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Abstract
Many neural networks exhibit stability in their
activation patterns over time in response to in-
puts from sensors operating under real-world
conditions. By capitalizing on this property of
natural signals, we propose a Recurrent Neural
Network (RNN) architecture called a delta net-
work in which each neuron transmits its value
only when the change in its activation exceeds
a threshold. The execution of RNNs as delta net-
works is attractive because their states must be
stored and fetched at every timestep, unlike in
convolutional neural networks (CNNs). We show
that a naive run-time delta network implemen-
tation offers modest improvements on the num-
ber of memory accesses and computes, but opti-
mized training techniques confer higher accuracy
at higher speedup. With these optimizations, we
demonstrate a 9X reduction in cost with negli-
gible loss of accuracy for the TIDIGITS audio
digit recognition benchmark. Similarly, on the
large Wall Street Journal (WSJ) speech recogni-
tion benchmark, pretrained networks can also be
greatly accelerated as delta networks and trained
delta networks show a 5.7X improvement with
negligible loss of accuracy. Finally, on an end-
to-end CNN-RNN network trained for steering
angle prediction in a driving dataset, the RNN
cost can be reduced by a substantial 100X.

1. Introduction
Recurrent Neural Networks (RNNs) have achieved tremen-
dous progress in recent years, with the increased availabil-
ity of large datasets, more powerful computer resources
such as GPUs, and improvements in their training al-
gorithms. These combined factors have enabled break-
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throughs in the use of RNNs for processing of temporal se-
quences. Applications such as natural language processing
(Mikolov et al., 2010), speech recognition (Amodei et al.,
2015; Graves et al., 2013), and attention-based models for
structured prediction (Yao et al., 2015; Xu et al., 2015)
have showcased the advantages of RNNs. The introduction
of gating units such as long short-term memory (LSTM)
units (Hochreiter & Schmidhuber, 1997) and gated recur-
rent units (GRU) (Cho et al., 2014) has greatly improved
the training process with these networks. However, RNNs
require many matrix-vector multiplications per layer to cal-
culate the updates of neuron activations over time.

RNNs also require a large weight memory storage that is
expensive to allocate to on-chip static random access mem-
ory (SRAM). In a 45nm technology, the energy cost of an
off-chip 32-bit dynamic DRAM access is about 2nJ and the
energy for a 32-bit integer multiply is about 3pJ, so mem-
ory access is about 700 times more expensive than arith-
metic (Horowitz, 2014). Architectures can benefit from
minimizing the use of this external memory. Previous work
focused on a variety of algorithmic optimizations for re-
ducing compute and memory access requirements for deep
neural networks. These methods include reduced precision
for hardware optimization (Courbariaux et al., 2015; Stro-
matias et al., 2015; Courbariaux & Bengio, 2016; Esser
et al., 2016; Rastegari et al., 2016); weight encoding, prun-
ing, and compression (Han et al., 2015; 2016); and archi-
tectural optimizations (Iandola et al., 2016; Szegedy et al.,
2015; Huang et al., 2016). However these studies did not
consider the temporal properties of the data.

Natural inputs to a neural network tend to have a high
degree of temporal autocorrelation, resulting in slowly-
changing network states. This slow-changing activation
feature is also seen within the computation of RNNs pro-
cessing audio inputs, for example, speech (Fig. 1).

Delta networks, as introduced here, exploit the temporal
stability of both the input stream and the associated neu-
ral representation to reduce memory access and computa-
tion without loss of accuracy. By caching neuron activa-
tions, computations can be skipped where inputs change
by a small amount from the previous update. Because
each neuron that is not updated will save fetches of en-
tire columns of several weight matrices, determining which
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Figure 1. Stability in RNN activations over time. The top figure
shows the continually-changing MFCC features for a spoken digit
from the TIDIGITS dataset (Leonard & Doddington, 1993); the
bottom figure shows the corresponding neural network output ac-
tivations in response to these features. Note the slow evolution of
the network states over timesteps.

neurons need to be updated offers significant speedups.

