Support Recovery of Hard Thresholding Pursuit

A. Technical Lemmas

The following lemma is a characterization of the co-coercivity of the objective function F'(x). A similar result was obtained
in Nguyen et al. (2014, Corollary 8) but we present a refined analysis which is essential for our purpose.

Lemma 9. For a given support set §), assume that the continuous function F(x) is Mo -RSS and is my-RSC for some
sparsity level K. Then, for all vectors w and w' with |supp (w — w') U Q| < K, we have

[VaF(w') — VoF(w)||* < 2Mg(F(w') — F(w) — (VF(w),w' —w)).

Proof. We define an auxiliary function

For all vectors « and y, we have
HVG(:B) - VG(y)H = HVF(:B) - VF(?J)” < Mlsupp(mfy)l HiL‘ - yH )

which is equivalent to

G(x) ~ G(y) — (VG(y).x —y) < " |z —y’, @
where 7 = [supp (« — y)|. On the other hand, due to the RSC property of F'(x), we obtain
G(w) — G(w) = F(@) - Fw) — (VF(w),@ - w) > 2= g ) >,

provided that |supp (z — w)| < K. For the given support set 2, we pick ¢ = w’ — ﬁVQG('LUI). Clearly, for such a

choice of @, we have supp (z — w) = supp (w — w’) U Q2. Hence, by assuming that [supp (w — w’) U €] is not larger
than K, we get

1
Glw) <G <w’ - VQG(w’)>
Mgy
M ’ / 1 / 1 "2
< Gw") + (VG(w"), — VaGw') ) + —— ||[VaG(w')]|
o 2Mqy
1 2
=Gw') — —— |[VaGw")|".
(W) = 53— VoG]
Now expanding VoG (w') and rearranging the terms give the desired result. O

Lemma 10 (Lemma 1 in Wang et al. (2016)). Let w and z be two distinct vectors and let W = supp (u) Nsupp (z). Also,
let U be the support set of the top r (in magnitude) elements in u. Then, the following holds for all r > 1:

R

Lemma 11. Suppose that F(x) is mg-restricted strongly convex and M -restricted smooth for some sparsity level K >
0. Then for all > 0, all vectors z, ' € R and for any Hessian matrix H of F(x), we have

(e, (I —nH)z")| < pllz| -], i |supp (&) Usupp (x')| < K,
and
(L —nH)z)s|| < pll, if|SUsupp(z)| <K,
where

p=max{ [pmx — 1|, [nMg — 1| }.
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Proof. Since H is a Hessian matrix, we always have a decomposition H = AT A for some matrix A. Denote T =
supp () Usupp (y). By simple algebra, we have

|<:I}, (I - UH)$/>| = |<£L‘, wl> -n <A:I}, A:I}/>|
2L |(2,2') —n(Ara, Ara)|
= ‘<:c, (I — nA;AT)m’>’

< |1-natAz|- el - 12|
G .
< max {[pmx — 1|, [pMxc = 1} - 2] - [l2'] .

Here, (; follows from the fact that supp () Usupp (y) = T and (> holds because the RSC and RSS properties imply that
the singular values of any Hessian matrix restricted on an K -sparse support set are lower and upper bounded by m g and
M, respectively.

For some index set S subject to |S Usupp (z)| < K, leta’ = ((I — nH)x)s. We immediately obtain
2
'] = (@', (I —nH)z) < p =’ - 2|,
indicating
(I = nH)x)s|| < plla|.
|

Lemma 12. Suppose that F(x) is m i-restricted strongly convex and M -restricted smooth for some sparsity level K >
0. For all > 0, all vectors x, ' € R? and support set T such that |supp (x — ') UT| < K, the following holds:

(@ —a' —nVF(x) +nVEF (@) < plz— 2|
where p is given in Lemma 11.

Proof. In fact, for any two vectors « and x’, there always exists a quantity 6 € [0, 1], such that
VF(z) - VF(z') = V*F (0= + (1 - 0)2') (x — x).
Let H = V?F(0z + (1 — 6)x’). We write
(@ =2’ =nVF (@) +nVF @) = (@ —a" —nH(x —a')r|

= (T = nH)(z — ='))7||
<plz—a,

where the last inequality applies Lemma 11. O

Lemma 13. Suppose that x is a k-sparse vector and let b = & — nV F(x). Let T be the support set that contains the k
largest absolute values of b. Assume that the function F(x) is May-restricted smooth, then we have the following:
1 —nMay

by — z|%.
2 |or — ||

F(br) < F(x) —
Proof. The RSS condition implies that

F(br) — F(x)

IN

M.
(VF(x).br — @) + =~ ||lbr — x|

1 o Moy 2
by — 2R by —
3 Ibr =@l + =2 by — o

)
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where the second inequality is due to the fact that

[br — b|* = |jbr — 2 + nV ()|
<z —x+9VF()|?
= |nVF()|?,

implying

2 (VF(z),by —x) < — |[br — |

Lemma 14. Suppose that F'(x) is my-RSC. Then for any vectors x and ' with ||x — x'||, < K, the following holds:

o — 2] < \/Qmax{F(w) - F(2).0}  2|[VrF(@)

mg mg

where T = supp (x — &').

