffer-
ential @f(x). Define x

[j]

:= U>
j

x 2 Rd

j and G
[j]

(x) =

U>
j

G
j

(x) = U>
j

f 0(x) 2 Rd

j . Let  
j

denote a differen-
tiable 1-strongly convex function on X

j

with respect to the
norm k·k

j

, meaning for all � 2 Rd

j we have

 
j

�

x
[j]

+�

�

�  
j

�

x
[j]

�

+r 
j

(x
[j]

)

>
�+

1

2

k�k2
j

,

and let k·k
j,⇤ be the dual norm of k·k

j

. Let B
j

(u, v) =

 
j

(u) �  
j

(v) �r 
j

(v)>(u � v) be the Bregman diver-
gence associated with  

j

, and define the tensorized diver-
gence B(x, y) :=

P

b

j=1

B
j

(x
[j]

, y
[j]

). Throughout the pa-
per, we assume the following.
Assumption 1. For all x, y 2 X , we have B(x, y)  R2

and
�

�G
[j]

(x)
�

�

2

j,⇤  L2/b for j = 1, . . . , b.

2.1. Coordinate descent for non-smooth functions

The starting point of our analysis is the simple observation
that if a coordinate J 2 [b] is chosen according to a proba-
bility vector p > 0, then the importance sampling estimator

G
J

(x)/p
J

satisfies E
p

[G
J

(x)/p
J

] = f 0(x) 2 @f(x).

Thus the randomized coordinate subgradient method
of Algorithm 1 is essentially a stochastic mirror de-
scent method (Nemirovski and Yudin, 1983; Beck and
Teboulle, 2003; Nemirovski et al., 2009), and as long
as sup

x2X E[kp�1
J

G
J

(x)k2⇤] < 1 it converges at rate
O(1/

p
T ). With this insight, a variant of standard stochas-

tic mirror descent analysis yields the following conver-
gence guarantee for Algorithm 1 with non-stationary prob-
abilities (cf. Dang and Lan (2015), who do not quite as
carefully track dependence on the sampling distribution
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Algorithm 1 Non-smooth Coordinate Descent
Input: Stepsize ↵

x

> 0, Probabilities p1, . . . , pT .
Initialize: x1

= x
for t 1, . . . , T

Sample J
t

⇠ pt

Update x:
x

t+1
[J

t

]
 argmin

x2X
J

t

(*
G[J

t

](x
t)

p

t

J

t

, x

+
+

1
↵

x

B

J

t

⇣
x, x

t

[J
t

]

⌘)

return x̄
T

 1

T

P

T

t=1

xt

p). Throughout, we define the expected sub-optimality gap
of an algorithm outputing an estimate bx by S(f, bx) :=

E[f(bx)]� inf

x

⇤2X f(x⇤). See Section A.1 for the proof.
Proposition 1. Under Assumption 1, Algorithm 1 achieves

S(f, xT

)  R2

↵
x

T
+

↵
x

2T

T

X

t=1

E

2

4

b

X

j=1

�

�G
[j]

(xt

)

�

�

2

j,⇤
pt
j

3

5 . (3)

where S(f, x̄
T

) = E[f(x̄
T

)]� inf

x2X f(x).

As an immediate consequence, if pt � p
min

> 0 and ↵
x

=

R

L

q

2pmin

T

, then S(f, x̄
T

)  RL
q

2

Tpmin
. To make this

more concrete, we consider sampling from the uniform dis-
tribution pt ⌘ 1

b

1 so that p
min

= 1/b, and assume homo-
geneous block sizes d

j

= d/b for simplicity. Algorithm 1
solves problem (2) to ✏-accuracy within O(bR2L2/✏2) it-
erations, where each iteration approximately costs O(d/b)
plus the cost of projecting into X

j

. In contrast, mirror de-
scent with the same constraints and divergence B achieves
the same accuracy within O(R2L2/✏2) iterations, taking
O(d) time plus the cost of projecting to X per iteration. As
the projection costs are linear in the number b of blocks, the
two algorithms are comparable.