The rest of the paper is organized as follows. Sec. 2 in-
troduces the delta network concept in terms of the basic
matrix-vector operations. Sec. 3 formulates it concretely
for a GRU RNN. Sec. 4 proposes a method using a finite
threshold for the deltas that suppresses the accumulation of
the transient approximation error. Sec. 5 describes methods
for optimally training a delta RNN. Sec. 6 shows network
accuracy versus speedup for three examples. Finally, Sec. 7
summarizes the results.

2. Delta Network Formulation
The purpose of a delta network is to transform a dense
matrix-vector multiplication (for example, a weight ma-
trix and a state vector) into a sparse matrix-vector multi-
plication followed by a full addition. This transformation
leads to savings on both operations (actual multiplications)
and more importantly memory accesses (weight fetches).
Fig. 2 illustrates the savings due to a sparse multiplicative
vector. Zeros are shown with white, while non-zero matrix
and vector values are shown in black. Note the multiplica-
tive effect of sparsity in the weight matrix and sparsity in
the delta vector. In this example, 20% occupancy of the
weight matrix and 20% occupancy of the ∆ vector requires
fetching and computing only 4% of the original operations.

To illustrate the delta network methodology, consider a
general matrix-vector multiplication of the form

r = Wx (1)

that uses n2 compute operations1, n2+n reads and nwrites
for a W matrix of size n × n and a vector x of size n.

1In this paper, a “compute” operation is either a multiply, an
add, or a multiply-accumulate. The costs of these operations are

• =

Weight Matrix
Delta
Vector Nonzero Operations

Figure 2. Illustration of saved matrix-vector computation using
delta networks with sparse delta vectors and weight matrices.

Now consider multiple matrix-vector multiplications for a
long input vector sequence xt indexed by t = 1, 2, . . . . The
result rt can be calculated recursively as:

rt = W∆ + rt−1, (2)

where ∆ = xt − xt−1 and rt−1 is the result obtained from
the previous calculation; if stored, the compute cost of rt−1

is zero as it can be fetched from the previous timestep. Triv-
ially, x0 = 0 and r0 = 0. It is clear that

rt = W (xt − xt−1) + rt−1 (3)
= W (xt − xt−1) +W (xt−1 − xt−2) + . . .+ r0 (4)
= Wxt (5)

Thus this formulation, which uses the difference between
two subsequent timesteps and referred to as the delta net-
work formulation, can be seen to produce exactly the same
result as the original matrix-vector multiplication.

2.1. Theoretical Cost Calculation

To illustrate the savings if ∆ from (2) is sparse, we begin
by defining oc to be the occupancy of a vector , that is, the
percentage of nonzero elements in the vector.

Consider the compute cost for rt; it consists of the total
cost for calculating ∆ (n operations for a vector of size
n), adding in the stored previous result rt−1 (n operations),
and performing the sparse matrix multiplyW∆ (oc ·n2 op-
erations for a W of size n × n and a sparse ∆ vector of
occupancy ratio oc). Similarly, the memory cost for calcu-
lating rt requires fetching oc ·n2 weights for W , 2n values
for ∆, n values for rt−1 and writing out the n values for rt.

Overall, the compute cost for the standard formulation
(Ccomp,dense) and the new delta formulation (Ccomp,sparse)

similar, particularly when compared to the cost of an off-chip
memory operation. See (Horowitz, 2014) for a simple compar-
ison of energy costs of compute and memory operations.
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will be:

Ccomp,dense = n2 (6)

Ccomp,sparse = oc · n2 + 2n (7)

while the memory access costs for both the standard
(Cmem,dense) and delta networks (Cmem,sparse) can be seen
from inspection as:

Cmem,dense = n2 + n (8)

Cmem,sparse = oc · n2 + 4n (9)

Thus, the arithmetic intensity (ratio of arithmetic to mem-
ory access costs) as n → ∞ is 1 for both the standard and
delta network methods. This means that every arithmetic
operation requires a memory access, unfortunately placing
computational accelerators at a disadvantage. However, if a
sparse occupancy oc of ∆ is assumed, then the decrease in
computes and memory accesses due to storing the previous
state will result in a speedup of:

Cdense/Csparse ≈ n2/(oc · n2) = (1/oc) (10)

For example, if oc = 10%, then the theoretical speedup will
be 10X. Note that this speedup is determined by the occu-
pancy in each computed ∆ = xt−xt−1, implying that this
sparsity is determined by the data stream. Specifically, the
regularity with which values stay exactly the same between
xt and xt−1, or as demonstrated later, within a certain ab-
solute value called the threshold, determines the speedup.
In a neural network, x can represent inputs, intermediate
activation values, or outputs of the network. If x changes
slowly between subsequent timesteps then the input values
xt and xt−1 will be highly redundant, leading to a low oc-
cupancy oc and a correspondingly increased speedup.

