
Count-Based Exploration with Neural Density Models

A. PixelCNN Hyper-parameters
The PixelCNN model used in this paper is a lightweight
variant of the Gated PixelCNN introduced in (van den Oord
et al., 2016a). It consists of a 7 × 7 masked convolution,
followed by two residual blocks with 1×1 masked convolu-
tions with 16 feature planes, and another 1×1 masked con-
volution producing 64 features planes, which are mapped
by a final masked convolution to the output logits. Inputs
are 42 × 42 greyscale images, with pixel values quantized
to 8 bins.

The model is trained completely online, from the stream of
Atari frames experienced by an agent. Optimization is per-
formed with the (uncentered) RMSProp optimizer (Tiele-
man & Hinton, 2012) with momentum 0.9, decay 0.95 and
epsilon 10−4.

B. Methodology
Unless otherwise stated, all agent performance graphs in
this paper show the agent’s training performance, measured
as the undiscounted per-episode return, averaged over 1M
environment frames per data point.

The algorithm-comparison graphs Fig. 6 and Fig. 8 show
the relative improvement of one algorithm over another
in terms of area-under-the-curve (AUC). A comparison by
maximum achieved score would yield similar overall re-
sults, but underestimate the advantage in terms of learning
speed (sample efficiency) and stability that the intrinsically
motivated and MMC-based agents show over the baselines.

C. Convolutional CTS
In Section 4 we have seen that DQN-PixelCNN outper-
forms DQN-CTS in most of the 57 Atari games, by provid-
ing a more impactful exploration bonus in hard exploration
games, as well as a more graceful (less harmful) one in
games where the learning algorithm does not benefit from
the additional curiosity signal. One may wonder whether
this improvement is due to the generally more expressive
and accurate density model PixelCNN, or simply its con-
volutional nature, which gives it an advantage in general-
ization and sample efficiency over a model that represents
pixel probabilities in a completely location-dependent way.

To answer this question, we developed a convolutional vari-
ant of the CTS model. This model has a single set of pa-
rameters conditioning a pixel’s value on its predecessors
shared across all pixel locations, instead of the location-
dependent parameters in the regular CTS. In Fig. 14 we
contrast the performance of DQN, DQN-MC, DQN-CTS,
DQN-ConvCTS and DQN-PixelCNN on 6 example games.

We first consider dense reward games like Q*BERT and

ZAXXON, where most improvement comes from the use
of the MMC, and the exploration bonus hurts performance.
We find that in fact convolutional CTS behaves fairly sim-
ilarly to PixelCNN, leaving agent performance unaffected,
whereas regular CTS causes the agent to train more slowly
or reach an earlier performance plateau. On the sparse re-
ward games (GRAVITAR, PRIVATE EYE, VENTURE) how-
ever, convolutional CTS shows to be as inferior to Pixel-
CNN as the vanilla CTS variant, failing to achieve the sig-
nificant improvements over the baseline agents presented
in this paper.

We conclude that while the convolutional aspect plays a
role in the ’softer’ nature of the PixelCNN model com-
pared to its CTS counterpart, it alone is insufficient to
explain the massive exploration boost that the PixelCNN-
derived reward provides to the DQN agent. The more ad-
vanced model’s accuracy advantage translates into a more
targeted and useful curiosity signal for the agent, which
distinguishes novel from well-explored states more clearly
and allows for more effective exploration.

D. The Hardest Exploration Games
Table 1 reproduces Bellemare et al. (2016)’s taxonomy of
games available through the ALE according to their explo-
ration difficulty. “Human-Optimal” refers to games where
DQN-like agents achieve human-level or higher perfor-
mance; “Score Exploit” refers to games where agents find
ways to achieve superhuman scores, without necessarily
playing the game as a human would. “Sparse” and “Dense”
rewards are qualitative descriptors of the game’s reward
structure. See the original source for additional details.

Table 2 compares previously published results on the 7 hard
exploration, sparse reward Atari 2600 games with results
obtained by DQN-CTS and DQN-PixelCNN.
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Figure 14. Comparison of DQN, DQN-CTS, DQN-ConvCTS and DQN-PixelCNN training performance.

Easy Exploration Hard Exploration
Human-Optimal Score Exploit Dense Reward Sparse Reward

ASSAULT ASTERIX BEAM RIDER ALIEN FREEWAY
ASTEROIDS ATLANTIS KANGAROO AMIDAR GRAVITAR

BATTLE ZONE BERZERK KRULL BANK HEIST MONTEZUMA’S REVENGE
BOWLING BOXING KUNG-FU MASTER FROSTBITE PITFALL!

BREAKOUT CENTIPEDE ROAD RUNNER H.E.R.O. PRIVATE EYE
CHOPPER CMD CRAZY CLIMBER SEAQUEST MS. PAC-MAN SOLARIS

DEFENDER DEMON ATTACK UP N DOWN Q*BERT VENTURE
DOUBLE DUNK ENDURO TUTANKHAM SURROUND
FISHING DERBY GOPHER WIZARD OF WOR

ICE HOCKEY JAMES BOND ZAXXON
NAME THIS GAME PHOENIX

PONG RIVER RAID
ROBOTANK SKIING

SPACE INVADERS STARGUNNER

Table 1. A rough taxonomy of Atari 2600 games according to their exploration difficulty.

DQN A3C-CTS Prior. Duel DQN-CTS DQN-PixelCNN
FREEWAY 30.8 30.48 33.0 31.7 31.7

GRAVITAR 473.0 238.68 238.0 498.3 859.1
MONTEZUMA’S REVENGE 0.0 273.70 0.0 3705.5 2514.3

PITFALL! -286.1 -259.09 0.0 0.0 0.0
PRIVATE EYE 146.7 99.32 206.0 8358.7 15806.5

SOLARIS 3,482.8 2270.15 133.4 2863.6 5501.5
VENTURE 163.0 0.00 48.0 82.2 1356.25

Table 2. Comparison with previously published results on hard exploration, sparse reward games. The compared agents are DQN (Mnih
et al., 2015), A3C-CTS (“A3C+” in (Bellemare et al., 2016)), Prioritized Dueling DQN (Wang et al., 2016), and the basic versions of
DQN-CTS and DQN-PixelCNN from Section 4. For our agents we report the maximum scores achieved over 150M frames of training,
averaged over 3 seeds.
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Figure 15. Training curves of DQN, DQN-CTS and DQN-PixelCNN across all 57 Atari games.
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Figure 16. Training curves of DQN, DQN-PixelCNN, Reactor and Reactor-PixelCNN across all 57 Atari games.
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Figure 17. Training curves of DQN and DQN-PixelCNN, each with and without MMC, across all 57 Atari games.