In practice, coordinate descent procedures can significantly
outperform full gradient updates through efficient memory
usage. For huge problems, coordinate descent methods can
leverage data locality by choosing appropriate block sizes
so that each gradient block fits in local memory.

2.2. Optimal stepsizes by doubling

In the the upper bound (3), we wish to choose the optimal
stepsize ↵

x

that minimizes this bound. However, the term
P

T

t=1

E
⇥

P

b

j=1

kG[j](x
t

)k2
j,⇤

p

t

j

⇤

is unknown a priori. We cir-
cumvent this issue by using the doubling trick (e.g. Shalev-
Shwartz, 2012, Section 2.3.1) to achieve the best possible
rate in hindsight. To simplify our analysis, we assume that
there is some p

min

> 0 such that

pt 2 �

b

:=

�

p 2 Rb

+

: p>1 = 1, p � p
min

 

.

Maintaining the running sum
P

t

l=1

p�2
l,J

l

�

�G
[J

l

]

(x
l

)

�

�

2

J

l

,⇤

Algorithm 2 Stepsize Doubling Coordinate Descent
Initialize: x1

= x, p1 = p, k = 1

while t  T do
while

P

t

l=1

(pl
J

l

)

�2
�

�G
[J

l

]

(xl

)

�

�

2

J

l

,⇤  4

k, t  T do
Run inner loop of Algorithm 1 with

↵
x,k

=

p
2R

⇣

4

k

+

L

2

bp

2
min

⌘� 1
2

t t+ 1

k  k + 1

return x̄
T

 1

T

P

T

t=1

xt

requires incremental time O(d
J

t

) at each iteration t, choos-
ing the stepsizes adaptively via Algorithm 2 only requires
a constant factor of extra computation over using a fixed
step size. The below result shows that the doubling trick in
Algorithm 2 acheives (up to log factors) the performance
of the optimal stepsize that minimizes the regret bound (3).

Proposition 2. Under Assumption 1, Algorithm 2 achieves

S(f, x̄
T

)  6

R

T

0

@

T

X

t=1

E

2

4

b

X

j=1

�

�G
[j]

(xt

)

�

�

2

j,⇤
pt
j

3

5

1

A

1
2

+

r

2

b

RL

p
min

T log 4

log

✓

4bTL2

p
min

◆

where S(f, x̄
T

) = E[f(x̄
T

)]� inf

x2X f(x).

2.3. Adaptive probabilities

We now present an adaptive updating scheme for pt, the
sampling probabilities. From Proposition 2, the stationary
distribution achieving the smallest regret upper bound min-
imizes the criterion

T

X

t=1

E

2

4

b

X

j=1

�

�G
[j]

(xt

)

�

�

2

j,⇤
p
j

3

5

=

T

X

t=1

E

2

4

�

�G
[J

t

]

(xt

)

�

�

2

J

t

,⇤
p2
J

t

3

5 ,

where the equality follows from the tower property. Since
xt depends on the pt, we view this as an online convex
optimization problem and choose p1, . . . , pT to minimize
the regret

max

p2�
b

T

X

t=1

E

2

4

b

X

j=1

�

�G
[j]

(xt

)

�

�

2

j,⇤

 

1

pt
j

� 1

p
j

!

3

5 . (4)

Note that due to the block coordinate nature of Algorithm 1,
we only compute

�

�G
[j]

(xt

)

�

�

2

j,⇤ for the sampled j = J
t

at
each iteration. Hence, we treat this as a multi-armed bandit
problem where the arms are the blocks j = 1, . . . , b and
we only observe the loss

�

�G
[j]

(xt

)

�

�

2

j,⇤ /(p
t

J

t

)

2 associated
with the arm J

t

pulled at time t.



