Bidirectional Learning for Time-series Models with Hidden Units

A. Supplementary Materials for Bidirectional Learning for Time-series Models with Hidden
Units

Here, we derive specific learning rules suggested by (27)-(28) as well as those with approximation with (29). These learning
rule can be derived in a way similar to the learning rules (18)-(22) are derived from (17). We also provide some of the
details, which are omitted in the derivation of (18)-(22).

The learning rules for U and Z are derived from (27)-(28) as follows:
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for 1 < § < d, where (H[S] )¢ denotes the expected values of h!*! with respect to the conditional distribution given by the
following py:
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for any binary vectors hl*], where Z’ is a normalization factor for the probabilities to sum up to one, and
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The energy in (37) can be decomposed into the energy associated with each hidden unit j as follows:
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where H denotes the set of hidden units, and
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where U. ; denotes a column vector corresponding to the j-th column of U, and Z. ; is defined analogously.
Then (36) can be expressed as
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The j-th element of (HI*l) 4 is then given by
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In (32)-(35), the value of <H[S]>¢, is computed with the latest values of ¢. Let 611 be the value of ¢ immediately before
step t. With the recursive computation of (29), the learning rules of (32)-(35) are approximated with the following learning
rules:
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for 1 < 6 < d, where the quantity such as
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One may consider real-valued units as well (Dasgupta & Osogami, 2017; Osogami, 2016). For example, each of xgt] and

hgt] may have a Gaussian distribution with the following density:
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where o2 and sz are variance parameters, Iy ; is given by (39), and Egvi(l'gt] = 1|x[<4, hl<Y) is given by
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