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1. Preliminaries

In this section we list a few results from the literature that will be utilized in the proof of Theorem 1.

Proposition 1 (Lemma 1 in (Ben-David et al., 2010)). Let d be the VC dimension of the hypothesis set H and S, S2 be
two i.i.d. samples of size n from Dy and D respectively. Then for any § > O with probability at least 1 — §:

2dlog(2n) + log(2
diSC(Dl,Dz)SdiSC(Sl,52)4-2\/ dlog(2n) + log(2/9)

n

Lemma 1 (Theorem 1 in (Maurer, 2006)). Let X1, ..., X,, be independent random variables taking values in the set X
and f be a function f : X™ — R. Forany x = (21,...,2,) € X" and y € X define:
xy,k: = (.’L’17 ey T—1,Y, Th41,5- - - 75671)
inf — inf
(inf £)(@) = inf f(zy.1)

n

Apy=) (f-mff)

i=1
Then fort > 0:

42
Pr{f—E[ >t} <exp <2||Aj||) . (1)

Lemma 2 (Corollary 6.10 in (McDiarmid, 1989)). Let W be a martingale with respect to a sequence of random variables
(Bi,...,Bp). Let b} = (b1, ..., by) be a vector of possible values of the random variables By, . .., B,,. Let

ri (DY) = sup{W; : Bim' =71 B = b;} — inf {W; : BTt = b7l B, = b;}. (2)
b, i
Let r2(b7) = Y27 (ri(b1))2 and R% = supyp 12 (bY). Then
Pr{W, — W, 2 3
B{g{ n— Wo > €} <exp fﬁ . 3)

Lemma 3 (Originally (Hoeffding, 1963); in this form Theorem 18 in (Tolstikhin et al., 2014)). Let {U1, ..., U} and
{Wh,...,Wpn} be sampled uniformly from a finite set of d-dimensional vectors {v1,...,vx} C R with and without
replacement respectively. Then for any continuous and convex function F : R? — R the following holds:

(S =l (5
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Lemma 4 (Part of Lemma 19 in (Tolstikhin et al., 2014)). Let x = (z1,...,2;) € RY. Then the following function is
convex:

F(x) = sup x;. 5)
i=1...1

2. Proof of Theorem 1

We start with bounding the multi-task error by the errors on the source tasks, and transition to empirical quantities while
keeping the effect of random sampling controlled.

Fix a subset of labeled tasks I = {iy, ..., iy}, atask (Dy, f;) and a weight vector « € AL. Let b} € arg miny ey (er(h) +
er;(h)).! Writing £(h, ') as shorthand for ¢(h(z), h'(z)), we have

lera(h) —er(h)| = | 3 averi(h) — ero(h)| <D il ers(h) — exy(h)| ©
el il

< ;aioen—(h) — E (hh)| +| E (kD) — B (b B5)| + [ exi(h) — E E(h,h) ) ~ (x)

(7

‘We can bound each summand:
|er;(h) — B IEDf(h, hi)| <er;(h*)
| E l(hhl)— E E(h,hf)| < disc(D;, Dy)
x~D; x~Dy
|ers(h) — E f(h,hf)| <eri(h})
x~Dy

where the first and the last inequalities hold by the triangular inequality for ¢ and the second one follows from the definition
of discrepancy. Therefore,

) < Z a;(er;(h}) + disc(D;, Dy) + eri(h Z a; (At + disc(Dy, Dy)). )
i€l i€l

Consequently, assuming that every task ¢ has its own weights o we obtain that:

1z

?;ert( <fzeraf (he) + T;;a disc(Dy, D T;;axm )
We continue with bounding every expectation on the right hand side of (9) by its empirical counterpart.

