A. Supplementary Materials for Bidirectional Learning for Time-series Models with Hidden Units

Here, we derive specific learning rules suggested by (27)-(28) as well as those with approximation with (29). These learning rule can be derived in a way similar to the learning rules (18)-(22) are derived from (17). We also provide some of the details, which are omitted in the derivation of (18)-(22).

The learning rules for U and Z are derived from (27)-(28) as follows:

$$\mathbf{U}^{[d]} \leftarrow \mathbf{U}^{[d]} + \eta \log p_{\theta}(\mathbf{x}^{[t]}|\mathbf{x}^{[< t]}, \mathbf{h}^{[< t]}) \sum_{s=\ell}^{t-1} \boldsymbol{\alpha}^{[s-1]} \left(\mathbf{h}^{[s]} - \langle \mathbf{H}^{[s]} \rangle_{\phi}\right)^{\top}$$
(32)

$$\mathbf{Z}^{[d]} \leftarrow \mathbf{Z}^{[d]} + \eta \log p_{\theta}(\mathbf{x}^{[t]}|\mathbf{x}^{[< t]}, \mathbf{h}^{[< t]}) \sum_{s=\ell}^{t-1} \boldsymbol{\beta}^{[s-1]} \left(\mathbf{h}^{[s]} - \langle \mathbf{H}^{[s]} \rangle_{\phi}\right)^{\top}$$
(33)

$$\mathbf{U}^{[\delta]} \leftarrow \mathbf{U}^{[\delta]} + \eta \, \log p_{\theta}(\mathbf{x}^{[t]}|\mathbf{x}^{[< t]}, \mathbf{h}^{[< t]}) \sum_{s=\ell}^{t-1} \mathbf{x}^{[s-\delta]} \left(\mathbf{h}^{[s]} - \langle \mathbf{H}^{[\mathbf{s}]} \rangle_{\phi}\right)^{\top}$$
(34)

$$\mathbf{Z}^{[\delta]} \leftarrow \mathbf{Z}^{[\delta]} + \eta \, \log p_{\theta}(\mathbf{x}^{[t]}|\mathbf{x}^{[< t]}, \mathbf{h}^{[< t]}) \sum_{s=\ell}^{t-1} \mathbf{h}^{[s-\delta]} \left(\mathbf{h}^{[s]} - \langle \mathbf{H}^{[s]} \rangle_{\phi}\right)^{\top}$$
(35)

for $1 \le \delta < d$, where $\langle \mathbf{H}^{[s]} \rangle_{\phi}$ denotes the expected values of $\mathbf{h}^{[s]}$ with respect to the conditional distribution given by the following p_{ϕ} :

$$p_{\phi}(\mathbf{h}^{[s]}|\mathbf{x}^{[< s]}, \mathbf{h}^{[< s]}) = \frac{1}{Z'} \exp(-E_{\phi}(\mathbf{h}^{[s]}|\mathbf{x}^{[< s]}, \mathbf{h}^{[< s]}))$$
(36)

for any binary vectors $\mathbf{h}^{[s]}$, where Z' is a normalization factor for the probabilities to sum up to one, and

$$E_{\phi}(\mathbf{h}^{[s]}|\mathbf{x}^{[
(37)$$

The energy in (37) can be decomposed into the energy associated with each hidden unit j as follows:

$$E_{\phi}(\mathbf{h}^{[s]}|\mathbf{x}^{[< s]}, \mathbf{h}^{[< s]}) = \sum_{j \in \mathcal{H}} E_{\phi,j}(h_j^{[s]}|\mathbf{x}^{[< s]}, \mathbf{h}^{[< s]})$$
(38)

where \mathcal{H} denotes the set of hidden units, and

$$E_{\phi,j}(h_j^{[s]}|\mathbf{x}^{[
(39)$$

where $U_{:,j}$ denotes a column vector corresponding to the j-th column of U, and $Z_{:,j}$ is defined analogously.

Then (36) can be expressed as

$$p_{\phi}(\mathbf{h}^{[s]}|\mathbf{x}^{[< s]}, \mathbf{h}^{[< s]}) = \prod_{j \in \mathcal{H}} p_{\phi, j}(h_j^{[s]}|\mathbf{x}^{[< s]}, \mathbf{h}^{[< s]}),$$
(40)

where

$$p_{\phi,j}(h_j^{[s]}|\mathbf{x}^{[< s]}, \mathbf{h}^{[< s]}) = \frac{\exp(-E_{\phi,j}(h_j^{[s]}|\mathbf{x}^{[< s]}, \mathbf{h}^{[< s]}))}{\exp(-E_{\phi,j}(h_i^{[s]} = 0|\mathbf{x}^{[< s]}, \mathbf{h}^{[< s]})) + \exp(-E_{\phi,j}(h_i^{[s]} = 1|\mathbf{x}^{[< s]}, \mathbf{h}^{[< s]}))}$$
(41)

$$= \frac{\exp(-E_{\phi,j}(h_j^{[s]}|\mathbf{x}^{[< s]}, \mathbf{h}^{[< s]}))}{1 + \exp(-E_{\phi,j}(h_j^{[s]} = 1|\mathbf{x}^{[< s]}, \mathbf{h}^{[< s]}))}.$$
(42)