Adaptive Sampling Probabilities for Non-Smooth Optimization

Algorithm 3 Coordinate Descent with Adaptive Sampling
Input: Stepsize ↵

p

> 0, Threshold p
min

> 0 with
P = {p 2 Rb

+

: p>1 = 1, p � p
min

}
Initialize: x1

= x, p1 = p
for t 1, . . . , T

Sample J
t

⇠ pt

Choose ↵
x,k

according to Algorithm 2
Update x:
x

t+1
[J

t

]
 argmin

x2X
J

t

(*
G[J

t

](x
t)

p

t

J

t

, x

+
+

1
↵

x,k

B

⇣
x, x

t

[J
t

]

⌘)

Update p: for b`
t,j

(x) defined in (5),
wt+1  pt exp(�(↵

p

b`
t,J

t

(xt

)/pt
J

t

)e
J

t

),
pt+1  argmin

q2P D
kl

�

q||wt+1

�

return x̄
T

 1

T

P

T

t=1

xt

By using a bandit algorithm—another coordinate descent
method— to update p, we show that our updates achieve
performance comparable to the best stationary probability
in �

b

in hindsight. To this end, we first bound the regret (4)
by the regret of a linear bandit problem. By convexity of
x 7! 1/x and d

dx

x�1 = �x�2, we have

T

X

t=1

E

2

4

b

X

j=1

�

�G
[j]

(xt

)

�

�

2

j,⇤

 

1

pt
j

� 1

p
j

!

3

5


T

X

t=1

E

2

6

6

6

4

*

�
n

�

�G
[j]

(xt

)

�

�

2

j,⇤ /(p
t

j

)

2

o

b

j=1

| {z }

(⇤)

, pt � p

+

3

7

7

7

5

.

Now, let us view the vector (⇤) as the loss vector for a con-
strained linear bandit problem with feasibility region �

b

.
We wish to apply EXP3 (due to Auer et al. (2002)) or equiv-
alently, a 1-sparse mirror descent to p with  

P

(p) = p log p
(see, for example, Section 5.3 of Bubeck and Cesa-Bianchi
(2012) for the connections). However, EXP3 requires the
loss values be positive in order to be in the region where
 
P

is strongly convex, so we scale our problem using the
fact that p and pt’s are probability vectors. Namely,

T

X

t=1

E
⌧

�
n

�

�G[j](x
t

)

�

�

2

j,⇤ /(p
t

j

)

2
o

b

j=1
, pt � p

��

=

T

X

t=1

E
hD

b`
t

(xt

), pt � p
Ei

,

where

b`
t,j

(x) := �

�

�G[j](x)
�

�

2

j,⇤

(pt
j

)

2
+

L2

bp2min

. (5)

Using scaled loss values, we perform EXP3 (Algorithm
3). Intuitively, we penalize the probability of the sam-
pled block by the strength of the signal on the block. The

scaling (5) ensures that we penalize blocks with low sig-
nal (as opposed to rewarding those with high signal) which
enforces diversity in the sampled coordinates as well. In
Section A.3, we will see how this scaling plays a key role
in proving optimality of Algorithm 3. Here, the signal is
measured by the relative size of the gradient in the block
against the probability of sampling the block. This means
that blocks with large “surprises”—those with higher gra-
dient norms relative to their sampling probability—will get
sampled more frequently in the subsequent iterations. Al-
gorithm 3 guarantees low regret for the online convex op-
timization problem (4) which in turn yields the following
guarantee for Algorithm 3.
Theorem 3. Under Assumption 1, the adaptive updates in

Algorithm 3 with ↵
p

=

p

2
min
L

2

q

2b log b

T

achieve

S(f, x̄
T

)  6R

T

v

u

u

u

t

min

p2�
b

T

X

t=1

E

2

4

b

X

j=1

kG
[j]

(xt

)k2
j,⇤

p
j

3

5

| {z }

(a):best in hindsight

(6)

+

8LR

Tp
min

✓

T log b

b

◆

1
4

| {z }

(b):regret for bandit problem

+

2RLp
bTp

min

log

✓

4bTL2

p
min

◆

.

where S(f, x̄
T

) = E[f(x̄
T

)]� inf

x2X f(x).

