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Abstract

Motivated by applications in computational ad-
vertising and systems biology, we consider the
problem of identifying the best out of several
possible soft interventions at a source node V
in an acyclic causal directed graph, to maximize
the expected value of a farget node Y (located
downstream of V'). Our setting imposes a fixed
total budget for sampling under various inter-
ventions, along with cost constraints on different
types of interventions. We pose this as a best arm
identification bandit problem with K arms where
each arm is a soft intervention at V, and leverage
the information leakage among the arms to pro-
vide the first gap dependent error and simple re-
gret bounds for this problem. Our results are a
significant improvement over the traditional best
arm identification results. We empirically show
that our algorithms outperform the state of the
art in the Flow Cytometry data-set, and also ap-
ply our algorithm for model interpretation of the
Inception-v3 deep net that classifies images.

1. Introduction

Causal graphs (Pearl, 2009b) are useful for representing
causal relationships among interacting variables in large
systems (Bottou et al., 2013). Over the last few decades,
causal models have found use in computational adver-
tising (Bottou et al., 2013), biological systems (Mein-
shausen et al., 2016), sociology (Blalock, 1985), agricul-
ture (Splawa-Neyman et al., 1990) and epidemiology (Joffe
et al., 2012). There are two important questions commonly
studied with causal graphs: (i) How to learn a directed
causal graph that encodes the pattern of interaction among
components in a system (casual structure learning)? (Pearl,
2009b) , and (ii) Using previously acquired (partial) knowl-
edge about the causal graph structure, how to estimate
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Figure 1. Computational advertising example borrowed from
(Bottou et al., 2013). Various observable and hidden variables
are shown. The topology of the causal graph is known; however
the strengths of most interactions are unknown. A click-rate scor-
ing algorithm predicts future user click through rates from users’
search queries and the set of ads relevant to the user query cho-
sen from an ad inventory. The algorithm’s output determines the
ads displayed (as well as the display style), and through a com-
plex causal graph, finally determines actual revenue. The part of
the network in bold — distribution of user queries and matching
ad keywords is known (including strengths), and the input output
characteristics of several candidate (randomized) click-rate scor-
ing algorithms are known. The objective is to choose the best
algorithm that maximizes the revenue (target in bold red).

and/or to optimize the effect of a new intervention on other
variables (optimization) (Bottou et al., 2013; Joffe et al.,
2012; Kemmeren et al., 2014; Bonneau et al., 2007; Krouk
et al., 2013)? Here, an intervention is a forcible change to
the value of a variable in a system. The change either alters
the relationship between the parental causes and the vari-
able, or decouples it from the parental causes entirely. Our
focus is on optimizing over a given set of interventions.

An illustrative example includes online advertising (Bottou
et al., 2013), where there is a collection of click-through
rate scoring algorithms that provide an estimate of the prob-
ability that an user clicks on an ad displayed at a specific
position. The interventions occur through the choice of
click-through rate scoring algorithm; the algorithm choice
directly impacts ad placement and pricing, and through a
complex network of interactions, affects the revenue gen-
erated through advertisements. The revenue is used to de-
termine the best scoring algorithm (optimize for the best
intervention); see Figure 1. Another example is in biologi-
cal gene-regulatory networks (Bonneau et al., 2007), where
a large number of genomes interact amongst each other and
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also interact with environmental factors. The objective here
is to understand the best perturbation of some genomes in
terms of its effect on the expression of another subset of
genomes (target) in cellular systems.

This paper focuses on the following setting: We are given
apriori knowledge about the structure and strength of inter-
actions over a small part of the causal graph. In addition,
there is freedom to intervene (from a set of allowable inter-
ventions) at a certain node in the known part of the graph,
and collect data under the chosen intervention; further we
can alter the interventions over time and observe the cor-
responding effects. Given a set of potential interventions
to optimize over, the key question of interest is: How to
choose the best sequence of T' allowable interventions in
order to discover which intervention maximizes the expec-
tation of a downstream target node?

Determining the best intervention in the above setting can
be cast as a best arm identification bandit problem, as noted
in (Lattimore et al., 2016). The possible interventions to
optimize over are the arms of the bandit, while the sample
value of the target node under an intervention is the reward.

