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Abstract
The popular Alternating Least Squares (ALS) al-
gorithm for tensor decomposition is efficient and
easy to implement, but often converges to poor
local optima—particularly when the weights of
the factors are non-uniform. We propose a mod-
ification of the ALS approach that is as effi-
cient as standard ALS, but provably recovers
the true factors with random initialization un-
der standard incoherence assumptions on the fac-
tors of the tensor. We demonstrate the signif-
icant practical superiority of our approach over
traditional ALS for a variety of tasks on syn-
thetic data—including tensor factorization on ex-
act, noisy and over-complete tensors, as well as
tensor completion—and for computing word em-
beddings from a third-order word tri-occurrence
tensor.

1. Introduction
From a theoretical perspective, tensor methods have be-
come an incredibly useful and versatile tool for learning
a wide array of popular models, including topic model-
ing (Anandkumar et al., 2012), mixtures of Gaussians (Ge
et al., 2015), community detection (Anandkumar et al.,
2014a), learning graphical models with guarantees via
the method of moments (Anandkumar et al., 2014b; Cha-
ganty & Liang, 2014) and reinforcement learning (Az-
izzadenesheli et al., 2016). The key property of ten-
sors that enables these applications is that tensors have a
unique decomposition (decomposition here refers to the
most commonly used CANDECOMP/PARAFAC or CP
decomposition), under mild conditions on the factor ma-
trices (Kruskal, 1977); for example, tensors have a unique
decomposition whenever the factor matrices are full rank.
As tensor methods naturally model three-way (or higher-
order) relationships, it is not too optimistic to hope that
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their practical utility will only increase, with the rise of
multi-modal measurements (e.g. measurements taken by
“Internet of Things” devices) and the numerous practical
applications involving high order dependencies, such as
those encountered in natural language processing or ge-
nomic settings. In fact, we are already seeing exciting
applications of tensor methods for analysis of high-order
spatiotemporal data (Yu & Liu, 2016), health data analysis
(Wang et al., 2015a) and bioinformatics (Colombo & Vlas-
sis, 2015). Nevertheless, to truly realize the practical im-
pact that the current theory of tensor methods portends, we
require better algorithms for computing decompositions—
practically efficient algorithms that are both capable of
scaling to large (and possibly sparse) tensors, and are ro-
bust to noise and deviations from the idealized “low-rank”
assumptions.

As tensor decomposition is NP-Hard in the worst-case
(Hillar & Lim, 2013; Håstad, 1990), one cannot hope for
algorithms which always produce the correct factorization.
Despite this worst-case impossibility, accurate decompo-
sitions can be efficiently computed in many practical set-
tings. Early work from the 1970’s (Leurgans et al., 1993;
Harshman, 1970) established a simple algorithm for com-
puting the tensor decomposition (in the noiseless setting)
provided that the factor matrices are full rank. This ap-
proach, based on an eigendecomposition, is very sensitive
to noise in the tensor (as we also show in our experiments),
and does not scale well for large, sparse tensors.

Since this early work, much progress has been made. Nev-
ertheless, many of the tensor decomposition algorithms
hitherto proposed and employed have strong provable suc-
cess guarantees but are computationally expensive (though
still polynomial time)—either requiring an expensive ini-
tialization phase, being unable to leverage the sparsity of
the input tensor, or not being efficiently parallelizable. On
the other hand, there are also approaches which are effi-
cient to implement, but which fail to compute an accurate
decomposition in many natural settings. The Alternating
Least Squares (ALS) algorithm (either with random initial-
ization or more complicated initializations) falls in this lat-
ter category and is, by far, the most widely employed de-
composition algorithm despite its often poor performance
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and propensity for getting stuck in local optima (which we
demonstrate on both synthetic data and real NLP data).

In this paper we propose an alternative decomposition algo-
rithm, “Orthogonalized Alternating Least Squares” (Orth-
ALS) which has strong theoretical guarantees, and seems to
significantly outperform the most commonly used existing
approaches in practice on both real and synthetic data, for a
number of tasks related to tensor decomposition. This algo-
rithm is a simple modification of the ALS algorithm to pe-
riodically “orthogonalize” the estimates of the factors. In-
tuitively, this periodic orthogonalization prevents multiple
recovered factors from “chasing after” the same true fac-
tors, allowing for the avoidance of local optima and more
rapid convergence to the true factors.