See Section A.3 for the proof. Note that there is a trade-off
in the regret bound (6) in terms of p

min

: for small p
min

,
the first term is small, as the the set �

b

is large, but sec-
ond (regret) term is large, and vice versa. To interpret the
bound (6), take p

min

= �/b for some � 2 (0, 1). The first
term dominates the remainder as long as T = ⌦(b log b);
we require T ⇣ (bR2L2/✏2) to guarantee convergence of
coordinate descent in Proposition 1, so that we roughly ex-
pect the first term in the bound (6) to dominate. Thus, Al-
gorithm 3 attains the best convergence guarantee for the
optimal stationary sampling distribution in hindsight.

2.4. Efficient updates for p

The updates for p in Algorithm 3 can be done in O(log b)
time by using a balanced binary tree. Let D

kl

(p||q) :=

P

d

i=1

p
i

log

p

i

q

i

denote the Kullback-Leibler divergence be-
tween p and q. Ignoring the subscript on t so that w =

wt+1, p = pt and J = J
t

, the new probability vector q is
given by the minimizer of

D
kl

(q||w) s.t. q>1 = 1, q � p
min

, (7)

where w is the previous probability vector p modified only
at the index J . We store w in a binary tree, keeping val-
ues up to their normalization factor. At each node, we
also store the sum of elements in the left/right subtree for
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Algorithm 4 KL Projection
1: Input: J , p

J

, w
J

, mass =

P

i

w
i

2: wcand  p
J

·mass.
3: if wcand/(mass�w

J

+ wcand)  p
min

then
4: wcand  pmin

1�pmin
(mass�w

J

)

5: Update(wcand, J)

efficient sampling (for completeness, the pseudo-code for
sampling from the binary tree in O(log b) time is given in
Section B.3). The total mass of the tree can be accessed by
inspecting the root of the tree alone.

The following proposition shows that it suffices to touch at
most one element in the tree to do the update. See Section B
for the proof.
Proposition 4. The solution to (7) is given by

q
j 6=J

=

(

1

1�p
J

+w

J

w
j

if w
J

� pmin(1�pJ

)

1�pmin
1�pmin

1�p
J

w
j

otherwise
,

q
J

=

(

1

1�p
J

+w

J

w if w
J

� pmin(1�pJ

)

1�pmin

p
min

otherwise.

As seen in Algorithm 4, we need to modify at most one
element in the binary tree. Here, the update function mod-
ifies the value at index J and propagates the value up the
tree so that the sum of left/right subtrees are appropriately
updated. We provide the full pseudocode in Section B.2.

2.5. Example

The optimality guarantee given in Theorem 3 is not directly
interpretable since the term (a) in the upper bound (6)
is only optimal given the iterates x1, . . . , xT despite the
fact that xt’s themselves depend on the sampling probabil-
ities. Hence, we now study a setting where we can further
bound (6) to get a explicit regret bound for Algorithm 3 that
is provably better than non-adaptive counterparts. Indeed,
under certain structural assumptions on the problem similar
to those of McMahan and Streeter (2010) and Duchi et al.
(2011), our adaptive sampling algorithm provably achieves
regret polynomially better in the dimension than either us-
ing a uniform sampling distribution or gradient descent.

Consider the SVM objective

f(x) =
1

n

n

X

i=1

�

1� y
i

z>
i

x
�

+

where n is small and d is large. Here, @f(x) =

1

n

P

n

i=1

1
�

1� y
i

z>
i

x � 0

 

z
i

. Assume that for some
fixed ↵ 2 (1,1) and L

j

:= �j�↵, we have |@
j

f(x)|2 
1

n

P

n

i=1

|z
i,j

|2  L2

j

. In particular, this is the case if we
have sparse features z

U

2 {�1, 0,+1}d with power law

Algorithm ↵ 2 [2,1) ↵ 2 (1, 2)

ACD
�

R

✏

�

2

log

2 d
�

R

✏

�

2

d2�↵

+
�

R

✏

�

4
3 d log

5
3 d +

�

R

✏

�

4
3 d log

5
3 d

UCD
�

R

✏

�

2

d log d

GD
�

R

✏

�

2

d log d

Table 1. Runtime comparison (computations needed to guar-
antee ✏-optimality gap) under heavy-tailed block structures.
ACD=adaptive coordinate descent, UCD=uniform coordinate de-
scent, GD=gradient descent

tails P (|z
U,j

| = 1) = �j�↵ where U is a uniform random
variable over {1, . . . , n}.