3. Delta Network GRUs
In GRUs, the matrix-vector multiplication operation that
can be replaced with a delta network operation appears sev-
eral times, shown in bold below. This GRU formulation is
from (Chung et al., 2014):

rt = σr(Wxrxt + Whrht−1 + br) (11)
ut = σu(Wxuxt + Whuht−1 + bu) (12)
ct = σc(Wxcxt + rt � (Whcht−1) + bc) (13)
ht = (1− ut)� ht−1 + ut � ct (14)

Here r, u, c and h are reset and update gates, candidate
activation, and activation vectors, respectively, typically a
few hundred elements long. The σ functions are nonlinear
logistic sigmoids that saturate at 0 and 1. The � signifies
element-wise multiplication. Each term in bold can be re-

placed with the delta update defined in (2), forming:

∆x =xt − xt−1 (15)
∆h =ht−1 − ht−2 (16)
rt =σr(Wxr∆x + zxr +Whr∆h + zhr + br) (17)
ut =σu(Wxu∆x + zxu +Whu∆h + zhu + bu) (18)
ct =σc(Wxc∆x + zxc + bc

rt � (Whc∆h + zhc)) (19)
ht =(1− ut)� ht−1 + ut � ct (20)

where the values zxr, zxu, zxc, zhr, zhu, zhc are recursively
defined as the the stored result of the previous computation
for the input or hidden state, i.e.:

zxr := zxr,t−1 = Wxr(xt−1 − xt−2) + zxr,t−2 (21)

The above operation can be applied for the other five values
zxu, zxc, zhr, zhu, zhc. The initial condition at time x0 is
z0 := 0. Also, many of the additive terms in the equations
above, including the stored full-rank pre-activation states
as well as the biases, can be merged into single values re-
sulting into four stored memory values (Mr,Mu,Mxc, and
Mhr) for the three gates:

Mt−1 := zx,t−1 + zh,t−1 + b (22)

Finally, in accordance with the above definitions of the ini-
tial state, the memories M are initialized at their corre-
sponding biases, i.e., Mr,0 = br, Mu,0 = bu, Mxc,0 = bc,
and Mhr,0 = 0, resulting in the following full formulation
of the delta network GRU:

∆x = xt − xt−1 (23)
∆h = ht−1 − ht−2 (24)
Mr,t := Wxr∆x +Whr∆h +Mr,t−1 (25)
Mu,t := Wxu∆x +Whu∆h +Mu,t−1 (26)
Mxc,t := Wxc∆x +Mxc,t−1 (27)
Mhc,t := Whc∆h +Mhc,t−1 (28)

rt = σr(Mr,t) (29)
ut = σu(Mu,t) (30)
ct = σc(Mxc,t + rt �Mhc,t) (31)
ht = (1− ut)� ht−1 + ut � ct (32)

4. Delta Network Approximations
The formulations described in Secs. 2 and 3 are designed to
give precisely the same answer as the original computation
in the network. However, a more aggressive approach can
be taken in the update, inspired by recent studies that have
shown the possibility of greatly reducing weight precision
in neural networks without giving up accuracy (Stromatias
et al., 2015; Courbariaux et al., 2014). Instead of skipping
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a vector-multiplication computation if a change in the ac-
tivation ∆ = 0, a vector-multiplication can be skipped if
a value of ∆ is smaller than the threshold (i.e |∆i,t| < Θ,
where Θ is a chosen threshold value for a state i at time
t). That is, if a neuron’s hidden-state M activation has
changed by less than Θ since it was last memorized, the
neuron output will not be propagated, i.e., its ∆ value is set
to zero for that update. Using this threshold, the network
will not produce precisely the same result at each update,
but will produce a result which is approximately correct.
Moreover, the use of a threshold substantially increases ac-
tivation sparsity.

