
Supplementary Material

Proof of Theorem
We introduce the derivation of theorem of the main pa-
per. The ideal joint hypothesis is defined as h∗ =
arg min

h∈H

(
RS(h

∗) + RT (h
∗)
)
, and its corresponding error

is C = RS(h
∗) + RT (h

∗), where R denotes the expected
error on each hypothesis.

We consider the pseudo-labeled target samples set Tl ={
(xi, ŷi)

}mt

i=1
given false labels at the ratio of ρ. The dis-

tribution of the source samples is denoted as S; that of the
target samples, as T ; and that of the pseudo-labeled tar-
get samples, as Tl. The minimum shared error on S, Tl is
denoted as C ′. Then, the following inequality holds:

∀h ∈ H,RT (h) ≤ RS(h) +
1
2dH∆H(SX, TX) + C

≤ RS(h) +
1
2dH∆H(SX, TX) + C ′ + ρ

Proof. The probabiliy of false labels in the pseudo-labeled
set Tl is ρ. When we consider 0-1 loss function for l, the
difference between the error based on the true labeled set
and pseudo-labeled set is

|l(h(xi), yi)− l(h(xi), ŷi)| =

{
1 yi ̸= ŷi

0 yi = ŷi

Then, the difference in the expected error is,

E[|l(h(xi), yi)− l(h(xi), ŷi)|] ≤ |RTl
(h)−RT (h)| ≤ ρ

From the characteritic of the loss function, the triangle in-
equality will hold, then

RS(h) +RT (h) = RS(h) +RT (h)−RTl
(h) +RTl

(h)

≤ RS(h) +RTl
(h) + |RTl

(h)−RT (h)|
≤ RS(h) +RTl

(h) + ρ

From this result, the main inequality holds.

CNN Architectures and training detail
Four types of architectures are used for our method, which
is based on (Ganin & Lempitsky, 2014). The network
topology is shown in Figs 2, 3 and 4. The other hyper-
parameters are decided on the validation splits. In the all
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Figure 1. The behavior of our model when increasing the number
of steps up to 100. Our model achieves accuracy of about 97%.

scenarios, the learning rate is set to 0.01. In the initial train-
ing step, The batchsize is set as 128. After the initial step,
the batchsize for training Ft, F is set as 128, the batchsize
for training F1, F2, F is set as 64 in all scenarios.

In MNIST→MNIST-M, the dropout rate used in the ex-
periment is 0.2 for training Ft, 0.5 for training F1, F2.
The number of iteraions per one step is set 2000. In
MNIST→SVHN, we did not use dropout. We decreased
learning rate to 0.001 after step 10. The number of iteraions
per one step is set 3000. In SVHN→MNIST, the dropout
rate used in the experiment is 0.5. The number of it-
eraions per one step is set 3000. In SYNDIGITS→SVHN,
the dropout rate used in the experiment is 0.5. The
number of iteraions per one step is set 5000. In
SYNSIGNS→GTSRB, the dropout rate used in the exper-
iment is 0.5. The number of iteraions per one step is set
5000.

Semi-supervised domain adaptation
experiments
In semi-supervised domain adaptation in MNIST→SVHN,
we used the same architecture we used in the unsupervised
setting. For the first step of training, we trained all net-
works solely on source samples. We add randomly selected
labeled target samples into pseudo-labeled target training
sets. Other hyperparameters are the same as the ones used
in unsupervised settings.
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Supplementary experiments on
MNIST→MNIST-M
We observe the behavior of our model when increasing the
number of steps up to one hundred. We show the result in
Fig. 1. Our model’s accuracy gets about 97%. In our main
experiments, we set the number of steps thirty, but from this
experiment, further improvements can be expected when
the number of steps is increased.
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Figure 2. The architecture used for MNIST→MNIST-M. We added BN layer in the last convolution layer and FC layers in F1, F2. We
also used dropout in our experiment.
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Figure 3. The architecture used for training SVHN. In MNIST→SVHN, we added a BN layer in the last FC layer in F . In
SVHN→MNIST, SYN Digits↔SVHN, we added BN layer in the last convolution layer in F and FC layers in F1,F2 and also used
dropout.
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Figure 4. The architecture used in the adaptation Synthetic Signs→GTSRB. We added a BN layer after the last convolution layer in F
and also used dropout.