The j-th element of $\langle \mathbf{H}^{[s]} \rangle_{\phi}$ is then given by

$$\langle H_j^{[s]} \rangle_{\phi} = p_{\phi,j}(h_j^{[s]} = 1 | \mathbf{x}^{[\langle s]}, \mathbf{h}^{[\langle s]})$$
 (43)

In (32)-(35), the value of $\langle \mathbf{H}^{[s]} \rangle_{\phi}$ is computed with the latest values of ϕ . Let $\phi^{[t-1]}$ be the value of ϕ immediately before step t. With the recursive computation of (29), the learning rules of (32)-(35) are approximated with the following learning rules:

$$\mathbf{U}^{[d]} \leftarrow \mathbf{U}^{[d]} + \eta \left(1 - \gamma\right) \log p_{\theta}(\mathbf{x}^{[t]}|\mathbf{x}^{[< t]}, \mathbf{h}^{[< t]}) \sum_{s=\ell}^{t-1} \gamma^{t-1-s} \boldsymbol{\alpha}^{[s-1]} \left(\mathbf{h}^{[s]} - \langle \mathbf{H}^{[s]} \rangle_{\phi^{[s-1]}}\right)^{\top}$$
(44)

$$\mathbf{Z}^{[d]} \leftarrow \mathbf{Z}^{[d]} + \eta \left(1 - \gamma\right) \log p_{\theta}(\mathbf{x}^{[t]}|\mathbf{x}^{[< t]}, \mathbf{h}^{[< t]}) \sum_{s=\ell}^{t-1} \gamma^{t-1-s} \boldsymbol{\beta}^{[s-1]} \left(\mathbf{h}^{[s]} - \langle \mathbf{H}^{[s]} \rangle_{\phi^{[s-1]}}\right)^{\top}$$

$$(45)$$

$$\mathbf{U}^{[\delta]} \leftarrow \mathbf{U}^{[\delta]} + \eta \left(1 - \gamma\right) \log p_{\theta}(\mathbf{x}^{[t]}|\mathbf{x}^{[< t]}, \mathbf{h}^{[< t]}) \sum_{s=\ell}^{t-1} \gamma^{t-1-s} \mathbf{x}^{[s-\delta]} \left(\mathbf{h}^{[s]} - \langle \mathbf{H}^{[s]} \rangle_{\phi^{[s-1]}}\right)^{\top}$$
(46)

$$\mathbf{Z}^{[\delta]} \leftarrow \mathbf{Z}^{[\delta]} + \eta \left(1 - \gamma\right) \log p_{\theta}(\mathbf{x}^{[t]}|\mathbf{x}^{[< t]}, \mathbf{h}^{[< t]}) \sum_{s=\ell}^{t-1} \gamma^{t-1-s} \mathbf{h}^{[s-\delta]} \left(\mathbf{h}^{[s]} - \langle \mathbf{H}^{[s]} \rangle_{\phi^{[s-1]}}\right)^{\top}$$

$$(47)$$

for $1 \le \delta < d$, where the quantity such as

$$G'_{t-1} \equiv \sum_{s=\ell}^{t-1} \gamma^{t-1-s} \, \boldsymbol{\alpha}^{[s-1]} \, (\mathbf{h}^{[s]} - \langle \mathbf{H}^{[s]} \rangle_{\phi^{[s-1]}})^{\top}$$
(48)

can be computed recursively as

$$G_t' \leftarrow \gamma G_{t-1}' + (1 - \gamma) \boldsymbol{\alpha}^{[t-1]} \left(\mathbf{h}^{[t]} - \langle \mathbf{H}^{[t]} \rangle_{\phi^{[t-1]}} \right)^{\top}. \tag{49}$$

One may consider real-valued units as well (Dasgupta & Osogami, 2017; Osogami, 2016). For example, each of $x_i^{[t]}$ and $h_i^{[t]}$ may have a Gaussian distribution with the following density:

$$p_{\theta,i}(x_i^{[t]}|\mathbf{x}^{[(50)$$

$$p_{\phi,i}(h_j^{[t]}|\mathbf{x}^{[$$

where σ_i^2 and σ_j^2 are variance parameters, $E_{\phi,j}$ is given by (39), and $E_{\theta,i}(x_i^{[t]} = 1|\mathbf{x}^{[< t]}, \mathbf{h}^{[< t]})$ is given by

$$E_{\theta,i}(x_i^{[s]} = 1 | \mathbf{x}^{[(52)$$