2.1. Bound % 3°7 | 3., aldisc(Dy, D;)

We apply Proposition 1 to every summand and combine the results using a union bound argument. We obtain that with

probability at least 1 — §/2 uniformly for all choices of 7 and o!,. .., aT € AL:
1 & L 1 & . 2dlog(2n) + log(4T2/6)
TZZ% disc(Dy, D;) < ?ZZ% disc(St, S;) + 2 - . (10)
t=1 il t=1 il

2.2. Bound % 307 erge (hy)
Now we upper-bound the error term in two steps.

'If the minimum is not attained, the same inequality follows by an argument of arbitrary close approximation.
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2.2.1. RELATE % Zt 1 €Tt (hy) TO % Zt 1€yt (hy)

We start with relating the multi-task error to the hypothetical empirical error, if the learner would receive labels for all
examples in the selected labeled tasks:

ta(h) = _ aibtsy (h) (an
1€l
for
_ 1 & , ,
cisyp(h) = — > U(h(xh), fi(xh). (12)
j=1

Clearly, if m = n this part is not necessary and we can avoid the resulting complexity terms.
Because the choice of the tasks to label, I, their weights, a = (a!,...,a®), and the predictors, h = (hy,..., hr), all
depend on the unlabeled data, we aim for a bound that is holds simultaneous for all choices of these quantities, under the

condition that I and « depend only on the unlabeled samples, while h can be chosen based also on the labeled subsets.

Our main tool is a refined version of McDiarmid’s inequality, due to Maurer (Maurer, 2006) (Lemma 1), which allows us
to make use of the internal structure of the weights, o, while deriving a large deviation bound.

Forany S = (S}, ..., S%) define:

U(S)=  sup sup sup ZZ& er;(hy) —érgu(hy)) = supsupsup g(a,h, S) (13)
I:{il,...,ik}al,.“,anGAI hl;u-,hT t=1 i=1

for

T n T
g(a,h,S) ZZ( 1nza (eri(he) — (ht(x;l),ft(x;l)))). (14)

=1 j=1

For notational simplicity we will sometimes think of every Si* as a set of pairs (x},y!), where y! = fi(z!). To apply
Lemma 1 we establish a bound on Ay 4 (S) =3, > (¥(S) — W;5(S))?, with

Wi;(8) = inf supsup g(e, b, S\ {(2 595t U{(=.9)}, (15)

(z.y) o

i.e. the possible smallest value for ¥ when changing only the data point (mﬁ, y;) Let a*, h* be the point where the sup in
the (13) is attained?, i.e. ¥(S) = g(a*, h*,S). Then:

ij(8) 2 inf g(a”, b7, S\ {59} U {(=,9)}) (16)
and therefore
U(S) - ¥;5(S) < g(a”,h",S) - (inf)g(a*, h*, S\ {(a5,97)} U {(z.9)}) (17)
1 I
< = *t * * < >§<t
SI}ngZa (€).35) + €0 ).9) € o 3o (18)
where for the last inequality we use that £ is bounded in [0, 1]. Because also ¥(S) — ¥;;(S) > 0, we obtain
T n T on T 2 1 T 2 1
Bewl(S) =33 (H(S) - ¥(S)P < DD s (Z ) = o (Zza?‘t> =2 @
i=1 j=1 i=1 j=1 t=1 i=1 t=1

2If the supremum is not attained the subsequent inequality still follows from an argument of arbitrarily close approximation.
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(remember that ) °, a; = 1 forany a € AT). Therefore, according to Lemma 1 with probability at least 1 — & /4:

U(S)<E W(S)—H/%log%. (20)

To bound Eg ¥ (S) we use symmetrization and Rademacher variables, o;;:

T
1 o
E¥(S E sup sup sup — Y al(ery(hy) — £(he(xh), 4t 2n
BV =B s zz A3 elenth)  Gl2))
T n T
i o
<2EEsu su su X abl(hy(zt), yt (22)
BEswp swp o pZZ<Tn§_Z (he(a) y»)
1 T T n 0--Ozt
§2EE—Z sup ZZ Y iZe(ht(x;i),y;i) (23)
So T'iZaern =5 " I
T n "
<2EE sup (b (2 , i , (24)
52 > (). )

where line (23) is obtained from line (22) by dropping the assumption of a common sparsity pattern between the a-s. Note
that the function inside the last sup is linear in o € A, therefore sup,, can be reduced to the sup over the corners of the
simplex, {(1,0,...,0), ...,(0,...,0,1)}. At the same time, by Sauer’s lemma, the number of different choices of h on