From the practical side, our algorithm enjoys all the bene-
fits of standard ALS, namely simplicity and computational
efficiency/scalability, particularly for very large yet sparse
tensors, and noise robustness. Additionally, the speed of
convergence and quality of the recovered factors are sub-
stantially better than standard ALS, even when ALS is ini-
tialized using the more expensive SVD initialization. As
we show, on synthetic low-rank tensors, our algorithm con-
sistently recovers the true factors, while standard ALS of-
ten falters in local optima and fails both in recovering the
true factors and in recovering an accurate low-rank approx-
imation to the original tensor. We also applied Orth-ALS to
a large 3-tensor of word co-occurrences to compute “word
embeddings”.1 The embedding produced by our Orth-ALS
algorithm is significantly better than that produced by stan-
dard ALS, as we quantify via a near 30% better perfor-
mance of the resulting word embeddings across standard
NLP datasets that test the ability of the embeddings to an-
swer basic analogy tasks (i.e. “puppy is to dog as kitten
is to ?”) and semantic word-similarity tasks. Together,
these results support our optimism that with better decom-
position algorithms, tensor methods will become an indis-
pensable, widely-used data analysis tool in the near future.

Beyond the practical benefits of Orth-ALS, we also con-
sider its theoretical properties. We show that Orth-ALS
provably recovers all factors under random initialization
for worst-case tensors as long as the tensor satisfies an in-
coherence property (which translates to the factors of the
tensors having small correlation with each other), which is
satisfied by random tensors with rank k = o(d0.25) where
d is the dimension of the tensor. This requirement that k =
o(d0.25) is significantly worse than the best known prov-
able recovery guarantees for polynomial-time algorithms

1Word embeddings are vector representations of words, which
can then be used as features for higher-level machine learning.
Word embeddings have rapidly become the backbone of many
downstream natural language processing tasks (see e.g. (Mikolov
et al., 2013b)).

on random tensors—the recent work Ma et al. (2016) suc-
ceeds even in the over-complete setting with k = o(d1.5).
Nevertheless, our experiments support our belief that this
shortcoming is more a property of our analysis than the al-
gorithm itself. Additionally, for many practical settings,
particularly natural language tasks, the rank of the recov-
ered tensor is typically significantly sublinear in the dimen-
sionality of the space, and the benefits of an extremely ef-
ficient and simple algorithm might outweigh limitations on
the required rank for provable recovery.

Finally, as a consequence of our analysis technique for
proving convergence of Orth-ALS, we also improve the
known guarantees for another popular tensor decomposi-
tion algorithm—the tensor power method. We show that
the tensor power method with random initialization con-
verges to one of the factors with small residual error for
rank k = o(d), where d is the dimension. We also show that
the convergence rate is quadratic in the dimension. Anand-
kumar et al. (2014c) had previously shown local conver-
gence of the tensor power method with a linear conver-
gence rate (and also showed global convergence via a SVD-
based initialization scheme, obtaining the first guarantees
for the tensor power method in non-orthogonal settings).
Our new results, particularly global convergence from ran-
dom initialization, provide some deeper insights into the
behavior of this popular algorithm.

The rest of the paper is organized as follows—Section 2
states the notation. In Section 3 we discuss related work.
Section 4 introduces Orth-ALS, and states the convergence
guarantees. We state our convergence results for the tensor
power method in Section 4.2. The experimental results, on
both synthetic data and the NLP tasks are discussed in Sec-
tion 5. Proof details have been deferred to the Appendix.

2. Notation
We state our algorithm and results for 3rd order tensors,
and believe the algorithm and analysis techniques should
extend easily to higher dimensions. Given a 3rd order ten-
sor T ∈ Rd×d×d our task is to decompose the tensor into its
factor matrices A,B and C: T =

∑
i∈[k] wiAi ⊗Bi ⊗Ci,

where Ai denotes the ith column of a matrix A. Here
wi ∈ R, Ai, Bi, Ci ∈ Rd and ⊗ denotes the tensor prod-
uct: if a, b, c ∈ Rd then a ⊗ b ⊗ c ∈ Rd×d×d and
(a⊗ b⊗ c)ijk = aibjck. We will refer to wi as the weight
of the factor {Ai, Bi, Ci}. This is also known as CP de-
composition. We refer to the dimension of the tensor by d
and denote its rank by k. We refer to different dimensions
of a tensor as the modes of the tensor.

We denote T(n) as the mode n matricization of the tensor,
which is the flattening of the tensor along the nth direction
obtained by stacking all the matrix slices together. For ex-
ample T(1) denotes flattening of a tensor T ∈ Rn×m×p to
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a (n ×mp) matrix. We denote the Khatri-Rao product of
two matrices A and B as (A�B)i = (Ai ⊗Bi)(1), where
(Ai ⊗ Bi)(1) denotes the flattening of the matrix Ai ⊗ Bi

into a row vector. For any tensor T and vectors a, b, c, we
also define T (a, b, c) =

∑
i,j,k Tijkaibjck. Throughout,

we say f(n) = Õ(g(n)) if f(n) = O(g(n)) up to poly-
logarithmic factors.