More formally, suppose that V' is a node in a causal
graph G(V,€) (as shown in Fig. 2), with the parents
of V denoted by pa(V). In Fig. 1, V corresponds to
the click-through rate and its parents are user-query and
ads-chosen. This essentially means that V' is causally
determined by a function of pa(V) and some exoge-
nous random noise. This dependence is characterized
by the conditional P(V |pa(V))'. Then a (soft) interven-
tion mathematically corresponds to changing this condi-
tional probability distribution i.e. probabilistically forc-
ing V to certain states given its parents. In the compu-
tational advertising example, the interventions correspond
to changing the click through rate scoring algorithm (i.e
P(click through rate|ads chosen,user query), whose
input-output characteristics are well-studied. Further, sup-
pose that the effect of an intervention is observed at a
node Y which is downstream of V' in the topological or-
der (w.r.t G) -refer to Fig. 2. Then, our key question
is stated as follows: Given a collection of interventions
{Po(VIpa(V)),...Prx_1(V|pa(V))}, find the best inter-
vention among these K possibilites that maximizes E[Y)
under a fixed budget of T (intervention, observation) pairs.

1.1. Main Contributions

(Successive Rejects Algorithm) We provide an efficient
successive rejects multi-phase algorithm. The algorithm
uses clipped importance sampling. The clipper level is set
adaptively in each phase in order to trade-off bias and vari-

1Formally if node V' has parents V1, V5, then this distribution
is the conditional P(V = v|Vi = vy, Vo = vg) for all v, v1, va.

Figure 2. Illustration of our setting. The soft interventions modify
P(V|pa(V). The various conditionals and the marginal of pa (V")
is assumed to be known from prior data. The target variable Y lies
further downstream in the unknown portions of the causal graph.

ance. Our procedure yields a major improvement over the
algorithm in (Lattimore et al., 2016) (both in theoretical
guarantees and in practice), which sets the clippers and al-
locates samples in a static manner.

(Gap Dependent Error Guarantees under Budget Con-
straints) In the classic best arm identification problem (Au-
dibert & Bubeck, 2010), Audibert et al. derive gap depen-
dent bounds on the probability of error given a fixed sample
budget. Specifically, let A(;) be the i-th largest gap (differ-
ence) in the expected reward from that of the best arm (e.g.
Ay is the difference between the best arm expected re-
ward and the second best reward). Then, it has been shown
in (Audibert & Bubeck, 2010) that the number of samples
needed scales as (upto poly log factors) max; (i/ A%i)).

In our setting, a fundamental difference from the classical
best arm setting (Audibert & Bubeck, 2010) is the informa-
tion leakage across the arms, i.e, samples from one arm can
inform us about the expected value of other arms because
of the shared causal graph. We show that this information
leakage yields significant improvement both in theory and
practice. We derive the first gap dependent (gaps between
the expected reward at the target under different interven-
tions) bounds on the probability of error in terms of the
number of samples 7', cost budget B on the relative frac-
tion of times various arms are sampled and the divergences
between soft intervention distributions of the arms.

In our result (upto poly log factors) the factor ¢ is replaced
by the ’effective variance’ of the estimator for arm (4), i.e.
we obtain (with informal notation) max; o2/ A%i). o; can
be much smaller than /7 (the corresponding term in the re-
sults of (Audibert & Bubeck, 2010)). Our theoretical guar-
antees quantify the improvement obtained by leveraging in-
formation leakage, which has been empirically observed
in (Bottou et al., 2013). We discuss in more detail in Sec-
tions 3.3, about how these guarantees can be exponentially
better than the classical ones. We also derive gap dependent
simple regret bounds (Section 3.1).
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(Novel f-divergence measure for analyzing Importance
Sampling ) We provide a novel analysis of clipped impor-
tance sampling estimators, where pairwise f-divergences
between the distributions {P(V |pa(V'))}, for a carefully
chosen function f(.) (see Section E.1) act as the ‘effective
variance’ term in the analysis for the estimators (similar to
Bernstein’s bound (Bennett, 1962)).

(Extensive Empirical Validation) We demonstrate that
our algorithm outperforms the prior works (Lattimore et al.,
2016; Audibert & Bubeck, 2010) on the Flow Cytometry
data-set (Sachs et al., 2005) (in Section 4.1). We exhibit
an innovative application of our algorithm for model inter-
pretation of the Inception Deep Network (Szegedy et al.,
2015) for image classification (refer to Section 4.2).