Proof. The RSC property immediately implies

F(z) - F(@) > (VF(@),@ - @) + S o — ']

\%

2
— |VeF )| - Iz — /|| + 5 =l — ).
Discussing the sign of F'(x) — F(2’) and solving the above quadratic inequality completes the proof. O

Lemma 15. Assume that F(x) is my+s-RSC and Moy-RSS. Suppose that for all t > 0, xt is k-sparse and the following
holds:

F(z'™) - F(z) < p (F(a') - F(@)) + T,

where 0 < u < 1, 7 > 0 and x is an arbitrary s-sparse signal. Then,

o~ af) <y 2 2~ ]+ 2 IV F @)+ s
Proof. The RSS property implies that
F(z°) - F(z) < (VF(z),2° - :7:> + 5 |20 -2l
S%Hw — |+ o Vg F (:73)||2+%Hw0—§3H2
<M 2| + 5 Vi F (@)

Hence,

F(z') - F(z) < p'M |2 — 2| + o7 IVers F(@) ’
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By Lemma 14, we have

) 2 o Ve F@)2 72 )
t_ < 4] t 0 _ 7|12 -
=" — 2| <4/ \/u Ma® - | + =5+ 1 + 1 Ve F@)]

<2 o wHﬂ/ Vs

2
+ = Voo F(@)] +

m(l — 1)

oM 3
</ =)' ||z —z| + — Vs F(2)| +

m m(l—p)

O

Lemma 16. Let & € RY be an s-sparse vector supported on S. For a k-sparse vector x supported on Q with k > s, let
b=x—nVF(x)andletT = supp (b, k). Suppose that the function F(x) is mag4+s-RSC and Maj+-RSS. Then we have

|[Zs\z[| < vpllz =2l +vn [VrasF@),
where v = /1 + s/k and p is given by Lemma 11.

Proof. We note the fact that the support sets 7\ .S and S\ T are disjoint. Moreover, the set T'\S contains |7\ S| number of
top |T'| elements of b. Hence, we have

|T\S| H T\SH |S\T| H S\TH ®)
That is,
|T\S |TﬁS|
sl 2 | TN o = A0S 2 o

Note that the above holds also for 7" = S. Since & is supported on .S, the left hand side reads as

Jbr\s|| = || @~ @ — iV F @)1

while the right hand side reads as
[bsirll = |[@— & ~ 0V F@)s\ 7+ Zsrr
> Hi’S\TH - H(m -z - HVF(CC))S\TH :

Denote v = /1 + s/k. In this way, we arrive at

szl < \/; |@=2—nVF@)ps| + | @ =2 —nVF@)ss
<vll(@— @ — 1VF@))pas
<vi(x -z —nVF(x)+nVE@))rasll +vn|[VrasF(Z)|

<v H (@ — 2 — gVF (@) + V(@) 100us ] oy |[VrasF(@)|

<vpakts |® — 2| +vn||[VrasF(Z)|,

where the second inequality follows from the fact that az + by < v/a2 + b%\/22 + 32 and we applied Lemma 12 for the
last inequality. O
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Lemma 17. Consider the HTP algorithm with exact solutions. Assume (Al). Then
[Vsiins F(ah)| > 2m¢ (F(z') - F(z)),

where
‘St+1\st’
|SHFI\SE| + [S\S?|

(=

Proof. The lemma holds clearly for either S'*! = S* or F(x') < F(Z). Hence, in the following we only prove the result
by assuming S'*! £ S and F(x!) > F(Z). Due to the RSC property, we have

Mi+s

F(z) — F(z') — (VF(z'),z — x') > 5

which implies

(VF(z'), —z) > m’;s & —2'||” + F(2') — F(a)
>\ 2mpys || — || /F(2t) — F(z).