Though all algorithms in the paper extend to asymmetric
tensors, we prove convergence results under the symmet-
ric setting where A = B = C. Similar to other works
(Tang & Shah, 2015; Anandkumar et al., 2014c; Ma et al.,
2016), our guarantees depend on the incoherence of the
factor matrices (cmax), defined to be the maximum cor-
relation in absolute value between any two factors, i.e.
cmax = maxi 6=j |AT

i Aj |. This serves as a natural assump-
tion to simplify the problem as it is NP-Hard in the worst
case. Also, tensors with randomly drawn factors satisfy
cmax ≤ Õ(1/

√
d), and our results hold for such tensors.

3. Background and Related Work
We begin the section with a brief discussion of related work
on tensor decomposition. We then review the ALS algo-
rithm and the tensor power method and discuss their basic
properties. Our proposed tensor decomposition algorithm,
Orth-ALS, builds on these algorithms.

3.1. Related Work on Tensor Decomposition

Though it is not possible for us to do justice to the substan-
tial body of work on tensor decomposition, we will review
three families of algorithms which are distinct from alter-
nating minimization approaches such as ALS and the ten-
sor power method. Many algorithms have been proposed
for guaranteed decomposition of orthogonal tensors, we
refer the reader to Anandkumar et al. (2014b); Kolda &
Mayo (2011); Comon et al. (2009); Zhang & Golub (2001).
However, obtaining guaranteed recovery of non-orthogonal
tensors using algorithms for orthogonal tensors requires
converting the tensor into an orthogonal form (known as
whitening) which is ill conditioned in high dimensions (Le
et al., 2011; Souloumiac, 2009), and is computationally
the most expensive step (Huang et al., 2013). Another
very interesting line of work on tensor decompositions is
to use simultaneous diagonalization and higher order SVD
(Colombo & Vlassis, 2016; Kuleshov et al., 2015; De Lath-
auwer, 2006) but these are not as computationally efficient
as alternating minimization2. Recently, there has been in-

2De Lathauwer (2006) prove unique recovery under very gen-
eral conditions, but their algorithm is quite complex and requires
solving a linear system of size O(d4), which is prohibitive for
large tensors. We ran the simultaneous diagonalization algorithm
of Kuleshov et al. (2015) on a dimension 100, rank 30 tensor; and
the algorithm needed around 30 minutes to run, whereas Orth-
ALS converges in less than 5 seconds.

triguing work on provably decomposing random tensors
using the sum-of-squares approach (Ma et al., 2016; Hop-
kins et al., 2016; Tang & Shah, 2015; Ge & Ma, 2015).
Ma et al. (2016) show that a sum-of-squares based relax-
ation can decompose highly overcomplete random tensors
of rank up to o(d1.5). Though these results establish the
polynomial learnability of the problem, they are unfortu-
nately not practical.

Very recently, there has been exciting work on scalable ten-
sor decomposition algorithms using ideas such as sketch-
ing (Song et al., 2016; Wang et al., 2015b) and contraction
of tensor problems to matrix problems (Shah et al., 2015).
Also worth noting are recent approaches to speedup ALS
via sampling and randomized least squares (Battaglino
et al., 2017; Cheng et al., 2016; Papalexakis et al., 2012).

3.2. Alternating Least Squares (ALS)

ALS is the most widely used algorithm for tensor decompo-
sition and has been described as the “workhorse” for tensor
decomposition (Kolda & Bader, 2009). The algorithm is
conceptually very simple: if the goal is to recover a rank-k
tensor, ALS maintains a rank-k decomposition specified by
three sets of d × k dimensional matrices {Â, B̂, Ĉ} corre-
sponding to the three modes of the tensor. ALS will it-
eratively fix two of the three modes, say Â and B̂, and
then update Ĉ by solving a least-squared regression prob-
lem to find the best approximation to the underlying tensor
T having factors Â and B̂ in the first two modes, namely
Ĉnew = argminC′ ‖T−Â⊗B̂⊗Ĉ ′‖2.ALS will then con-
tinue to iteratively fix two of the three modes, and update
the other mode via solving the associated least-squares re-
gression problem. These updates continue until some stop-
ping condition is satisfied—typically when the squared er-
ror of the approximation is no longer decreasing, or when a
fixed number of iterations have elapsed. The factors used in
ALS are either chosen uniformly at random, or via a more
expensive initialization scheme such as SVD based initial-
ization (Anandkumar et al., 2014c). In the SVD based
scheme, the factors are initialized to be the singular vec-
tors of a random projection of the tensor onto a matrix.