Remark 1. The techniques in this paper can be directly
applied to more general settings like (i) the intervention
source (V') can be a collection of nodes (V) and the changes
affect the distribution P(V|pa(V)), where pa(V) is the
union of all the parents; (ii) the importance sampling can
be applied at a directed cut separating the sources and
the targets, provided the effect of the interventions, on the
nodes forming the cut can be estimated. Moreover, our
techniques can be applied without the complete knowledge
of the source distributions. We explain the variations in
more detail in Section B in the appendix.

1.2. Related Work

The problem lies at the intersection of causal inference and
best arm identification in bandits. There have been many
studies on the classical best arm identification in the bandit
literature, both in the fixed confidence regime (Kaufmann
et al., 2015; Gabillon et al., 2012) and in the fixed bud-
get setting (Audibert & Bubeck, 2010; Chen & Li, 2015;
Jamieson et al., 2014; Carpentier & Locatelli, 2016). It
was shown recently in (Carpentier & Locatelli, 2016) that
the results of (Audibert & Bubeck, 2010) are optimal. The
key difference from our work is that, in these models, there
is no information leakage among the arms.

There has been a lot of work (Mooijj et al., 2016; Hyttinen
et al., 2013; Eberhardt, 2008; Hauser & Biihlmann, 2012;
Spirtes et al., 2001; Pearl, 2009a; Loh & Biihlmann, 2014;
Shanmugam et al., 2015) on learning casual models from
data and/or experiments and using it to estimate causal
strength questions of the counterfactual nature. One no-
table work that partially inspired our work is (Bottou et al.,
2013) where the causal graph underlying a computational
advertising system (like in Bing, Google etc.) is known
and the primary interest is to find out how a change in the
system would affect some other variable.

At the intersection of causality and bandits, (Lattimore
et al., 2016) is perhaps most relevant to our setting. It stud-
ies the problem of identifying the best hard interventions

on multiple variables (among many), provided the distri-
bution of the parents of the target is known under those
interventions. Simple regret bound of order O(1/+/T) was
derived. We assume soft interventions that affect the mech-
anism between a ’source’ node and its parents, far away
from the target (similar to the case of computational ad-
vertising considered in (Bottou et al., 2013)). Further, we
derive the first gap dependent bounds (that can be exponen-
tially small in T'), generalizing the results of (Audibert &
Bubeck, 2010). Our formulation can handle general budget
constraints on the bandit arms and also recover the problem
independent bounds of (Lattimore et al., 2016) (orderwise).
Budget constraints in bandit settings have been explored
before in (Abernethy et al., 2015; Slivkins, 2013).

In the context of machine learning, importance sampling
has been mostly used to recondition input data to adhere
to conditions imposed by learning algorithms (Sugiyama
et al., 2007; Li et al., 2011; Zhang & Zhao, 2014).

2. Problem Setting

In this work, we consider the problem of identifying the
best soft intervention, i.e. the one that maximizes the ex-
pected value of a certain target variable. The problem set-
ting is best illustrated in Figure 2. Consider a causal graph
G(V, &) that specifies directed causal relationships between
the variables V. We provide a short introduction to causal
graphs in Section A (in the appendix) for the sake of com-
pleteness. Let Y be a target random variable which is
downstream in the graph G; the expected value of this target
variable is the quantity of interest. Consider another ran-
dom variable V' along with its parents pa(V'). We assume
that there are K possible soft interventions. Each soft in-
tervention is a distinct conditional distribution that dictates
the relationship pa(V) — V. During a soft intervention
k € [K] (K] = {0,1,..., K — 1}), the conditional distri-
bution of V' given its parents is set to P (V|pa(V')) and all
other relationships in the causal graph are unchanged.

It is assumed that the conditional distributions
Pr(V]pa(V)) and marginals for pa(V) for k € [K]
are known from past experiments or existing domain
knowledge. We only observe samples of Y,V and pa(V),
while the rest of the variables in the causal graph may be
unobserved under different interventions. For simplicity
we assume that the variables V, pa(V) are discrete while
the target variable Y may be continuous/discrete and has
bounded support in [0,1]. Further, we assume that the
various conditionals, i.e. P (V|pa(V)) are absolutely
continuous with respect to each other. In the case of
discrete distributions, the non-zero supports of these distri-
butions are identical. However, our algorithm can be easily
generalized for continuous distributions on V' and pa(V)
(as in our experiments in Section 4.1). In this setting, we
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are interested in the following natural question: Which of
the K soft interventions yield the highest expected value
of the target (E[Y]) and what is the misidentification
error that can be achieved with a finite total budget T' for
samples ?