S is bounded by (65" ) ‘ Therefore, the total number of different choices in (24) is bounded by T’ (”f)d. Furthermore,

for any choice of « and h, the norm of the T'n-vector formed by the summands of (24) is bounded by 1/+/n, because

T n n &l ’
ZZ (cmozz ),yi))2 _ %ZZ (aif(h(mé),yi)f < %Z (Z Oéi) = % (25)

i=1 j=1 i=1 j=1 j=1

Therefore, by Massart’s lemma:

T n
E SUPZZ Ui;aif(h(mf),yli) < V2(log T +\;l%og(enT/d)). 26)

Combining (20) and (26) we obtain that with probability at least 1 — §/4 simultaneously for all choices of tasks to be
labeled, I, weights o and hypotheses h:

T
- 8(log T + dlog(enT/d)) 2. 4
Zera (hy) < T ge t(he) + \/ - + -~ log 5 27

T - T ~
2.2.2. RELATE 7 Y, éFqt(hy) TO £ >, €rqe (hy)

Fix the unlabeled samples S¥, ..., S%. This uniquely determines the chosen tasks I and the weights o', ..., aT € A, so
the only remaining source of randomness is the uncertainty which subsets of the selected tasks are labeled.
For notational simplicity we pretend that exactly the first k tasks were selected, i.e. I = {1,...,k}. The general case can
be obtained by changing the indices in the proof from 1, ...,k toi1,..., ix.
To deal with the dependencies between the labeled data points we first note that any random labeled subset S! =
(5%,-..,5),) can be described as the first m elements of a random permutation Z; = (z1,..., 2,) over n elements that
correspond to the unlabeled sample S, i.e. sj = (z J,yj) (z*,,y"). With this notation and writing Z = (Z1,..., Z)
and ((h, z5) = £(h(Z),y}) we define the following function
k 1 T 1 n 1 m
®(Z) = sup Zera (hy) — €rqt(hy) = sup Z—Za;?(fzaht,z;) — —Zf(ht,z;)) (28)
..... hr hi,.ohr 524 T t=1 "= s

Our main tool is McDiarmid’s inequality (Lemma 2) for martingales.



Supplementary Material

Construct a martingale sequence

For this, we interpret Z = (z1,z3,...,2%) as a sequence of kn dependent variables, z11, ..., 2k,. For the sake of no-

tational consistency we will keep using double indices, with the convention that the sample index, j = 1,...,n, runs
faster than the task index, i = 1,... k. Segments of a sequence will be denoted by upper and lower double indices,
zllj = (2ij, Zi(j+1), - - -» 27) forij < 727 and z = () otherwise. We now create a martingale sequence using Doob’s
construction (Doob, 1940)

Wij = ]E{‘I’( )l Z11 (29)

where here and in the following when taking expectations over Z it is silently assumed that the expectation is taken only
with respect to variables that are not conditioned on. Note that because of this convention, the expectations in (29) is only

with respect to Zi(j41)» - -+ » Zkns SO each W;; is a random variable of z;1,...,2;;. In particular, Woo = Egz ®(Z) and
Wi, = ®(Z), and the in between sequence is a martingale with respect to 211, . . ., Zkn:

E{ Wil ™" } =E{ E{®(2)| zi3}| 21§ 7 } =E{2(@)|=1 ) } = Wig-n)- (30)
Upper-bound 12

In order to apply Lemma 2 we need an upper bound on the coefficient R? defined there.

Leti € {1,...,k}andj € {1,...,n} be fixed and let 7 = (71, ..., m) be specific permutations of n elements for which
we use the same index conventions as for Z. By o and 7 will denote elements in 7} ( 1) i.e. 0 and 7 do not occur in any
of the first j positions of the permutation 7;. Then

r(mP ) = sup (WYY =m{TY, sy =0 - inf { W;; : A0 =m{, 2y =0}
CEMIT L1 TET;(G+1)
1
= s swp [ B {2 Vo s} B (@m0 G
‘767"7(7+1) 767"7(]+1) L<J+1) Zi(i+1)