The main advantages of the ALS approach, which have led
to its widespread use in practice are its conceptual simplic-
ity, noise robustness and computational efficiency given its
graceful handling of sparse tensors and ease of paralleliza-
tion. There are several publicly available optimized pack-
ages implementing ALS, such as Kossaifi et al. (2016);
Vervliet et al.; Bader et al. (2012); Bader & Kolda (2007);
Smith & Karypis; Huang et al. (2014); Kang et al. (2012).

Despite the advantages, ALS does not have any global
convergence guarantees and can get stuck in local optima
(Comon et al., 2009; Kolda & Bader, 2009), even under
very realistic settings. For example, consider a setting
where the weights wi for the factors {Ai, Bi, Ci} decay
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according to a power-law, hence the first few factors have
much larger weight than the others. As we show in the ex-
periments (see Fig. 2), ALS fails to recover the low-weight
factors. Intuitively, this is because multiple recovered fac-
tors will be chasing after the same high weight factor, lead-
ing to a bad local optima.

3.3. Tensor Power Method

The tensor power method is a special case of ALS that only
computes a rank-1 approximation. The procedure is then
repeated multiple times to recover different factors. The
factors recovered in different iterations of the algorithm are
then clustered to determine the set of unique factors. Dif-
ferent initialization strategies have been proposed for the
tensor power method. Anandkumar et al. (2014c) showed
that the tensor power method converges locally (i.e. for
a suitably chosen initialization) for random tensors with
rank o(d1.5). They also showed that a SVD based ini-
tialization strategy gives good starting points and used this
to prove global convergence for random tensors with rank
O(d). However, the SVD based initialization strategy can
be computationally expensive, and our experiments suggest
that even SVD initialization fails in the setting where the
weights decay according to a power-law (see Fig. 2).

In this work, we prove global convergence guarantees with
random initializations for the tensor power method for ran-
dom and worst-case incoherent tensors. Our results also
demonstrate how, with random initialization, the tensor
power method converges to the factor having the largest
product of weight times the correlation of the factor with
the random initialization vector. This explains the difficulty
of using random initialization to recover factors with small
weight. For example, if one factor has weight less than a
1/c fraction of the weight of, say, the heaviest k/2 factors,
then with high probability we would require at least kΘ(c2)

random initializations to recover this factor. This is because
the correlation between random vectors in high dimensions
is approximately distributed as a Normal random variable
and if k/2+1 samples are drawn from the standard Normal
distribution, the probability that one particular sample is at
least a factor of c larger than the other k/2 other samples
scales as roughly k−Θ(c2).

4. The Algorithm: Orthogonalized
Alternating Least Squares (Orth-ALS)

In this section we introduce Orth-ALS, which combines
the computational benefits of standard ALS and the prov-
able recovery of the tensor power method, while avoiding
the difficulties faced by both when factors have different
weights. Orth-ALS is a simple modification of standard
ALS that adds an orthogonalization step before each set of
ALS steps. We describe the algorithm below. Note that
steps 4-6 are just the solution to the least squares problem

expressed in compact tensor notation, for instance step 4
can be equivalently stated as X = argminC′ ‖T − Â ⊗
B̂ ⊗ Ĉ ′‖2. Similarly, step 9 is the least squares estimate of
the weight wi of each rank-1 component Âi ⊗ B̂i ⊗ Ĉi.

Algorithm 1 Orthogonalized ALS (Orth-ALS)

Input: Tensor T ∈ Rd×d×d, number of iterations N .

1: Initialize each column of Â, B̂ and Ĉ ∈ Rd×k uni-
formly from the unit sphere

2: for t = 1 : N do
3: Find QR decomposition of Â, set Â = Q. Orthogo-

nalize B̂ and Ĉ analogously.
4: X = T(1)(Ĉ � B̂)

5: Y = T(2)(Ĉ � Â)
6: Z = T(3)(B̂ � Â)
7: Normalize X,Y, Z and store results in Â, B̂, Ĉ
8: end for
9: Estimate weights ŵi = T (Âi, B̂i, Ĉi),∀ i ∈ [k].