Importantly, if a non-zero threshold is used with a naive
delta change propagation, errors can accumulate over mul-
tiple time steps through state drift. For example, if the in-
put value xt increases by nearly Θ on every time step, no
change will ever be triggered despite an accumulated sig-
nificant change in activation, causing a large drift in error.
Therefore, in our implementation, the memory records the
last value causing an above-threshold change, not the dif-
ference since the last time step.

More formally, we introduce the states x̂i,t−1 and ĥj,t−1.
These states store the i−th input and the hidden state of the
j−th neurons, respectively, at their last change. The cur-
rent input xi,t and state hj,t will be compared against these
values to determine the ∆. Then the x̂i,t−1 and ĥj,t−1 val-
ues will only be updated if the threshold Θ is crossed. The
equations are shown below for x̂i,t−1 with similar equa-
tions for ĥj,t−1:

x̂i,t−1 =

{
xi,t−1 if |xi,t − x̂i,t−1| > Θ

x̂i,t−2 otherwise
(33)

∆xi,t =

{
xi,t − x̂i,t−1 if |xi,t − x̂i,t−1| > Θ

0 otherwise
(34)

That is, when calculating the input delta vector ∆xi,t com-
prised of each element i at time t, the difference between
two values are used: the current value of the input xi,t, and
the value the last time the delta vector was nonzero x̂i,t−1.
Furthermore, if the delta change is less than Θ, then the
delta change is set to zero, producing a small approxima-
tion error that will be corrected when a sufficiently large
change produces a nonzero update. The same formulation
is used for the hidden state delta vector ∆hj,t.

This input approximation does not guarantee that the output
error is bounded by the same threshold Θ. As supported by
previous studies demonstrating that GRUs can be arbitrar-
ily sensitive to input perturbations (Laurent & von Brecht,
2016), the per-timestep error can grow with the input er-
ror. While thresholding should offer greater sparsity, the
accumulation of these approximations could result in a di-
verging output error, therefore motivating the experiments

in Sec. 6.1 that examine the effect of approximation on tra-
jectory evolution.

5. Methods to Increase Accuracy & Speedup
This section presents training methods and optimization
schemes for faster and more accurate delta networks.

5.1. Training Directly on Delta Networks

The most principled method of training to minimize accu-
racy loss when running as a delta network would be to train
directly on the delta network model. This should yield the
best results as the network will receive errors that arise di-
rectly from the truncations of the delta network computa-
tion, and through training, learn to become robust to the
types of errors that delta networks make.

More accurately, instead of training on the original GRU
equations Eq. 11–14, the state is updated using the delta
network model described in Eq. 23–34. Importantly, this
change should incur no accuracy loss between train accu-
racy and test accuracy, though gradient descent may yet
have more difficulty optimizing the model during training.

5.2. Rounding Network Activations

As the truncation of network activation due to the delta net-
work is inherently non-differentiable, this training method
should be compared against more widely used methods to
verify its effectiveness. The delta network’s computation
can be viewed as analogous to the reduced-precision round-
ing training methods; small changes are rounded to zero
while larger changes are propagated. Since many previ-
ous investigations have demonstrated methods to train net-
works to be robust against small rounding errors by round-
ing during training (Courbariaux et al., 2014; Stromatias
et al., 2015), these methods can be leveraged here to train
a network that does not rely on small fluctuations in inputs.
Low-precision computation and parameters can further re-
duce power consumption and improve the efficiency of the
network for dedicated hardware implementations.

As in other studies, a low-resolution activation θL in signed
fixed-point format Qm.f with m integer bits and f frac-
tional bits can be produced from a high-resolution acti-
vation θ by using a deterministic and gradient-preserving
rounding: θL = round(2f · θ) · 2−f with 2f · θ clipped to
a bounding range [−2m+f−1, 2m+f−1] to produce a quan-
tized fixed-point activation. The output error cost forces
the network to avoid quantization errors during training.