Take C
j

= {j} for j = 1, . . . , d (and b = d). First, we
show that although for the uniform distribution p = 1/d

d

X

j=1

E[kG
j

(xt

)k2⇤]
1/d

 d

d

X

j=1

L2

j

= O(d log d),

the term (a) in (6) can be orders of magnitude smaller.
Proposition 5. Let b = d, p

min

= �/d for some � 2 (0, 1),
and C

j

= {j}. If kG
j

(x)k2⇤  L2

j

:= �j�↵ for some
↵ 2 (1,1), then

min

p2�
b

,p�pmin

d

X

j=1

E[
�

�G
j

(xt

)

�

�

2

⇤]

p
j

=

(

O(log d), if ↵ 2 [2,1)

O(d2�↵

), if ↵ 2 (1, 2).

We defer the proof of the proposition to Section A.5. Using
this bound, we can show explicit regret bounds for Algo-
rithm 3. From Theorem 3 and Proposition 5, we have that
Algorithm 3 attains

S(f, x̄
T

) 
(

O(

R log dp
T

), if ↵ 2 [2,1)

Rp
T

O(d1�
↵

2
), if ↵ 2 (1, 2)

+O
⇣

Rd3/4T�3/4 log5/4 d
⌘

.

Setting above to be less than ✏ and inverting with respect to
T , we obtain the iteration complexity in Table 1.

To see the runtime bounds for uniformly sampled co-
ordinate descent and gradient descent, recall the regret
bound (3) given in Proposition 1. Plugging pt

j

= 1/d in
the bound, we obtain

S(f, x̄
T

)  O(R
p

log d
p
2dT ).

for ↵
x

=

p

2R2/(L2Td) where L2

:=

P

d

j=1

L2

j

. Simi-
larly, gradient descent with ↵

x

=

p

2R2/(L2T ) attains

S(f, x̄
T

)  O(R
p

log d
p
2T ).

Since each gradient descent update takes O(d), we obtain
the same runtime bound.
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While non-adaptive algorithms such as uniformly-sampled
coordinate descent or gradient descent have the same run-
time for all ↵, our adaptive sampling method automatically
tunes to the value of ↵. Note that for ↵ 2 (1,1), the first
term in the runtime bound for our adaptive method given in
Table 1 is strictly better than that of uniform coordinate de-
scent or gradient descent. In particular, for ↵ 2 [2,1) the
best stationary sampling distribution in hindsight yields an
improvement that is at most O(d) better in the dimension.
However, due to the remainder terms for the bandit prob-
lem, this improvement only matters (i.e.first term is larger
than second) when

✏ =

8

<

:

O
⇣

Rd�
3
2
p
log d

⌘

if ↵ 2 [2,1)

O
⇣

Rd
3
2 (1�↵)

log

�5/2 d
⌘

if ↵ 2 (1, 2).

In Section 4, we show that these remainder terms can be
made smaller than what their upper bounds indicate. Em-
pirically, our adaptive method outperforms the uniformly-
sampled counterpart for larger values of ✏ than above.

3. Adaptive probabilities for stochastic
gradient descent

Consider the empirical risk minimization problem

minimize

x2X

(

1

n

n

X

i=1

f
i

(x) =: f(x)

)

where X 2 Rd is a closed convex set and f
i

(·) are con-
vex functions. Let C

1

, . . . , C
b

be a partition of the n sam-
ples so that each example belongs to some C

j

, a set of size
n
j

:= |C
j

| (note that the index j now refers to blocks of ex-
amples instead of coordinates). These block structures nat-
urally arise, for example, when C

j

’s are the examples with
the same label in a multi-class classification problem. In
this stochastic optimization setting, we now sample a block
J
t

⇠ pt at each iteration t, and perform gradient updates
using a gradient estimate on the block C

J

t

. We show how
a similar adaptive updating scheme for pt’s again achieves
the optimality guarantees given in Section 2.