10: return Â, B̂, Ĉ, ŵ

To get some intuition for why the orthogonalization makes
sense, let us consider the more intuitive matrix factorization
problem, where the goal is to compute the eigenvectors of
a matrix. Subspace iteration is a straightforward extension
of the matrix power method to recover all eigenvectors at
once. In subspace iteration, the matrix of eigenvector es-
timates is orthogonalized before each power method step
(by projecting the second eigenvector estimate orthogonal
to the first one and so on), because otherwise all the vectors
would converge to the dominant eigenvector. For the case
of tensors, the vectors would not all necessarily converge
to the dominant factor if the initialization is good, but with
high probability a random initialization would drive many
factors towards the larger weight factors. The orthogonal-
ization step is a natural modification which forces the esti-
mates to converge to different factors, even if some factors
are much larger than the others. It is worth stressing that
the orthogonalization step does not force the final recov-
ered factors to be orthogonal (because the ALS step follows
the orthogonalization step) and in general the factors out-
put will not be orthogonal (which is essential for accurately
recovering the factors).

From a computational perspective, adding the orthogonal-
ization step does not add to the computational cost as the
least squares updates in step 4-6 of Algorithm 1 involve an
extra pseudoinverse term for standard ALS, which evalu-
ates to identity for Orth-ALS and does not have to be com-
puted. The cost of orthogonalization is O(k2d), while the
cost of computing the pseudoinverse is also O(k2d). We
also observe significant speedups in terms of the number of
iterations required for convergence for Orth-ALS as com-
pared to standard ALS in our simulations on random ten-
sors (see the experiments in Section 5).
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Variants of Orthogonalized ALS. Several other modifi-
cations to the simple orthogonalization step also seem nat-
ural. Particularly for low-dimensional settings, in practice
we found that it is useful to carry out orthogonalization
for a few steps and then continue with standard ALS up-
dates until convergence (we call this variant Hybrid-ALS).
Hybrid-ALS also gracefully reverts to standard ALS in set-
tings where the factors are highly correlated and orthogo-
nalization is not helpful.

4.1. Performance Guarantees

We now state the formal guarantees on the performance of
Orthogonalized ALS. The specific variant of Orthogonal-
ized ALS that our theorems apply to is a slight modification
of Algorithm 1, and differs in that there is a periodic (every
log k steps) re-randomization of the factors for which our
analysis has not yet guaranteed convergence. In our prac-
tical implementations, we observe that all factors seem to
converge within this first log k steps, and hence the subse-
quent re-randomization is unnecessary.

Theorem 1. Consider a d-dimensional rank k tensor T =∑k
i=1 wiAi ⊗ Ai ⊗ Ai. Let cmax = maxi 6=j |AT

i Aj | be
the incoherence between the true factors and γ = wmax

wmin

be the ratio of the largest and smallest weight. Assume
γcmax ≤ o(k−2), and the estimates of the factors are ini-
tialized randomly from the unit sphere. Provided that, at
the i(log k + log log d)th step of the algorithm the esti-
mates for all but the first i factors are re-randomized, then
with high probability the orthogonalized ALS updates con-
verge to the true factors in O(k(log k + log log d)) steps,
and the error at convergence satisfies (up to relabelling)
‖ Ai − Âi ‖22≤ O(γkmax{c2max, 1/d

2}) and |1 − ŵi

wi
| ≤

O(max{cmax, 1/d}), for all i.

Theorem 1 immediately gives convergence guarantees for
random low rank tensors. For random d dimensional ten-
sors, cmax = O(1/

√
d); therefore Orth-ALS converges

globally with random initialization whenever k = o(d0.25).
If the tensor has rank much smaller than the dimension,
then our analysis can tolerate significantly higher correla-
tion between the factors. In the Appendix, we also prove
Theorem 1 for the special and easy case of orthogonal ten-
sors, which nevertheless highlights the key proof ideas.

4.2. New Guarantees for the Tensor Power Method

As a consequence of our analysis of the orthogonalized
ALS algorithm, we also prove new guarantees on the ten-
sor power method. As these may be of independent interest
because of the wide use of the tensor power method, we
summarize them in this section. We show a quadratic rate
of convergence (in O(log log d) steps) with random initial-
ization for random tensors having rank k = o(d). This
contrasts with the analysis of Anandkumar et al. (2014c)
who showed a linear rate of convergence (O(log d) steps)

for random tensors, provided an SVD based initialization
is employed.

Theorem 2. Consider a d-dimensional rank k tensor T =∑k
i=1 wiAi ⊗ Ai ⊗ Ai with the factors Ai sampled uni-

formly from the d-dimensional sphere. Define γ = wmax

wmin

to be the ratio of the largest and smallest weight. As-
sume k ≤ o(d) and γ ≤ polylog(d). If the initialization
x0 ∈ Rd is chosen uniformly from the unit sphere, then with
high probability the tensor power method updates converge
to one of the true factors (say A1) in O(log log d) steps,
and the error at convergence satisfies ‖ A1 − Â1 ‖2 ≤
Õ(1/

√
d). Also, the estimate of the weight ŵ1 satisfies

|1− ŵ1

w1
| ≤ Õ(1/

√
d).