5.3. Adding Gaussian Noise to Network Activations

Random noise injection provides another useful compar-
ison point. By injecting noise, the network will be un-
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able to rely on small changes, and occasionally even larger
changes will be incorrect (as may be the case of thresh-
old rounding). This robustness can be provided by adding
Gaussian noise η to terms that will have a thresholded delta
activation:

rt =σr((xt + ηx)Wxr + (ht−1 + ηh)Whr + br) (35)
ut =σu((xt + ηx)Wxu + (ht−1 + ηh)Whu + bu) (36)
ct =σc((xt + ηx)Wxc+

rt � ((ht−1 + ηh)Whc) + bc) (37)
ht = (1− ut)� ht−1 + ut � ct (38)

where η ∼ N (µ, σ). That is, η is a vector of samples drawn
from the Gaussian distribution with mean µ and variance σ,
and η ∈ {ηx, ηh}. Each element of these vectors is drawn
independently. Typically, the value µ is set to 0 so that the
expectation is unbiased, e.g., E[xt + ηx] = E[xt].

As a result, the Gaussian noise should prevent the network
from being sensitive to minor fluctuations, and increase its
robustness to truncation errors.

5.4. Considering Weight Sparsity

In all training methods, considering the additional speedup
from weight sparsity, in addition to skipping activa-
tion computation, should improve the theoretical speedup.
Studies such as in (Ott et al., 2016) show that in trained
low-precision networks, the weight matrices can be quite
sparse. For example, in a ternary or 3-bit weight network
the weight matrix sparsity can exceed 80% for small RNNs.
Since every nonzero input vector element is multiplied by
a column of the weight matrix, this computation can be
skipped if the weight value is zero. That is, the zeros in
the weight matrix act multiplicatively with the delta vector
to produce even fewer necessary multiply-accumulates, as
illustrated above in Fig. 2. The compute cost of the matrix-
vector product will be Ccomp,sparse = om · oc ·n2 + 2n and
the memory cost will be Cmem,sparse = om · oc · n2 + 4n
for a weight matrix with occupancy om. By comparison
to Eq. 10, the system can achieve a theoretical speedup of
1/(om · oc). That is, by compressing the weight matrix and
only fetching nonzero weight elements that combine with
the nonzero state vector, a higher speedup can be obtained
without degrading the accuracy.

5.5. Incurring Sparsity Cost on Changes in Activation

Finally, a computation-specific cost can be associated with
the delta terms and added to the overall cost. In an input
batch, the L1 norm for ∆h can be calculated as the mean
absolute delta changes, and this norm can be scaled by a
weighting factor β. This Lsparse cost (Lsparse = β||∆h||1)
can then be additively incorporated into the standard loss
function. Here the L1 norm is used to encourage sparse

values in ∆h, so that fewer delta updates are required.

6. Results
This section presents results demonstrating the trade-off
between compute savings and accuracy loss, using Delta
Network RNNs trained on the TIDIGITS digit recognition
benchmark. Furthermore, it also demonstrates that the re-
sults found on small datasets also translate to the much
larger Wall Street Journal speech recognition benchmark.
The final example is for a CNN-RNN stack trained on end-
to-end steering prediction using a recent driving dataset.
The fixed-point Q3.4 (i.e. m = 3 and f = 4) format
was used for network activation values in all speech ex-
periments except the “Original” RNN line for TIDIGITS
in Fig. 4, which was trained in floating-point representa-
tion. The driving dataset in Sec. 6.4 used Q2.5 activation.
The networks were trained with Lasagne (Dieleman et al.,
2015) powered by Theano (Bergstra et al., 2010). Reported
training time is for a single Nvidia GTX 980 Ti GPU.

6.1. TIDIGITS Dataset Trajectory Evolution
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Figure 3. Comparison of trajectories over time by increasing Θ
from 0 to 0.85 in steps of 0.05. At left, an increase of error an-
gle between the final training state and the final thresholded state
manifests as a decrease in accuracy, with the Gaussian-trained net
as squares and DN-trained net as circles. At right, the mean angle
between the unapproximated state and the thresholded state over
time. In red, the angle over time of an untrained network that has
the same weight statistics as a trained network; in solid lines, a
network that was trained as a delta network; in dashed lines, a
network that was only trained with Gaussian noise. Curves for
Θ = 0.55 are highlighted in blue. Note that a DN-trained net-
work has lower angle error, especially at higher thresholds, and
an untrained net always quickly converges to an orthogonal state.