3.1. Mirror descent with non-stationary probabilities

Following the approach of (Nemirovski et al., 2009), we
run mirror descent for the updates on x. At iteration
t, a block J

t

is drawn from a b-dimensional probabil-
ity vector pt. We assume that we have access to unbi-
ased stochastic gradients G

j

(x) for each block. That is,
E[G

j

(x)] = 1

n

j

P

i2C
j

@f
i

(x). In particular, the estimate
G

J

t

(xt

) := @f
I

t

(x) where I
t

is drawn uniformly in C
J

t

gives the usual unbiased stochastic gradient of minibatch
size 1. The other extreme is obtained by using a minibatch
size of n

j

where G
J

t

(xt

) :=

1

n

J

t

P

i2C
J

t

@f
i

(x). Then,

the importance sampling estimator n

J

t

np

t

J

t

G
J

t

(xt

) is an un-
biased estimate for the subgradient of the objective.

Let  be a differentiable 1-strongly convex function on
X with respect to the norm k·k as before and denote by
k·k⇤ the dual norm of k·k. Let B(x, y) =  (x) �  (y) �
r (y)>(x�y) be the Bregman divergence associated with
 . In this section, we assume the below (standard) bound.
Assumption 2. For all x, y 2 X , we have B(x, y)  R2

and kG
j

(x)k2⇤  L for j = 1, . . . , b.

We use these stochastic gradients to perform mirror up-
dates, replacing the update in Algorithm 1 with the update

xt+1  argmin

x2X

⇢

n
J

t

npt
J

t

⌦

G
J

t

(xt

), x
↵

+

1

↵
x

B(x, xt

)

�

. (8)

From a standard argument (e.g., (Nemirovski et al., 2009)),
we obtain the following convergence guarantee. The proof
follows an argument similar to that of Proposition 1.
Proposition 6. Under Assumption 2, the updates (8) attain

S(f, x̄
T

)  R2

↵
x

T
+

↵
x

2T

T

X

t=1

E

2

4

b

X

j=1

n2

j

kG
j

(xt

)k2⇤
n2pt

j

3

5 . (9)

where S(f, x̄
T

) = E[f(x̄
T

)]� inf

x2X f(x).

Again, we wish to choose the optimal step size ↵
x

that
minimizes the regret bound (9). To this end, modify
the doubling trick given in Algorithm 2 as follows: use
P

t

l=1

n

2
J

l

n

2
p

2
l,J

l

�

�G
J

l

(xl

)

�

�

2

⇤ for the second while condition,

and stepsizes ↵
x,k

=

p
2R
⇣

4

k

+

L

2
max

j

n

2
j

n

2
p

2
min

⌘� 1
2

. Then,
similar to Proposition 2, we have

S(f, x̄
T

)  6

R

T

0

@

T

X

t=1

E

2

4

b

X

j=1

n2

j

n2pt
j

�

�G
j

(xt

)

�

�

2

⇤

3

5

1

A

1
2

+

p
2RL

p
min

T log 4

max

j

n
j

n
log

0

@

4TL2

p
min

b

X

j=1

n2

j

n2

1

A .

3.2. Adaptive probabilities
Now, we consider an adaptive updating scheme for pt’s
similar to Section 2.3. Using the scaled gradient estimate

b`
t,j

(x) := �
✓

n
j

npt
j

kG
j

(x)k⇤
◆2

+

L2
max

j

n2
j

n2p2min

(10)

to run EXP3, we obtain Algorithm 5. Again, the additive
scaling L2

(max

j

n
j

/np
min

)

2 is to ensure that b` � 0. As in
Section 2.4, the updates for p in Algorithm 5 can be done in
O(log b) time. We can also show similar optimality guar-
antees for Algorithm 5 as before. The proof is essentially
the same to that given in Section A.3.
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Algorithm 5 Mirror Descent with Adaptive Sampling
Input: Stepsize ↵

p

> 0

Initialize: x1

= x, p1 = p
for t 1, . . . , T

Sample J
t

⇠ pt

Choose ↵
x,k

according to (modified) Algorithm 2.
Update x:
x

t+1
J

t

 argmin

x2X

(
1

p

t

J

t

⌦
G

J

t

(x

t

), x

↵
+

1
↵

x,k

B

⇣
x, x

t

J

t

⌘)