Theorem 2 provides guarantees for random tensors, but it
is natural to ask if there are deterministic conditions on the
tensors which guarantee global convergence of the tensor
power method. Our analysis also allows us to obtain a clean
characterization for global convergence of the tensor power
method updates for worst-case tensors in terms of the inco-
herence of the factor matrix—

Theorem 3. Consider a d-dimensional rank k tensor T =∑k
i=1 wiAi ⊗ Ai ⊗ Ai. Let cmax = maxi6=j |AT

i Aj |
and γ = wmax

wmin
be the ratio of the largest and small-

est weight, and assume γcmax ≤ o(k−2). If the ini-
tialization x0 ∈ Rd is chosen uniformly from the unit
sphere, then with high probability the tensor power method
updates converge to one of the true factors (say A1) in
O(log k + log log d) steps, and the error at convergence
satisfies ‖ A1 − Â1 ‖22 ≤ O(γkmax{c2max, 1/d

2}) and
|1− ŵ1

w1
| ≤ O(max{cmax, 1/d}).

5. Experiments
We compare the performance of Orth-ALS, standard ALS
(with random and SVD initialization), the tensor power
method, and the classical eigendecomposition approach,
through experiments on low rank tensor recovery in a few
different parameter regimes, on a overcomplete tensor de-
composition task and a tensor completion task. We also
compare the factorization of Orth-ALS and standard ALS
on a large real-world tensor of word tri-occurrence based
on the 1.5 billion word English Wikipedia corpus.3

5.1. Experiments on Random Tensors

Recovering low rank tensors: We explore the abilities
of Orth-ALS, standard ALS, and the tensor power method
(TPM), to recover a low rank (rank k) tensor that has been
constructed by independently drawing each of the k factors
independently and uniformly at random from the d dimen-
sional unit spherical shell. We consider several different

3MATLAB, Python and C code for Orth-ALS and Hybrid-
ALS is available at http://web.stanford.edu/
˜vsharan/orth-als.html

http://web.stanford.edu/~vsharan/orth-als.html
http://web.stanford.edu/~vsharan/orth-als.html
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combinations of the dimension, d, and rank, k. We also
consider both the setting where all of the factors are equally
weighted, as well as the practically relevant setting where
the factor weights decay geometrically, and consider the
setting where independent Gaussian noise has been added
to the low-rank tensor.

In addition to random initialization for standard ALS and
the TPM, we also explore SVD based initialization (Anand-
kumar et al., 2014c) where the factors are initialized via
SVD of a projection of the tensor onto a matrix. We also
test the classical technique for tensor decomposition via si-
multaneous diagonalization (Leurgans et al., 1993; Harsh-
man, 1970) (also known as Jennrich’s algorithm, we refer
to it as Sim-Diag), which first performs two random pro-
jections of the tensor, and then recovers the factors by an
eigenvalue decomposition of the projected matrices. This
gives guaranteed recovery when the tensors are noiseless
and factors are linearly independent, but is extremely un-
stable to perturbations.

We evaluate the performance in two respects: 1) the ability
of the algorithms to recover a low-rank tensor that is close
to the input tensor, and 2) the ability of the algorithms to
recover accurate approximations of many of the true fac-
tors. Fig. 1 depicts the performance via the first metric.
We evaluate the performance in terms of the discrepancy
between the input low-rank tensor, and the low-rank tensor
recovered by the algorithms, quantified via the ratio of the
Frobenius norm of the residual, to the Frobenius norm of
the actual tensor: ‖T−T̂‖F

‖T‖F
, where T̂ is the recovered tensor.

Since the true tensor has rank k, the inability of an algo-
rithm to drive this error to zero indicates the presence of
local optima. Fig. 1 depicts the performance of Orth-ALS,
standard ALS with random initialization and the hybrid al-
gorithm that performs Orth-ALS for the first five iterations
before reverting to standard ALS (Hybrid-ALS). Tests are
conducted in both the setting where factor weights are uni-
form, as well as a geometric spacing, where the ratio of the
largest factor weight to the smallest is 100. Fig. 1 shows
that Hybrid ALS and Orth-ALS have much faster conver-
gence and find a significantly better fit than standard ALS.