The TIDIGITS dataset was used as an initial evaluation task
to study the trajectory evolution of delta networks. Sin-
gle digits (“oh” and zero through nine), totalling 2464 dig-
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its in the training set and 2486 digits in the test set, were
transformed in the standard way (Neil & Liu, 2016) to pro-
duce a 39-dimensional Mel-Frequency Cepstral Coefficient
(MFCC) feature vector using a 25 ms window, 10 ms frame
shift, and 20 filter bank channels. The labels for “oh” and
“zero” were collapsed to a single label. Training time is
approximately 8 minutes for a 150 epoch experiment.

The network architecture consists of a layer of 200 GRU
units connected to a layer of 200 fully-connected units
and finally to a classification layer for the 10 digit classes.
First, a network was trained with Gaussian noise injection
(Sec. 5.3) and subsequently tested using the delta network
GRU formulation given in Sec. 3. A second network was
trained directly on the delta network GRU formulation in
accordance with Sec. 5.1, with the same architecture and
Θ = 0.5. Finally, a third network was constructed from the
DN-trained network by permuting its weights to produce
an “untrained” network with identical weight statistics.

To determine the robustness of the network to thresholded
input, the trajectory evolution of these three networks were
examined in comparison to their training conditions. Since
the hidden states are bounded by (-1, 1) from the tanh non-
linearity, each 200-dimensional hidden state vector is nor-
malized to construct a unit vector. Then, the error angle be-
tween the hidden state at training time and the hidden state
with a threshold is measured. This error angle is correlated
with the final accuracy, as seen in Fig. 3 left. The thresh-
old is swept from 0 to 0.85, producing the results found in
Fig. 3 right, in which each line represents the mean differ-
ence angle over all states across time. The figure begins at
the median start point of a digit presentation (t=158), as the
digits are pre-padded with zeros to match lengths.

A Gaussian-trained network’s trajectory initially matches
its training trajectory to produce a low error angle at low
thresholds, which gradually increases as the threshold is
raised. However, across a wide range of Θ, a DN-trained
net’s trajectory matches its training trajectory much more
closely to produce a tighter-spaced arrangement and sub-
stantially lower angle error at higher threshold. Finally, an
untrained network is indeed very sensitive to input approx-
imations and quickly reaches an orthogonal representation,
thus emphasizing the role of training to provide robustness.

6.2. TIDIGITS Dataset Speedup and Accuracy

The results of applying the methods introduced in Sec. 5
can be found in Fig. 4. There are two quantities measured:
the change in the number of memory fetches, and the accu-
racy as a function of the threshold Θ. Fig. 5 shows the same
results, but removes the threshold axis to directly compare
the accuracy-speedup tradeoff among the different training
methods. First, a standard GRU RNN achieving 96.59%
accuracy on TIDIGITS was trained without data augmen-
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Figure 4. Test accuracy results from standard GRUs run as delta
networks after training (curves 1, 1a, and 1ab) and those trained
as delta networks (curves 2, 2a, and 2ab) under different con-
straints on the TIDIGITS dataset. The delta networks are trained
for Θ = 0.5, and the average of five runs is shown. Note that
the methods are combined, hence the naming scheme. Addition-
ally, the accuracy curve for 2 is hidden by the curve 2a, since both
achieve the same accuracy and only differ in speedup metric.
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Figure 5. Accuracy-speedup tradeoff by adjusting Θ for TIDIG-
ITS. By increasing Θ (indicated by sample point size), larger
speedups can be obtained at greater losses of accuracy. For net-
works trained as delta networks, the training threshold is the first
(leftmost) point in the line point sequence.

tation and regularization. This network has the architecture
described in Sec. 6.1. It was then subsequently tested using
the delta network GRU formulation given in Sec. 3.