Remark 2. Although we may know apriori the joint distri-
bution of pa(V') and V under different interventions, how
the change affects another variable Y in the causal graph
is unknown and must be learnt from samples. The task is to
transfer prior knowledge to identify the best intervention.

Bandit Setting: The K different soft interventions can
be thought of as the K arms of a bandit problem. Let
the reward of arm k be denoted by: uy = Ej [Y], where
E, [Y] is the expected value of Y under the soft interven-
tion when the conditional distribution of V' given its parents
pa(V) is set to P (V|pa(V)) (soft intervention k) while
keeping all other things in G unchanged. We assume that
there is only one best arm. Let £* be the arm that yields
the highest expected reward and p* be the value of the
corresponding expected reward i.e. k* = argmax, (g
and p* = pug-. Let the optimality gap of the k" arm be
defined as Ay = p* — pg. We shall see that the these
gaps {Ax};," and the relationship between distributions
{P1(V|pa(V))}f," are important parameters in the prob-
lem. Let A = mingp- Ag.

Fixed Budget for Samples: In this paper, we work under
the fixed budget setting of best arm identification (Audib-
ert & Bubeck, 2010). Let T} be the number of times the
K" intervention is used to obtain samples. We require that
Z,If:o T, =1T. Let v, = % be the fraction of times the
k" intervention is played.

Additional Cost Budget on Interventions: In the con-
text of causal discovery, some interventions require a lot
more resources or experimental effort than the others. We
find such examples in the context of online advertisement
design (Bottou et al., 2013). Therefore, we introduce two
variants of an additional cost constraint that influences the
choice of interventions. (i) Difficult arm budget (S1): Some
arms are deemed to be difficult. Let B C [K] be the
set of difficult arms. We require that the total fraction of
times the difficult arms are played does not exceed B i.e.
> resVk < B. (ii) Cost Budget (S2): This is the most
general budget setting that captures the variable costs of
sampling each arm (Slivkins, 2013). We assume that there
is a cost ¢, associated with sampling arm k. It is required
that the average cost of sampling does not exceed a cost
budget B .ie. ZkK:_Ol exvy < B.c = [eq, .., ¢x] along with
the total budget T' completely defines this budget setting. It
should be noted that S1 is a special case of S2.

We note that unless otherwise stated, we work with the
most general setting in S2. We state some of our results

in the setting S1 for clearer exposition.
Objectives: There are two main quantities of interest:

(Probability of Error): This is the probability of failing to
identify the best soft intervention (arm). Let k(T’, B) be the
arm that is predicted to be the best arm at the end of the ex-
periment. Then the probability of error e(T', B) (Audibert
& Bubeck, 2010; Carpentier & Locatelli, 2016) is given by,

e(T,B) =P (I%(T, B) # k:)

(Simple Regret): Another important quantity that has been
analyzed in the best arm identification setting is the simple
regret (Lattimore et al., 2016). The simple regret is given

by (T, B) = Y- AP (l%(T, B) = k:)

3. Our Main Results

In this section we provide our main theoretical contribu-
tions. In Section 3.2, we provide a successive rejects style
algorithm that leverages the information leakage via impor-
tance sampling. Then, we provide theoretical guarantees on
the probability of mis-identification (e(T, B)) and simple
regret (r(7T, B)) for our algorithm in Section 3.3. In order
to explain our algorithm and our results formally, we first
describe several key ideas in our algorithm and introduce
important definitions in Section 3.1.

3.1. Definitions

Quantifying Information Leakage: Observe that, u; =

ErY] = Ep [Y%} . By weighting samples
with the correct ratio of conditional probabilities Py (-) and
Py (), it is possible to use samples under intervention &’
to estimate the mean under intervention %. This is the basic
idea behind importance sampling which has been used in
similar settings (Lattimore et al., 2016; Bottou et al., 2013).
However, the variance of this estimator depends on the ratio
of Py () to P.(-). We use a specific f-divergence measure
between Py (-) and P} (-) to quantify the variance. This
f-divergence measure can be calculated analytically or es-
timated from empirical data (without access to full distri-
butions) using techniques like that of (Pérez-Cruz, 2008).