To analyze (31) further, recall that:

k kn 1 1
E {‘I’(Wi(lj )0, Zz(]+1 )} = Z o( 7r11 70 i(j +1)) x Pr( 2] Zi(j+1) = Ti(j+1) |le ) = 1(1] A zij =0),
1(7+1) kn
Ti(i+1)

where here and in the following we use the convention that sums over parts of 7 run only over values that lead to valid
permutations. Because the permutations of different task are independent, this is equal to

i(j—1 n 1 i(j—1 n n
= Z ‘I)(Wl(l] o, Wzk(j-s-l) Pr(z l(J"rl) = 7Tz(1+1) i1 Y 7%‘5] " ij = U)Pr(zﬁ'ﬂﬂ = ”ZH)l) (32)
TG4
We make the following observation: for any fixed ;] 7 and any T ¢ ., we can rephrase a summation over 7rl Gi+1) into a

sum over all positions where 7 can occur, and a sum over all configuration for the entries that are not 7:

Y Fif) Z S Y Pl i) (33)

in I=j+1 i0-1) 7
TiG+1) Il 0D Tl

for any function F'. Applying this to the summation in (32), we obtain

i1 i1 i(j—1
E q)(ﬂ—l(lj o, (g+1))Pf( (g+1) = 1G4 |2 Y= 7T¢§] "A 2ij =0 )
whkn
Ti(G+1)

7 1) i(l—1
X Pr(z(iy) = m(iia) = Z Z Z B(m~ ’>igj+1))’7’”f(?+1>)

1-1) —k
I=5+1 :Eﬁ-l; W1(3l+1)
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i(1-1 i(1-1 kn i(j—1 i(j—1
x Pr( z;((jﬂ)) = Wzgj+1)) Azt = 1(l+1)|z =1 = W;(lj A Zij =0 Nzyg =T)
X Pr(zé’j_l)l = W?iﬁ-l)l) = I (IBE” E (I)(Z|Zz(j D Wi(lj D N Zij =0 N zi = 7')7
where U, ; denotes the uniform distribution over the set {j + 1,...,n}. The analogue derivation can be applied to the

quantity in line (31) with ¢ and 7 exchanged.

For any Z denote by Z* <! the permutation obtained by switching z;; and z;. Then, due to the linearity of the expectation:

ri(my ) =sup{ E E{@(Z) - (2|5 =mY TV, 2 = 0,z = 7). (34)
o,T ~Yitt

From the definition of ® we see that ®(Z) — ®(ZY %) = 0 when 5,/ € {1,...,m}orj,l € {m+1...,n}. Since

[ > j in (34) this implies r;; (7‘('1(1] 1)) =0forj € {m+1,...,n}. The only remaining cases are j € {1,...,m} and

le{m+1,...,n}, for which we obtain

T
1 - . 1
7,<—>zl t i 7 t
®(Z) — B(ZY s TE:: = (e 23) + £lhe, 7)) < ;zl:ai.

where for the first inequality we used that sup F' — sup G < sup(F — G) for any F, G, and for the second inequality we
i(j—1)

used that £ is bounded by [0, 1]. Consequently, r3;(m,7 ) < "= T T S +—, ! in this case. Therefore?
k n L 2k (T 2 LA 2
~ i1 _
RQ:ZZ<TW(W1(1] )’ < 2 22( ) Z ZO‘E < 72 Z Zaﬁ : (35)
—l T?m? 4 n—j _ T?m <
i=1 j=1 j=1 i=1 \t=1 i=1 \t=1
Upper-bound Ez ®(Z)

The main tool here is Lemma 3. First we rewrite ®(Z) in the following way:

_ 1 ¢
;sip;a erg: ersz =T zz:
k
1(Z) = sup > mal(@sy (h) — Gg (h).
i=1
Note that even though # can be infinitely large, we can identify a finite subset that represents all possible predictions of
hypothesis in H on S} U - - - U S}¥. We denote their number by L < 2F" and the corresponding hypotheses by h', ..., h%.

Lett € {1,...,T} be fixed. Foreveryi € {1,...,k} define a set of n L-dimensional vectors, V;! = {v},... v} }, where
forevery j € {1,...,n}:

oly = [ al(enh) = €0 (@h),09), -, ol (e (hF) = e(hE(h), ui) | (36)
With this notation, for every i € {1,...,k} choosing a random subset S! C S¥ corresponds to sampling m vectors from

V.! uniformly without replacement.