The standard RNN run as a delta network (“Original”)
achieves 95% accuracy (a drop from zero delta threshold
accuracy of 96%) with a speedup factor of about 2.2X. That
is, only approximately 45% of the computes or fetches are
needed in achieving this accuracy. By adding the round-
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ing constraint during training (“+ Rounding during Train-
ing”), the accuracy is nearly 97% with an increase to a
3X speedup. By incorporating Gaussian noise (“+ Noise”),
97% accuracy can be maintained with a 5X speedup. Es-
sentially, these methods added generalization robustness to
the original GRU, while preventing small changes from in-
fluencing the network output. These techniques allow a
higher threshold to be used while maintaining the same ac-
curacy, therefore resulting in a decrease of memory fetches
and a corresponding speedup.

The best model for training is the delta network itself
(“Train on DN”). This network achieved 97.5% accuracy
with a 8X speedup. Accounting for the pre-existing spar-
sity in the weight matrix (“+ Account for Sparse Weights”),
the speedup increases to 10.5X, without affecting the accu-
racy (since it is the same network). Finally, incorporating
an L1 cost on network changes in addition to training on
the delta network model (“+ L1 cost”) achieves 97% accu-
racy while boosting speedup to 11.9X. Adding in the final
sparseness cost on network changes decreases the accuracy
slightly since the loss minimization must find a tradeoff be-
tween both error and delta activation instead of considering
error alone. However, using the L1 loss can offer a sig-
nificant additional speedup while retaining an accuracy in-
crease over the original GRU network.

Finally, Fig. 5 also demonstrates the primary advantage
given by each algorithm; an increase in generalization ro-
bustness manifests as an overall upward shift in accuracy,
while an increase in sparsity manifests as a rightward shift
in speedup. As proposed, methods 1a and 1b increase gen-
eralization robustness while only modestly influencing the
sparsity. Method 2 greatly increases both, while method
2a only increases sparsity, and finally method 2ab slightly
decreases accuracy but offers the highest speedup.

6.3. Wall Street Journal Dataset

The delta network methodology was applied to an RNN
trained on the larger WSJ dataset to determine whether it
could produce the same gains as seen with the TIDIGITS
dataset. This dataset comprised 81 hours of transcribed
speech, as described in (Braun et al., 2016). Similar to that
study, the first 4 layers of the network consisted of bidirec-
tional GRU units with 320 units in each direction. Training
time for each experiment was about 120h.

Fig. 6 presents results on the achieved word error rate
(WER) and speedup on this dataset for two cases: First,
running an existing speech transcription RNN as a delta
network (results shown as solid curves labeled “RNN used
as a DN”), and second, a network trained as a delta network
with results shown as the dashed curves “Trained Delta
Network”. The speedup here accounts for weight matrix
sparsity as described in Sec. 5.4 .
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Figure 6. Accuracy and speedup tradeoffs on the WSJ dataset.
The solid lines show results from an existing deep RNN run as
a delta network. The dashed lines show results from a network
trained as a delta network with Θ = 0.2. The horizontal lines
indicate the non-delta network accuracy level; similarly, the solid
and dashed horizontal lines indicate the accuracy of the normal
network and the DN network prior to rounding, respectively.

Surprisingly, the existing highly trained network already
shows significant speedup without loss of accuracy as the
threshold, Θ, is increased: At Θ = 0.2, the speedup is
about 5.5X with a WER of 10.8% compared with the WER
of 10.2% at Θ = 0. However, training the RNN to run
as a delta network yields a network that achieves a slightly
higher 5.7X speedup with the same WER. Thus, even the
conventionally-trained RNN run as a delta network can
provide greater than 5X speedup with only a 1.05X in-
crease in the WER.