Definition 1. Let f(-) be a non-negative convex function
such that f(1) = 0. For two joint distributions px y (z,y)
and qx y (x,y) (and the associated conditionals), the con-
ditional f-divergence D¢ (px|y|lqx|y) is given by:

X|Y
Dy(pxivllax)y) = Eqx v [f (%X:y;)} :

Recall that P; is the conditional distribution of node V'
given the state of its parents pa(V'). Thus, Dy (P;||P;) is
the conditional f-divergence between the conditional dis-
tributions P; and P;. Now we define some log-divergences
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that are are crucial in the our analysis.
Definition 2. (M;; measure) Let f1(x) = vexp(z—1)—1.
We define the following log-divergence measure: M;; =
1+1log(1+ Dy, (Pi[[P;)), Vi, j € [K].

Aggregating Interventional Data: We describe an effi-
cient estimator of E;[Y] (Vk € [K]) that combines avail-
able samples from different arms. This estimator adap-
tively weights samples depending on the relative M;; mea-
sures, and also uses clipping to control variance by intro-
ducing bias. The estimator is given by (1).

Suppose we obtain 7; samples from arm ¢ € [K]. Let the
total number of samples from all arms be denoted by 7.
Further, let us index all the samples by s € {1,2,..,7}, and
T C {1,2,..,7} be the indices of all the samples collected
from arm k. Let X;(s) denotes the sample collected for
random variable X under intervention j, at time instant s.
Finally, let Z = ;¢ (k) 7j/Mk;. We denote the estimate

of ui by Y,j (e is an indicator of the level of confidence
desired). Our estimator is:

V3V >>
1{ B, (V;(s)lpa(V); (5))

In other words, Y,j is the weighted average of the clipped
samples, where the samples from arm j are weighted by
1/M;,; and clipped at 2log(2/€) M},;. The choice of € con-
trols the bias-variance tradeoff which we will adaptively
change in our algorithm. This adaptive clipping is crucial
in deriving gap dependent bounds?.

< 210g(2/6)Mkj} (D

3.2. Algorithm

Now, we describe our main algorithmic contribution - Al-
gorithm 1 and 2. Algorithm 1 starts by having all the K
arms under consideration and then proceeds in phases, pos-
sibly rejecting one or more arms at the end of each phase.

At every phase, Estimator (1) with a phase specific choice
of the e parameter (i.e. controlling bias variance trade-off),
is applied to all arms under consideration. Using a phase
specific threshold on these estimates, some arms are re-
jected at the end of each phase. A random arm among the
ones surviving at the end of all phases is declared to be the
optimal. We now describe the duration of various phases.

Recall the parameters 1" - Total sample budget available
and B - average cost budget constraint. Let n(T) =

2We note that the authors in (Lattimore et al., 2016) discuss the
possibility of a multi-phase approach, where clipper levels could
change across phases. However, they do not pursue this direction
(no specific algorithm or results) as their objective is to derive gap
independent bounds (minimax regret).

Mlog2 x log10v/T]. Let log(n) = S°i (1/i). We
will have an algorithm with n(7") phases numbered by
¢ = 1,2.,,n(T). Let 7(¢) be the total number of sam-
ples in phase ¢. We set 7(I) = T/(llog(n(T))) for | €
{1,..,n(T)}. Note that >, 7(l) = T. Let R be the set
of arms remaining to compete with the optimal arm at the
beginning of phase ¢ which is continuously updated.

Let 74 (¢) be the samples allocated to arm k in phase .
Let 7(£) be the vector consisting of entries {7y (£)}. The
vector of allocated samples, i.e. 7(£) is decided by Algo-
rithm 3. Intuitively, an arm that provides sufficient infor-
mation about all the remaining arms needs to be given more
budget than other less informative arms. This allocation de-
pends on the average budget constraints and the relative log
divergences between the arms (Definition 2). Algorithm 3
formalizes this intuition, and ensures that variance of the
worst estimator (of the form (1)) for the arms in R is as
good as possible (quantified in Theorem 4 and Lemma 4).

Algorithm 1 Successive Rejects with Importance Sam-
pling -vl (SRISvl) - Given total budget 7" and the cost
budget B (along with ¢;’s) picks the best arm.

1: SRIS(B, {Mg;},T)

2: R =[K].

3: Form the matrix A € R**¥ such that A; = 7}—

4: for £ = 1ton(T) do

5: 7€) = ALLOCATE (c,B,A,R,7(£)) (Algo-
rithm 3)

6: Use arm k, 74(¢) times and collect samples
(Y, V, pa(V)).

7. fork € Rdo

8: Let Yk be the estimator for arm & as in (1) calcu-

lated with {My;}, € = 27~ and the samples
obtained in Line 6.