By invoking Lemma 10 with w = VF(x!) and z = —& therein, we have

(VF(@!),-a) <\ |25 F) - [|zs\s ||
; =\ ]st1\ 57 StH1\st S\S*
|S\ S| 7
=\ T5E S| +1||Vsunse F(@")] - [[(@ — ") s\t |
|S\S*| 7
<\ ey T IVsns P -flz -2

It is worth mentioning that the first inequality above holds because VF' () is supported on St and S**1\ S* contains the
| ST\ S*| number of largest (in magnitude) elements of VF'(x"). Therefore, we obtain the result. O

B. Proofs for Section 2
B.1. Proof for Prop. 1
Proof. Due to the RSS property, we have
M 2
Fbth) — F(z') < (VF(z'), bl —2') + 5 |5 — 2|

St+1
M

¢
(PP it [

StH1\ 5t
)
btJrl

Si+1\ St

+ 15 s = @hernse|” + |y sen

G2
2 (Varonys @), b o) + M |

C:?’ — 77(1 — ’I]M) Hvst+1\StF(mt)H2 .

Above, we observe that VF(x?!) is supported on S? and we simply docompose the support set S*+1 U S into three
mutually disjoint sets, and hence (; holds. To see why (> holds, we note that for any set Q C S?, bg'l = zf,. Hence,

bfgﬂmgt = mfswlmst- Moreover, since wtst\SHl = bg‘tistﬂ and any element in bt;t'ist+1 is not larger than that in
bgﬁl\ gt (recall that St*+1 s obtained by hard thresholding), we have ‘ wgt\ gra1]| < btsﬁl\ gt where we use the fact

that ‘St\StH’ = ‘St“\St’. Therefore, (3 holds. Finally, we write btsﬂl\st = —nVge+1\ g+ F(x") and obtain (3.
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Since x!*! is a minimizer of F'(x) over the support set S**1, it immediately follows that
F(z'™) - F(a') < F(biL) — F(z') < —n(1 = nM) ||V gesn g F(ah)*.

Now we invoke Lemma 17 and pick nn < 1/M,

F(zh) = Fa') <n(nM —1) -
which gives

_ 2mn(1—nM)
where § = 1 — =2,

B.2. Proof for Prop. 2

Proof. This is a direct result by combining Prop. 1 and Lemma 15.

B.3. Proof for Lemma 3

Proof. Letx!, = argming,,, s F' (). Since ' and x|, are both supported on S*, we apply Lemma 9 and obtain

[V P = |VsrF(a) - Voo F(a)|
< oM (F(&!) - F(at) - (VE(al), 2t - o))
< 2Me.

Above, the second inequality uses the fact that Vg: F'(zt) = 0 and F(z') < F(z!) +e.

B.4. Proof for Prop. 4
Proof. We have by Lemma 16 that

2
[2gerll < V2o’ — ]|+ — Vi s F(@)I
where p = 1 — pm. On the other hand, Lemma 18 together with Lemma 3 shows that
1
H:I}tJrl :L'H <I<JH:135H1H+ IViF(z )”+EV2M€'

Therefore,

2Me

et — &) < Vs 2t — al| + 2 Vi (@) +
We need to ensure
V26(1 —nm) < 1.
Letn = n' /M with ’ < 1. Then, the above holds provided that
A<1+%andn’>n—%.
By induction and picking proper 7’ to make v/2k(1 — nm) < v/2/4, we have

6 4V M
I = 2] < (Va = 1) Ja” = 2] + 32 [ nF@)] + 252
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B.5. Proof for Prop. 5
Proof. Our proof in this part is inspired by Yuan et al. (2016). Let % = arg ming, o zycst £ (). Then
F(z') — F(z" ) < F(a!) = F(z' ") + ¢
< F(bly) — F(z'™') +e
1—nM
T

S_

where the last inequality follows from Lemma 13. Now we bound the term Hbgt —zt! H2 Note that x*

on S*~1. Hence,
b5 — =" = stfmsfl Ve F (2™ - 2~

2
B

2
I

H St 1\ St -l—nQHVStF(:nt’l)

>n HvSt\St—lF(.’Btil)’f .
We thus have

(1 —nM)n

F(z") — F(z™) < — 5

Hvst St— 1F( t— 1)H2+€.
Denote £ = ||V F(x'~1)||. We claim that
[Vsng F@™ | > m (F(@'"") — F(@)) — 262,

which, combined with Lemma 3, immediately shows

(1 =nM)nm

Fla!) - Fla'™) < ———

(F(z'™") — F(z)) + 2e.

Using Lemma 15 completes the proof.