Update p:
wt+1  pt exp(�(↵

p

b`
t,J

t

(xt

)/pt
J

t

)e
J

t

)

pt+1  argmin

q2P D
kl

�

q||wt+1

�

return x̄
T

 1

T

P

T

t=1

xt

Theorem 7. Let W :=

Lmax

j

n

j

pminn
. Under Assumption 2,

Algorithm 5 with ↵
p

=

1

W

2

q

2 log b

bT

achieves

S(f, x̄
T

)  6R

T
min

p2�
b

T

X

t=1

E

2

4

b

X

j=1

n2

j

n2p
j

�

�G
J

t

(xt

)

�

�

2

⇤

3

5

+W (2Tb log b)
1
4
+

p
2RW

T log 4

log

 

4TL2

p
min

b

X

j=1

n2

j

n2

!

where S(f, x̄
T

) = E[f(x̄
T

)]� inf

x2X f(x).

With equal block sizes n
j

= n/b and p
min

= �/b for
some � 2 (0, 1), the first term in the boudn of The-
orem 7 is O(TL2

) which dominates the second term if
T = ⌦(b log b). Since we usually have T = ⇥(n) for
SGD, as long as n = ⌦(b log b) we have

S(f, x̄
T

)  O

0

B

@

R

T

v

u

u

u

t

min

p2�
b

T

X

t=1

E

2

4

b

X

j=1

�

�G[j](xt

)

�

�

2

j,⇤

p
j

3

5

1

C

A

.

That is, Algorithm 5 attains the best regret bound achieved
by the optimal stationary distribution in hindsight had the
xt’s had remained the same. Further, under similar struc-
tural assumptions kG

j

(x)k2⇤ / j�↵ as in Section 2.5, we
can prove that the regret bound for our algorithm is better
than that of the uniform distribution.

4. Experiments
We compare performance of our adaptive approach with
stationary sampling distributions on real and synthetic
datasets. To minimize parameter tuning, we fix ↵

p

at the
value suggested by theory in Theorems 3 and 7. However,
we make a heuristic modification to our adaptive algorithm
since rescaling the bandit gradient (5) and (10) dwarfs the
signals in gradient values if L is too large. We present
performance of our algorithm with respect to multiple esti-
mates of the Lipschitz constant ˆL = L/c for c > 1, where

L is the actual upper bound.1 We tune the stepsize ↵
x

for
both methods, using the form �/

p
t and tuning �.

For all our experiments, we compare our method against
the uniform distribution and blockwise Lipschitz sampling
distribution p

j

/ L
j

where L
j

is the Lipschitz constant
of the j-th block (Zhao and Zhang, 2015). We observe
that the latter method often performs very well with re-
spect to iteration count. However, since computing the
blockwise Lipschitz sampling distribution takes O(nd), the
method is not competitive in large-scale settings. Our algo-
rithm, on the other hand, adaptively learns the latent struc-
ture and often outperforms stationary counterparts with re-
spect to runtime. While all of our plots are for a single
run with a random seed, we can reject the null hypothesis
f(xT

uniform

) < f(xT

adaptive

) at 99% confidence for all in-
stances where our theory guarantees it. We take k·k = k·k

2

throughout this section.

4.1. Adaptive sampling for coordinate descent

Synthetic Data We begin with coordinate descent, first
verifying the intuition of Section 2.5 on a synthetic dataset.
We consider the problem minimizekxk11

1

n

kAx� bk
1

,
and we endow A 2 Rn⇥d with the following block struc-
ture: the columns are drawn as a

j

⇠ j�↵/2N(0, I). Thus,
the gradients of the columns decay in a heavy-tailed man-
ner as in Section 2.5 so that L2

j

= j�↵. We set n = d =

b = 256; the effects of changing ratios n/d and b/d man-
ifest themselves via relative norms of the gradients in the
columns, which we control via ↵ instead. We run all exper-
iments with p

min

= 0.1/b and multiple values of c.