9:  end for

10 Let Yy = arg maxycp Yi.

11: R=R-— {]{EER.YH>Yk+5/2l}.

12:  if [R| = 1 then

13: return: the arm in ‘R.
14:  end if
15: end for

16: return: A randomly chosen arm from R.

Remark 3. Note that Line 6 uses only the samples ac-
quired in that phase. Clearly, a natural extension is to mod-
ify the algorithm to re-use all the samples acquired prior to
that step. We give that variation in Algorithm 2. We prove
all our guarantees for Algorithm 1. We conjecture that the
second variation has tighter guarantees (dropping a multi-
plicative log factor) in the sample complexity requirements.

The inverse of the maximal objective of the LP in Algo-
rithm 3 acts as effective standard deviation uniformly for
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Algorithm 2 Successive Rejects with Importance Sam-
pling -v2 (SRISv2) - Given total budget 7" and the cost
budget B (along with c) picks the best arm.

1: Identical to Algorithm 1 except for Line 6 where all
samples acquired in all the phases till that Line is used.

all the estimators for the remaining arms in R. It is analo-
gous to the variance terms appearing in Bernstien-type con-
centration bounds (refer to Lemma 4 in the appendix).

Definition 3. The effective standard deviation for bud-

get B and arm set R C [K] is defined as c*(B,R) =
1/v*(B, R) from Algorithm 3 with input B and arm set R.

Algorithm 3 Allocate - Allocates a given budget 7 among
the arms to reduce variance.

1: ALLOCATE(c, B,A,R,7)

2: Solve the following LP:

1
K K
s.t. Zciz/i < Band Zyj =1, v, >0.
i=0 j=0

3: Assign7; = vi (B, R)T

3.3. Theoretical Guarantees

We state our main results as Theorem 1 and Theorem 2,
which provide guarantees on probability of error and sim-
ple regret respectively. Our results can be interpreted as a
natural generalization of the results in (Audibert & Bubeck,
2010), when there is information leakage among the arms.
This is the first gap dependent characterization.

Theorem 1. (Proved formally as Theorem 5) Let A =
]?;ikn Ayg. Let 0*(.) be the effective standard deviation as
*

in Definition 3. The probability of error for Algorithm I
satisfies:

o(T, B) < 2K 1og,(20/A) exp (—MbgTWT))> 3)

when the budget for the total number of samples is T and
A > 10/\/?. Here,

“4)

a*(BJQ*(Ak)))z
Ay

7 3
H= g;f}gfl()g2(10/Ak) (

and R*(Ag) = {s : log, (i%) > |log, (i—i)j} is the set
of arms whose distance from the optimal arm is roughly at
most twice that of arm k.

Comparison with the result in (Audibert & Bubeck,
2010): Let R(Ag) = {s : Ay < A}, ie. the set
of arms which are closer to the optimal than arm k. Let

H = max w. The result in (Audibert & Bubeck,
kF£kx* Ay
2010) can be stated as: The error in finding the optimal

arm is bounded as: e(T) < O <K2 exp (—é&f;))

Our work is analogous to the above result (upto poly log
factors) except that H appears instead of H. In Section D.1
(in the appendix), we demonstrate through simple exam-
ples that o* (B, R*(Ag)) can be significantly smaller than

R(Ay) (the corresponding term in e(T) above) even
when there are no average budget constraints. Moreover,
our results can be exponentially better in the presence of
average budget constraints (examples in Section D.1). Now
we present our bounds on simple regret in Theorem 2.

Theorem 2. (Proved formally as Theorem 5) Let o*(.) be
the effective standard deviation as in Definition 3. The sim-
ple regret of Algorithm 1 when the number of samples is T
satisfies:

10
< *
H(1B) < ot {Hk £k st Ay < 10/\/T} +
20 T
2K* Ay log, <> exp (_>
k;; Ay 2Hlog(n(T))
AR>10/VT

&)

7 log a,)°
Here, My = maxgua>a,) 7o (b miany o

R*(Ar) = {s: logy (42 ) = Llog, (42)]}.

Comparison with the result in (Lattimore et al., 2016):
In (Lattimore et al., 2016), the simple regret scales as
O(1/+/T) and does not adapt to the gaps. We provide gap
dependent bounds that can be exponentially better than that
of (Lattimore et al., 2016) (when A}’s are not too small and
the first term in (5) is zero). More over our bounds general-
ize to gap independent bounds that match O(1/+/T'). Fur-
ther details are provided in Section D.2 (in the appendix).