Fig. 2 quantifies the performance of the algorithms in terms
of the number of the original factors that the algorithms
accurately recover. We use standard ALS, Orth-ALS (Al-
gorithm 1), Hybrid-ALS, TPM with random initialization
(TPM), ALS with SVD initialization (ALS-SVD), TPM
with SVD initialization (TPM-SVD) and the simultaneous
diagonalization approach (Sim-Diag). We run TPM and
SVD-TPM with 100 different initializations and find a rank
k = 30 decomposition for ALS, ALS-SVD, Orth-ALS,
Hybrid-ALS and Sim-Diag. We repeat the experiment (by
sampling a new tensor) 10 times. We perform this evalu-
ation in both the setting where we receive an actual low-

rank tensor as input, as well as the setting where each en-
try Tijk of the low-rank tensor has been perturbed by in-
dependent Gaussian noise of standard deviation equal to
0.05Tijk. We can see that Orth-ALS and Hybrid-ALS per-
form significantly better than the other algorithms and are
able to recover all factors in the noiseless case even when
the weights are highly skewed. Note that the reason the
Hybrid-ALS and Orth-ALS fail to recover all factors in the
noisy case when the weights are highly skewed is that the
magnitude of the noise essentially swamps the contribution
from the smallest weight factors.

Recovering over-complete tensors: Overcomplete ten-
sors are tensors with rank higher than the dimension, and
have found numerous theoretical applications in learning
latent variable models (Anandkumar et al., 2015). Even
though orthogonalization cannot be directly applied to the
setting where the rank is more than the dimension (as the
factors can no longer be orthogonalized), we explore a de-
flation based approach in this setting. Given a tensor T with
dimension d = 50 and rank r > d, we find a rank d decom-
position T1 of T , subtract T1 from T , and then compute a
rank d decomposition of T1 to recover the next set of d fac-
tors. We repeat this process to recover subsequent factors.
After every set of d factors has been estimated, we also re-
fine the factor estimates of all factors estimated so far by
running an additional ALS step using the current estimates
of the extracted factors as the initialization. Fig. 3a plots
the number of factors recovered when this deflation based
approach is applied to a dimension d = 50 tensor with a
mild power low distribution on weights. We can see that
Hybrid-ALS is successful at recovering tensors even in the
overcomplete setup, and gives an improvement over ALS.

Tensor completion: We also test the utility of orthogonal-
ization on a tensor completion task, where the goal is to
recover a large missing fraction of the entries. Fig. 3b sug-
gests Hybrid-ALS gives considerable improvements over
standard ALS. Further examining the utility of orthogo-
nalization in this important setting, in theory and practice,
would be an interesting direction.

5.2. Learning Word Embeddings via Tensor
Factorization

A word embedding is a vector representation of words
which preserves some of the syntactic and semantic rela-
tionships in the language. Current methods for learning
word embeddings implicitly (Mikolov et al., 2013b; Levy
& Goldberg, 2014) or explicitly (Pennington et al., 2014)
factorize some matrix derived from the matrix of word co-
occurrences M , where Mij denotes how often word i ap-
pears with word j. We explore tensor methods for learning
word embeddings, and contrast the performance of stan-
dard ALS and Orthogonalized ALS on standard tasks.
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Figure 1. Plot of the normalized discrepancy between the recovered rank k tensor T̂ and the true tensor T : ‖T−T̂‖F
‖T‖F

, as a function of the
iteration. In all settings, the Orth-ALS and the hybrid algorithm drive this discrepancy nearly to zero, with the performance of Orth-ALS
improving for the higher dimensional cases, whereas standard ALS algorithm has slower convergence and gets stuck in bad local optima.
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(b) Noisy case, ratio of weights equals wmax
wmin

Figure 2. Average number of factors recovered by different algorithms for different values of wmax
wmin

, the ratio of the maximum factor
weight to minimum factor weight (with the weights spaced geometrically), along with error bars for the standard deviation in the number
of factors recovered, across independent trials. The true rank k = 30, and the dimension d = 100. We say a factor {Ai, Bi, Ci} of the
tensor T is successfully recovered if there exists at least one recovered factor {Âj , B̂j , Ĉj} with correlation at least 0.9 in all modes.
Orth-ALS and Hybrid-ALS recover all factors in almost all settings, whereas ALS and the tensor power method struggle when the
weights are skewed, even with the more expensive SVD based initialization.
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(b) Average error on the missing entries for tensor
completion where each entry is sampled with proba-
bility p, on a 100 different runs with each setting of p.
The tensor has dimension d = 50 and rank k = 10.

Figure 3. Experiments on overcomplete tensors and tensor completion. Even though our theoretical guarantees do not apply to these
settings, we see that orthogonalization leads to significantly better performance over standard ALS.
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Methodology. We used the English Wikipedia as our cor-
pus, with 1.5 billion words. We constructed a word co-
occurrence tensor T of the 10,000 most frequent words,
where the entry Tijk denotes the number of times the words
i, j and k appear in a sliding window of length w across the
corpus. We consider two different window lengths, w = 3
and w = 5. Before factoring the tensor, we apply the
non-linear element-wise scaling f(x) = log(1 + x) to the
tensor. This scaling is known to perform well in practice
for co-occurrence matrices (Pennington et al., 2014), and
makes some intuitive sense in light of the Zipfian distribu-
tion of word frequencies. Following the application of this
element-wise nonlinearity, we recover a rank 100 approxi-
mation of the tensor using Orth-ALS or ALS.