Foreveryi € {1,...,k},letU; = {w, ..., Ui} be sampled from V;! in that way. Then

k. m
S wi |, (37)

i=1 j=1

3We generously bound ’;:7]” < 1 in this step. By keeping the corresponding factor in the analysis one obtains that the constant B in

(n—m)?

the theorem can be improved at least by a factor of 0B (=m0
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where the function F' takes as input an L-dimensional vector and returns the value of its maximum component. We now
bound E; ®,(Z) by applying Lemma 3 k times:

k. m
B2 =, E,, F(;;W) (38)
k—1 m m
- U17~I,EUIC71 TIJI':‘}c |:F( — ; Uij + ; ukj) ‘Ul, ceey Uk—1i| (39)

By Lemma 4 F'(z) is a convex function. Thus F'(const + x) is also convex and we can apply Lemma 3 with respect to Uy.

k—1 m m
< E [ 3w+ Zukj U, U] (40)
Ui,oosUg—1
=1 j=1
where 0k = {ugi, ..., upm | is a set of m vectors sampled from th with replacement.
k—1 m
= E ZZUMZ% : @)
Ui,z Uk—1,U =1 j—1

Repeating the process k times, we obtain

m

k
<. < ZZ ) (42)
=15=1

U17 LU
Note that writing the conditioning in the above expressions is just for clarity of presentation, since the U, ..., U are
actually independent of each other.

Switching from the U sets by the U sets in ® corresponds to switching from random subsets S! to random sets S; consisting
of m points sampled from S}* uniformly with replacement. Therefore we obtain

Ed,(Z)= E @t(s LS < B @Sy, .., 5), (43)
Z LIS Stk

which allows us to continue analyzing Ez ®;(Z) in the standard way using Rademacher complexities and independent
samples. Applying the common symmetrization trick and introducing Rademacher random variables o;; we obtain

m

®,(Sy,..., Sk <2E5up220”a€ )
i=1 j=1
We can rewrite this using the fact that £(y, ') = [y # '] = 22~

EaupZZa”aé EsupZZaw ( )y;—%EsupZZ awylath )

1=1 j=1 =1 j=1 1=15=1

Since — 075y has the same distribution as o;:

:fIE sup ZZO’”(L”

7 a(h)eA = 1j=1
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where a;;(h) = afh(z}) and A = {a(h) : h € H}. According to Sauer’s lemma (Corollary 3.3 in (Mohri et al., 2012)):

4] < <m)d (44)
-_— d M

At the same time:

k m
lallz = | > > (ath(a}))? = Vim

i=1 j=1
Therefore, by Massart’s lemma (Theorem 3.3 in (Mobhri et al., 2012)):

(45)

Z(aﬁﬁ -v/2dmlog(ekm/d). (46)

(al)?- 2d10g(;km/d). 47

Combining (35) and (47) with Lemma 2 we obtain that for fixed unlabeled samples SY, ..., S7 with probability at least

1 — §/4 for all choices of hq, ..., hy:
2dlog(ekm/d) 1 log(4/96)
o1\ —————— + mlalliz\ ———
m T 2m

1« 1« 1
thzlerat(ht) < thzleraz(ht) + el

By further combining it with (27) we obtain that the following inequality holds uniformly in hy, ..., hy € H with prob-
ability at least 1 — 6/2 over the sampling of the unlabeled training sets, S¥, ..., S%, and labeled training sets, (S!);cr,
provided that the subset of labeled tasks, I C {1,...,T}, and the task weights, o', ..., aT € A!, depend deterministically
on the unlabeled training only.

T T
1 Z 1 Z . 1 [2dlog(ekm/d) 1 log(4/9)
T pot €ry (ht) — T P CTy (ht)—'_T Ha”Q’l m + 7‘!||aH12 2m
logT 1 T 2 4
+\/8( ogT + dlog(enT/d)) n \/n log 48)

n

5
The statement of Theorem 1 follows by combining (9) with (10) and (48).
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