We defer the theoretical analysis to Section E. Theorem 1
and Theorem 2 are subparts of our main technical theorem
(Theorem 5), which is proved in Section E.5.

4. Empirical Validation

We empirically validate the performance of our algorithms
in two real data settings. In Section 4.1, we study the em-
pirical performance of our algorithm on the flow cytometry
data-set (Sachs et al., 2005). In Section 4.2, we apply our
algorithms for the purpose of model interpretability of the
Inception Deep Network (Szegedy et al., 2015) in the con-
text of image classification. In Section F (in the appendix)
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we include more experiments. In the appendix we empir-
ically show that our divergence metric is fundamental and
replacing it with other divergences is sub-optimal.

4.1. Flow Cytometry Data-Set

The flow cytometry data-set (Sachs et al., 2005) (exten-
sively used for validating causal inference algorithms) con-
sists of multi-variate measurements of protein interactions
in a single cell, under different experimental conditions
(soft interventions). Our experiments are aimed at identify-
ing the best intervention among many, given some ground
truth about the causal graph. For, this purpose we borrow
the causal graph from Fig. 5(c) in (Mooij & Heskes, 2013)
(shown in Fig. 3a) and consider it to be the ground truth.

Parametric linear models have been popularly used for
causal inference on this data-set (Meinshausen et al., 2016;
Cho et al., 2016). We fit a GLM gamma model (Hardin
et al., 2007) between the activation of each node and its par-
ents in Fig. 3a using the observational data. In Section F.2
(in the appendix) we provide further details showing that
the sampled distributions in the fitted model are extremely
close to the empirical distributions from the data. The soft
interventions signifying the arms are generated by chang-
ing the distribution of a source node pkc in the GLM. The
objective is to identify the intervention that yields the high-
est output at the target node erk® We provide empirical re-
sults for two sets of interventions at the source node. Both
these experiments have been performed with 15 arms each
representing different distributions at pkc.

Budget Restriction: The experiments are performed in the
budget setting S1, where all arms except arm 0 are deemed
to be difficult. We plot our results as a function of the total
samples T, while the fractional budget of the difficult arms
(B) is set to 1/\/T Therefore, we have Zk?ﬁo T, < VT.
This essentially belongs to the case when there is a lot of
data that can be acquired for a default arm while any new
change requires significant cost in acquiring samples.

Competing Algorithms: We test our algorithms on dif-
ferent problem parameters and compare with related prior
work (Audibert & Bubeck, 2010; Lattimore et al., 2016).
The algorithms compared are (i) SRISvI: Algorithm 1 in-
troduced in Section 3.2. The divergences, Dy, (P;||P;) are
estimated from sampled data using techniques from (Pérez-
Cruz, 2008); (ii))SRISv2: Algorithm 2 as detailed in Sec-
tion 3.2; (iii) SR: Successive Rejects Algorithm from (Au-
dibert & Bubeck, 2010) adapted to the budget setting. The
division of the total budget 7" into K — 1 phases is identical,

3The activations of the node erk have been scaled so that the
mean is less than one. Note that the marginal distribution still has
an exponential tail, and thus does not strictly adhere to our bound-
edness assumption on the target variable. However, the experi-
ments suggest that our algorithms still perform extremely well.

while the individual arm budgets are decided in each phase
according to the budget restrictions; (iv) CR: Algorithm 2
from (Lattimore et al., 2016). The optimization problem for
calculating the mixture parameter 7 is not efficiently solv-
able for general distributions and budget settings. There-
fore, the mixture proportions are set by Algorithm 3.

In these experiments, the budget restrictions imply that arm
0 can be pulled much more than the other arms. Intuitively
the divergences of the arms from arm 0 as well as the gap
A defines the hardness of identification. Fig. 3b represents
a difficult scenario where the divergences Mo > 400 for
many arms (large divergences imply low information leak-
age) and A = 0.01 (small A increases hardness). In Fig. 3¢
(easier scenario) the divergences My < 20 for most arms
while the gap is same as before. We see that SRISv2 out-
performs all the other algorithms by a large margin, espe-
cially in the low sample regime.

4.2. Interpretability of Inception Deep Network

In this section we use our algorithm for model interpre-
tation of the pre-trained Inception-v3 network (Szegedy
et al., 2015) for classifying images. Model Interpretation
essentially addresses: 'why does a learning model clas-
sify in a certain way?’, which is an important question for
complicated models like deep nets (Ribeiro et al., 2016).