Results are shown in Figure 1, where we show the op-
timality gap vs. runtime in (a) and the learned sampling
distribution in (b). Increasing ↵ (stronger block structure)
improves our relative performance with respect to uniform
sampling and our ability to accurately learn the underlying
block structure. Experiments over more ↵ and c in Section
C further elucidate the phase transition from uniform-like
behavior to regimes learning/exploiting structure.

We also compare our method with (non-preconditioned)
SGD using leverage scores p

j

/ ka
j

k
1

given by (Yang
et al., 2016). The leverage scores (i.e., sampling distribu-
tion proportional to blockwise Lipschitz constants) roughly
correpond to using p

j

/ j�↵/2, which is the stationary
distribution that minimizes the bound (3); in this synthetic
setting, this sampling probability coincides with the actual
block structure. Although this is expensive to compute, tak-
ing O(nd) time, it exploits the latent block structure very
well as expected. Our method quickly learns the structure
and performs comparably with this “optimal” distribution.

1We guarantee a positive loss by taking max(

b`
t,j

(x), 0).
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Figure 1. Adaptive coordinate descent (left to right: ↵ = 0.4, 2.2)
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Figure 2. Model selection for nucleotide sequences

Model selection Our algorithm’s ability to learn underly-
ing block structure can be useful in its own right as an on-
line feature selection mechanism. We present one example
of this task, studying an aptamer selection problem (Cho
et al., 2013), which consists of n = 2900 nucleotide se-
quences (aptamers) that are one-hot-encoded with all k-
grams of the sequence, where 1  k  5 so that d =

105, 476. We train an l
1

-regularized SVM on the binary
labels, which denote (thresholded) binding affinity of the
aptamer. We set the blocksize as 50 features (b = 2110)
and p

min

= 0.01/b. Results are shown in Figure 2, where
we see that adaptive feature selection certainly improves
training time in (a). The learned sampling distribution de-
picted in (b) for the best case (c = 10

7) places larger weight
on features known as G-complexes; these features are well-
known to affect binding affinities (Cho et al., 2013).

4.2. Adaptive sampling for SGD

Synthetic data We use the same setup as in Section 4.1
but now endow block structure on the rows of A rather than
the columns. In Figure 3, we see that when there is little
block structure (↵ = 0.4) all sampling schemes perform
similarly. When the block structure is apparent (↵ = 6),
our adaptive method again learns the underlying structure
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Figure 3. Adaptive SGD (left to right: ↵ = 0.4, 6)
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Figure 4. Optimality gap for CUB-200-2011 and ALOI

and outperforms uniform sampling. We provide more ex-
periments in Section C to illustrate behaviors over more
c and ↵. We note that our method is able to handle on-
line data streams unlike stationary methods such as lever-
age scores.

CUB-200-2011/ALOI We apply our method to two
multi-class object detection datasets: Caltech-UCSD
Birds-200-2011 (Wah et al., 2011) and ALOI (Geusebroek
et al., 2005). Labels are used to form blocks so that b = 200

for CUB and b = 1000 for ALOI. We use softmax loss for
CUB-200-2011 and a binary SVM loss for ALOI, where
in the latter we do binary classification between shells and
non-shell objects. We set p

min

= 0.5/b to enforce enough
exploration. For the features, outputs of the last fully-
connected layer of ResNet-50 (He et al., 2016) are used
for CUB so that we have 2049-dimensional features. Since
our classifier x is (b · d)-dimensional, this is a fairly large
scale problem. For ALOI, we use default histogram fea-
tures (d = 128). In each case, we have n = 5994 and n =

108, 000 respectively. We use X := {x 2 Rm

: kxk
2

 r}
where r = 100 for CUB and r = 10 for ALOI. We observe
in Figure 4 that our adaptive sampling method outperforms
stationary counterparts.
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