
Supplementary Material

Proof of Theorem
We introduce the derivation of theorem of the main pa-
per. The ideal joint hypothesis is defined as h∗ =
arg min

h∈H

(
RS(h

∗) + RT (h
∗)
)
, and its corresponding error

is C = RS(h
∗) + RT (h

∗), where R denotes the expected
error on each hypothesis.

We consider the pseudo-labeled target samples set Tl ={
(xi, ŷi)

}mt

i=1
given false labels at the ratio of ρ. The dis-

tribution of the source samples is denoted as S; that of the
target samples, as T ; and that of the pseudo-labeled tar-
get samples, as Tl. The minimum shared error on S, Tl is
denoted as C ′. Then, the following inequality holds:

∀h ∈ H,RT (h) ≤ RS(h) +
1
2dH∆H(SX, TX) + C

≤ RS(h) +
1
2dH∆H(SX, TX) + C ′ + ρ

Proof. The probabiliy of false labels in the pseudo-labeled
set Tl is ρ. When we consider 0-1 loss function for l, the
difference between the error based on the true labeled set
and pseudo-labeled set is

|l(h(xi), yi)− l(h(xi), ŷi)| =

{
1 yi ̸= ŷi

0 yi = ŷi

Then, the difference in the expected error is,

E[|l(h(xi), yi)− l(h(xi), ŷi)|] ≤ |RTl
(h)−RT (h)| ≤ ρ

From the characteritic of the loss function, the triangle in-
equality will hold, then

RS(h) +RT (h) = RS(h) +RT (h)−RTl
(h) +RTl

(h)

≤ RS(h) +RTl
(h) + |RTl

(h)−RT (h)|
≤ RS(h) +RTl

(h) + ρ

From this result, the main inequality holds.

CNN Architectures and training detail
Four types of architectures are used for our method, which
is based on (Ganin & Lempitsky, 2014). The network
topology is shown in Figs 2, 3 and 4. The other hyper-
parameters are decided on the validation splits. In the all

0 20 40 60 80 100

Number of steps

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N
u

m
b

e
r

o
f

s
a

m
p

le
s

!10
4

Accuracy of labeling method

Accuracy of learned network

Number of labeled samples

Figure 1. The behavior of our model when increasing the number
of steps up to 100. Our model achieves accuracy of about 97%.

scenarios, the learning rate is set to 0.01. In the initial train-
ing step, The batchsize is set as 128. After the initial step,
the batchsize for training Ft, F is set as 128, the batchsize
for training F1, F2, F is set as 64 in all scenarios.

In MNIST→MNIST-M, the dropout rate used in the ex-
periment is 0.2 for training Ft, 0.5 for training F1, F2.
The number of iteraions per one step is set 2000. In
MNIST→SVHN, we did not use dropout. We decreased
learning rate to 0.001 after step 10. The number of iteraions
per one step is set 3000. In SVHN→MNIST, the dropout
rate used in the experiment is 0.5. The number of it-
eraions per one step is set 3000. In SYNDIGITS→SVHN,
the dropout rate used in the experiment is 0.5. The
number of iteraions per one step is set 5000. In
SYNSIGNS→GTSRB, the dropout rate used in the exper-
iment is 0.5. The number of iteraions per one step is set
5000.

Semi-supervised domain adaptation
experiments
In semi-supervised domain adaptation in MNIST→SVHN,
we used the same architecture we used in the unsupervised
setting. For the first step of training, we trained all net-
works solely on source samples. We add randomly selected
labeled target samples into pseudo-labeled target training
sets. Other hyperparameters are the same as the ones used
in unsupervised settings.

Submission and Formatting Instructions for ICML 2017

Supplementary experiments on
MNIST→MNIST-M
We observe the behavior of our model when increasing the
number of steps up to one hundred. We show the result in
Fig. 1. Our model’s accuracy gets about 97%. In our main
experiments, we set the number of steps thirty, but from this
experiment, further improvements can be expected when
the number of steps is increased.

References
Ganin, Yaroslav and Lempitsky, Victor. Unsupervised do-

main adaptation by backpropagation. In ICML, 2014.

Submission and Formatting Instructions for ICML 2017

conv
5x5x32

ReLU!

max-pool 2x2
2x2 stride

conv
5x5x48

ReLU!

FC 100 units
ReLU!

FC 10 units
Softmax!

F2: Labeling Network2!

Ft : Target-specific network!

F1: Labeling Network1!

F: Shared Network!

FC 100 units
ReLU!

FC 10 units
Softmax!

FC 100 units
ReLU!

FC 10 units
Softmax!

FC 100 units
ReLU!

FC 100 units
ReLU!

FC 100 units
ReLU!

max-pool 2x2
2x2 stride

Figure 2. The architecture used for MNIST→MNIST-M. We added BN layer in the last convolution layer and FC layers in F1, F2. We
also used dropout in our experiment.

FC 2048
units

ReLU!

FC 10 units
Softmax!

F2: Labeling Network2!

Ft : Target-specific network!

F1: Labeling Network1!

F: Shared Network!

FC 2048
units

ReLU!

FC 10 units
Softmax!

FC 2048
units

ReLU!

FC 10 units
Softmax!

conv
5x5x64

ReLU!

conv
5x5x64

ReLU!

max-pool 3x3
2x2 stride

conv
5x5x128

ReLU!

FC 3072
units

ReLU!

max-pool 3x3
2x2 stride

Figure 3. The architecture used for training SVHN. In MNIST→SVHN, we added a BN layer in the last FC layer in F . In
SVHN→MNIST, SYN Digits↔SVHN, we added BN layer in the last convolution layer in F and FC layers in F1,F2 and also used
dropout.

conv
5x5x96

ReLU!

Conv
3x3x144

ReLU!

FC 43 units
Softmax!

FC 512 units
ReLU!

FC 43 units
Softmax!

FC 43 units
Softmax!

F2: Labeling Network1!

Ft : Target-specific network!

F1: Labeling Network1!

F: Shared Network!

conv
5x5x256

ReLU!

FC 512 units
ReLU!

FC 512 units
ReLU!

max-pool 2x2
2x2 stride

max-pool 2x2
2x2 stride

max-pool 2x2
2x2 stride

Figure 4. The architecture used in the adaptation Synthetic Signs→GTSRB. We added a BN layer after the last convolution layer in F
and also used dropout.