When an RGB image is fed to Inception, it produces an
ordered sequence of 1000 labels (e.g ’drums’, "sunglasses’)
and generally the top-10 labels are an accurate description
of the objects in the image. To address interpretability, we
segment the image into a number of superpixels/segments
(using segmentation algorithms like SLIC (Achanta et al.,
2010)) and infer which superpixels encourage the neural
net to output a certain label (henceforth referred to as label-
I; e.g ’drum’) in top-k (e.g. k = 10), and to what extent.

Given a mixture distribution over the superpixels of an im-
age (Figure 4a), a few superpixels are randomly sampled
from the distribution with replacement. Then a new image
is generated where all other superpixels of the original im-
age are blurred out except the ones selected. This image
is then fed to Inception, and it is observed whether label-
I appears within the top-k labels. A mixture distribution
is said to be a good interpretation for label-I if there is a
high probability that label-I appears for an image generated
by this mixture distribution. To empirically test the good-
ness of a mixture distribution, we would generate (using
this mixture distribution) a number of random images, and
determine the fraction of images for which label-I appears;
a large fraction indicates that the mixture distribution is a
good interpretation of label-1.

Motivated by the above discussion, we generate a large
number (3200) of mixture distributions, with the goal of
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Figure 3. Performance of various algorithms on the cytometry data under different scenarios. The results are averaged over the course of
500 independent experiments. The total sample budget 7" is plotted on the x-axis. The budget for all arms other than arm 0 is constrained
to be less than /7. Here K = 15. The performance improvement is especially evident in the low sample regime. For, example in (b)
SRISv2 provides more than 65% improvement over CR and SR. It is significant in biological data where number of samples is generally
small. SR does not use information leakage while the static clipper in CR cannot adapt to high divergences like in (b).

finding the one that best interprets label-1. To highlight the
applicability of our algorithm, we allow images to be gen-
erated for only 200 of these mixture distributions; in other
words, most of the mixture distributions cannot be directly
tested. Nevertheless, we determine the best from among the
entire collection of mixture distributions (counterfactuals).

Specifically in our experiments, we consider the image in
Figure 4a, partition it into 43 superpixels, and generate im-
ages from mixture distributions by sampling 5 superpixels
(with replacement). We generate 3000 arm distributions
which lie in the 43-dimensional simplex but have sparse
support (sparsity of 10 in our examples). The support of
these distributions are randomly generated by techniques

. LY (c) Interpretation- TigerCat (d) Interpretation- Sunglasses
like markov random walk (encourages contiguity), random
choice, etc. as detailed in Section F.3 in the appendix. Figure 4. Interpretation for different top labels for the image in
We are only allowed to sample using a different set of 200 (a); Image courtesy (cat). The best mixture distribution generates
arms that are dense distributions chosen uniformly at ran- an image where the highlighted superpixels are most indicative of

dom from the 43-dimensional simplex. The distributions ~ alabel. For example, in (b) we see the drums highlighted, while in
are generated in a manner which is completely agnostic to (d) (a different mixture distribution), sunglasses are in the focus.

the image content. The total sample budget (7") is 2500.

Figure 4 shows images in which the segments are weighted dent error and simple regret bounds for identifying the best
in proportion to the optimal distribution (obtained by  softintervention at a source node i.e the one that maximizes
SRISv2) for the interpretation of three different labels. This the expected value of a downstream farget node. These
showcases the true counterfactual power of the algorithm,  bounds are a generalization of the classical best arm iden-
as the set of arms that can be optimized over are disjoint tification bounds (Audibert & Bubeck, 2010), when there
from the arms that can be sampled from. Moreover the  is information leakage among the arms. We test our algo-
sample budget is less than the number of arms. This is  rithm empirically on the flow cytometry data-set and also
an extreme special case of budget setting S2. We see that  use it for interpretability of Inception-v3 deep net.

our algorithm can generate meaningful interpretations for
all the labels with relatively less number of runs of Incep-
tion. Even sampling 10 times from each of the arms to be
optimized over would require 30, 000 runs of Inception for ~ This work is partially supported by NSF grants CNS-
a single image and label, while we use only 2500 runs by 1320175, CCF-1344364, 1407278, 1422549, 1618689,
leveraging information leakage. ARO grants WI911INF-15-1-0227, WO911NF-14-1-0258,
WO11NF-16-1-0377 and the US DoT supported D-STOP
Tier 1 University Transportation Center.
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