—1is supported

©)

To show (9), we consider two exhausitive cases: ‘St\St’l‘ > s and ’St\St*w < s, and prove that (9) holds for both

cases.

Case 1. ‘St\St_l‘ > 5. Due to the RSC property, we have

() — F(z' ') = (VF(z'" "),z — ')
)

1
‘i — wt_IHQ + % HVSUst—lF(wt_l)HQ

1 1
— @) - F@ )+ o - 4 o [t P+ o [V Pt
1 1
=F(z) F(wt 1) + % Hiﬁ — :13“1“2 + o HVS\St—lF(EBtil)Hz + %52

Therefore, we get
Vs F(a™)|* = 2m (F(@'™") - F(z)) - €2,

Since S* contains the k largest absolute values of b’, and ‘St\St_l‘ > 5>

2

)

2
Hbgt\sm > Hbg\SH
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which immediately implies (9) by noting the fact that bgt\st—l = —nVgng—1 F(x'"!) and bg\st—l =
—nVS\Stle(:vt_l).

Case IL |S"\S'~!| < s. Again, we use the RSC property to obtain
5 le -
2

<F(z)—F'"™") - (VF(z'" "),z — 2" ")

<F@) - Fa'™) + Tz -2 + % IV suses Fa )|

1 1
Tle -2 + — [V P | + ¢

=F(z) - F(z™ ) +
=F(z) - F(z='™ ) + % |z — a:H||2 + % Hvs\(StUSH)F(mt*ﬂf
1 1
+ m HV(St\St71)mSF(mt71)H2 + Eéz
< F(z)— F(z!™1) + % |z — a:H||2 + % Hvs\(StUSH)F(mt*ﬂf
+ L Vs PP+ Le (10)
m m
We consider the term HVS\(StUStfl)F(wt_l)Hz above. Actually, we have

bg\(stust—l) = —UVS\(StUSFl)F(:Bt_l).

Since S* contains the k largest absolute values of b’, we know that any component in bf, is not larger than that in b
subject to Q N S* = (. In particular,

2
Hth\(stustfl) HbfsmSH)\SH
[S\(S*U S ~ [(S* NSNS
Note that | S\ S*~!| < s implies |(S* N S*"1)\S| > k — 2s. Therefore,

n? ‘’VS\(stustfl)F(th*l)H2

2
SEos H Tsns-s ”V<S*ﬂ5“>\SF(“’t71>H

2s 251>
Sm folﬂSf 1>\SH et
e sl + 22
Z)(stnst-1)\S T 9s
23 _ _12 251>
Sk_zs"wt el
Plugging the above into (10), we obtain
mo_ _12 _ _ m _ 112 2s _ _12
G lle—at ) < Pl = P+ e et e e =t
1 2, 1 2s 9
+EHVSt\St—1F(£B )H +E k—25+1 13

Picking k > 2s + 5 > gives

o =o' < F@) - Pt )+ o -2

nm 1
L [Tt +( . E)gz‘.

Since n < 1/M, ”2;”2 + 1 < 2. Therefore, by re-arranging the above inequality, we prove the claim (9). O
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C. Proofs for Section 3
The following result holds for all F'(x).

Lemma 18. Assume (A1) and (A2). For any k-sparse vector x and s-sparse vector &, we have
- - 1 -
lz — 2| < & llzz| + — Ve F (@) - VrF @),
where T' is the support set of x.

Proof.

[[(z — :Tc)T||2 (t —x —7VF(x)+7VF(Z),(x —x)r) +7(VF(x) — VF(x),(x — x)r)
[(x—2—7VF(x)+7VE(@)r| - [(x —2)7| + 7||VrF(x) - VrEF (@) - [[(x — 2)7|
|z =2 —7VrusF(x) + VrusF(@)| - (@ — 2)r| + 7 |Vr F(z) — V(@) - [[(x — 2)7|

ple—z|-l(x—z)r|+7||VrF(z) - Vo F(@)]| - |( — @) .

ININCIA

Dividing both sides by ||(x — &)1 || gives
(@ —z)r|| <ple -zl +7||VrF(z) - VrF(2)].
On the other hand,

& — | < [|(z —2)7[ + [[(z — )7l
<plle -z +7|VrF(x) - Vo F ()| + |27 -

Hence, we have

1
o =@l < = ozl + 1= IVrF(@) - VrF(@)].
Picking 7 = 1/M completes the proof. O
In view of the exact (HTP3), we have
t A - 1 -
=" — 2| < & ||2gl| + — ViF@)]- (11)

Now we present the crucial lemma. It is inspired by Bouchot et al. (2016) but we show a more general result.