6.4. Comma.ai Driving DataSet

Driving scenarios are rapidly emerging as another area of
RNN focused research. Here, the delta network model
was applied to determine the gains of exploiting the redun-
dancy of real-time video input. The open driving dataset
from comma.ai (Santana & Hotz, 2016) with 7.25 hours of
driving data was used, with video data recorded at 20 FPS
from a camera mounted on the windshield. The network is
trained to predict the steering angle from the visual scene
similar to (Hempel, 2016; Bojarski et al., 2016). We fol-
lowed the approach in (Hempel, 2016) by using an RNN on
top of the CNN feature detector. The CNN feature detector
has three convolution layers without pooling layers and a
fully-connected layer with 512 units. During training, the
CNN feature detector was pre-trained with an analog out-
put unit to learn the recorded steering angle from randomly
selected single frame images. Afterwards, the delta net-
work RNN was added, and trained by feeding sequences of
the visual features from the CNN feature detector to learn
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Figure 7. Reduction of RNN compute cost in the steering angle
prediction task. Top figure shows the required # of ops per frame
for the delta network GRU layer (trained with Θ = 0.1) in com-
parison with the conventional GRU case. Bottom figure compares
the prediction errors of CNN predictor and CNN+RNN predictor.
The RNN slightly improves the steering angle prediction.

sequences of the steering angle. Since the Q2.5 format was
used for the GRU layer activations, the GRU input vectors
were scaled to match the CNN output and the target output
was scaled to match the RNN output.

However, this raw dataset results in a few practical diffi-
culties and requires data preprocessing. By excluding the
frames recorded during periods of low speed driving, we
remove the segments where the steering angle is not corre-
lated to the direction of the car movement. Training time
of the CNN feature detector was about 8h for 10k updates
with the batch size of 200. Training of the RNN part took
about 3h for 5k updates with the batch size of 32 samples
consisting of 48 frames/sample.

A very large speedup exceeding 100X in the delta network
GRU can be seen in Fig. 7, computed for the steering angle
prediction task on 2000 consecutive frames (100s) from the
validation set. While the number of operations per frame
remains constant for the conventional GRU layer, those for
the delta network GRU layer varies dynamically depending
on the change of visual features.

In this steering network, the computational cost of the CNN
(about 37 MOp/frame) dominates the RNN cost (about
1.58 MOp/frame), therefore the overall system-level com-
putational savings is only about 4.2%. However, future ap-
plications will likely have efficient dedicated vision hard-
ware or require a greater role for RNNs in processing nu-
merous and complex data streams, which result in RNN
models that consume a greater percentage of the overall en-
ergy/compute cost. Even now, the steering angle prediction
network already benefits from a delta network approach.

7. Discussion and Conclusion
Although the delta network methodology can be applied to
other network architectures, as was shown in similar con-
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Figure 8. Tradeoffs between prediction error and speedup of the
GRU layer on the steering angle prediction. The result was ob-
tained from 1000 samples with 48 consecutive frames sampled
from the validation set. Speedup here does not include weight ma-
trix sparsity. The network was trained with Θ = 0.1. A speedup
of approximately 100X can be obtained without increasing the
prediction error, using Θ between 0.1 and 0.25.

current work for CNNs (O’Connor & Welling, 2016), in
practice a larger benefit is seen in RNNs because all the
intermediate activation values for the delta networks are al-
ready stored between subsequent inputs. For example, the
widely-used VGG19 CNN has 16M neuron states (Chat-
field et al., 2014). Employing the delta network approach
for CNNs requires doubled memory access and significant
additional memory space to store the entirety of the net-
work state. Because the cost of external memory access is
hundreds of times larger than that of arithmetic operations,
delta network CNNs seem impractical without novel mem-
ory technologies to address this issue.

In contrast, RNNs have a much larger number of weight
parameters than activations. The sparsity of the delta ac-
tivations can therefore enable large savings in power con-
sumption by reducing the number of memory accesses re-
quired to fetch weight parameters. CNNs, however, do not
have this advantage since the weight parameters are few
and shared by many units. Finally, the delta network ap-
proach is extremely flexible as pre-existing networks can
be used without retraining, or trained specifically for in-
creased optimization.

Recurrent neural networks can be highly optimized due to
the redundancy of their activations over time. When the
use of this temporal redundancy is combined with robust
training algorithms, this work demonstrates that speedups
of 6X to 9X can be obtained with negligible accuracy loss
in speech RNNs, and speedups of over 100X are possible
in steering angle prediction RNNs, suggesting significant
speedups are achievable on practical, real-world problems.
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