We concatenate the (three) recovered factor matrices into
one matrix and normalize the rows. The ith row of this
matrix is then the embedding for the ith word. We test the
quality of these embeddings on two tasks aimed at measur-
ing the syntactic and semantic structure captured by these
word embeddings.

We also evaluated the performance of matrix SVD based
methods on the task. For this, we built the co-occurrence
matrix M with a sliding window of length w over the cor-
pus. We applied the same non-linear element-wise scaling
and performed a rank 100 SVD, and set the word embed-
dings to be the singular vectors after row normalization.

It is worth highlighting some implementation details for
our experiments, as they indicate the practical efficiency
and scalability inherited by Orth-ALS from standard ALS.
Our experiments were run on a cluster with 8 cores and
48 GB of RAM memory per core. Most of the runtime
was spent in reading the tensor, the runtime for Orth-ALS
was around 80 minutes, with 60 minutes spent in reading
the tensor (the runtime for standard ALS was around 100
minutes because it took longer to converge). Since storing
a dense representation of the 10,000×10,000×10,000 ten-
sor is too expensive, we use an optimized ALS solver for
sparse tensors (Smith & Karypis; 2015) which also has an
efficient parallel implementation.

Evaluation: Similarity and Analogy Tasks. We eval-
uated the quality of the recovered word embeddings pro-
duced by the various methods via their performance on
two different NLP tasks for which standard, human-labeled
data exists: estimating the similarity between a pair of
words, and completing word analogies.

The word similarity tasks (Bruni et al., 2012; Finkelstein
et al., 2001) contain word pairs along with human assigned
similarity scores, and the objective is to maximize the cor-
relation between the similarity in the embeddings of the
two words (according to a similarity metric such as the dot
product) and human judged similarity.

Algorithm Similarity tasks Analogy tasks

Standard ALS, w = 3 0.50 30.92%
Standard ALS, w = 5 0.50 37.38%

Orth-ALS, w = 3 0.59 40.00%
Orth-ALS, w = 5 0.60 46.37%

Matrix methods, w = 3 0.68 53.29%
Matrix methods, w = 5 0.67 57.40%

Table 1. Results for word analogy and word similarity tasks for
different window lengths w over which the co-occurrences are
counted. The embeddings recovered by Orth-ALS are signif-
icantly better than those recovered by standard ALS. Despite
this, embeddings derived from word co-occurrences using ma-
trix SVD still outperform the tensor embeddings, and we are un-
sure whether this is due to the relative sparsity of the tensor, sub-
optimal element-wise scaling (i.e. the f(x) = log(1+x) function
applied to the counts), or something more fundamental.

The word analogy tasks (Mikolov et al., 2013a;c) present
questions of the form “a is to a∗ as b is to ?” (e.g. “Paris
is to France as Rome is to ?”). We find the answer to “a
is to a∗ as b is to b∗” by finding the word whose embedding
is the closest to wa∗ −wa +wb in cosine similarity, where
wa denotes the embedding of the word a.

Results. The performances are summarized in the Table
1. The use of Orth-ALS rather than standard ALS leads to
significant improvement in the quality of the embeddings
as judged by the similarity and analogy tasks. However,
the matrix SVD method still outperforms the tensor based
methods. We believe that it is possible that better tensor
based approaches (e.g. using better renormalization, addi-
tional data, or some other tensor rather than the symmet-
ric tri-occurrence tensor) or a combination of tensor and
matrix based methods can actually improve the quality of
word embeddings, and is an interesting research direction.
Alternatively, it is possible that natural language does not
contain sufficiently rich higher-order dependencies among
words that appear close together, beyond the co-occurrence
structure, to truly leverage the power of tensor methods.
Or, perhaps, the two tasks we evaluated on—similarity and
analogy tasks—do not require this higher order. In any
case, investigating these possibilities seems worthwhile.

6. Conclusion
Our results suggest the theoretical and practical benefits of
Orthogonalized ALS, versus standard ALS. An interesting
direction for future work would be to more thoroughly ex-
amine the practical and theoretical utility of orthogonal-
ization for other tensor-related tasks, such as tensor com-
pletion. Additionally, its seems worthwhile to investigate
Orthogonalized ALS or Hybrid ALS in more application-
specific domains, such as natural language processing.
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