Lemma 19. Consider the HTP algorithm. Assume (A1) and (A2). Further assume that the sequence of {x'};> satisfies

Iz — 2| < a5 |«” — 2 + 9,
l=* — 2| <7 @] + v,

Sfor positive o, ¢, v, Y and 0 < B < 1. Suppose that at the n-th iteration (n > 0), S™ contains the indices of top p (in
magnitude) elements of . Then, for any integer 1 < q < s — p, there exists an integer r > 1 determined by

\/§|Cﬁp+q| >ay - ﬂril Hj{p-i-l,...,s}H +0
where

1
0=ap+o+— |[V:F @),

such that S™t" contains the indices of top p + q elements of & provided that < \/2\Z i, for some \ € (0,1).
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Proof. Without loss of generality, we presume that the elements in  are in descending order by their magnitude, i.e.,
|Z1| > |®2| > -+ > |@,|. We aim at deriving a condition under which [p + ¢] C S™*". To this end, it suffices to enforce

min [b7"| > max |b; 7| (12)
j€lp+d] i€S

On one hand, for any j € [p + ¢,

’b;?r‘r’l’“ _ ‘(wnJrrfl _ nVF(CBn+T71))j‘

Y

@3] = | (@ = & = P E),

> @il = | (@ @ = pVE@" ) .

On the other hand, forall i € S,
|| = [(x"t" " =& —pVF(z"TY) |

i

Hence, we know that to guarantee (12), it suffices to ensure for all j € [p + ¢] and i € S that
— n+r—1 _ = _ n+r—1 n+r—1 _ 5 _ n+r—1
|Zpq| > ’(cc z—nVF(x ))7’ + | (= z—nVF(x ))l| .
Note that the right-hand side is upper bounded as follows:

n+r—1 _ T — UVF(.’I}nJ'_T_l)) ‘ (mn-i—r—l — 3 — nVF(mn-i-r—l))i‘

1 1
ﬁ ‘(:c j + ﬁ ‘
H (@71 — & — gV F(z" 1)

IN

{4.i}
H (@™ — & — pVF (") 4 V()
<platTt =z 40|V F ()

<pa- B 2" — 2|+ pp+ 0| Vo F (@)

IN

(4.3} ’ +7||VaF@)|

Moreover,

+ ¢ =7 Bpr1,s ]| + -

lo" - 2l < v l@swl + v < 7|

Put all together, we have

1 n—+r— e n—+nr— 1 n—+r— e n+r—
ﬁ}(wJ“ 'z —nVF(z"" 1))j}+ﬁ}(m+ '—z—nVF(" )|
<pay - B |2 par, sy || + path + po 0 [[VoF(2)]

<oy 8 B, ol +aw + o+ [V:F @)
Therefore, when
VBl > -8 g, + o0+ 6+ L IT@,
we always have (12). Note that the above holds as far as at) + ¢ + L || Vo F(&)]| is strictly smaller than v/2 |Z. O

With Lemma 19, we show the following general theorem.

Theorem 20. Assume same conditions as in Lemma 19. Then HTP successfully identifies the support of x using

og log (v —A ] ]
(21<:g%12/6) + ggog(/l(/lﬂ) ) 4 2) s number of iterations.
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Proof. Without loss of generality, we presume that the elements in  are in descending order by their magnitude, i.e.,
|Z1| > |@2| > -+ > |&s|. We partition the support set [s] into K folds S, S, ..., Sk, where each S; is defined as
follows:

Siz{si_l—i—l,...,si}, V1<i<K.
Here, so = 0 and for all 1 < ¢ < K, the quantity s; is inductively given by

1
s; = max{q: sic1+1<g<sand |&,] > — ’:T:SFIH‘ }

V2

In this way, we note that for any two index sets S; and S;, S; N.S; = 0 if i # j. We also know by the definition of s; that
Boa] € —= o ia], ¥1<i<K—1. (13)
V2

Now we show that after a finite number of iterations, say 7, the union of the .5;’s is contained in S™. To this end, we prove
thatforall 0 <7 < K,

U S, C Srotnit-+n; (14)
t=0

for some n;’s given below.

We pick ng = 0 and it is easy to verify that Sy C S°. Now suppose that (14) holds for i — 1. That is, the index set of the
top s;_1 elements of & is contained in S™° T T"i-1 Due to Lemma 19, (14) holds for i as long as n; satisfies

.....

\/§|i57| > a’y . /Bni_l ||j{5171+1 S}|| + 9' (15)

Note that

2

1265 vv1 = @]+ + s, |

< (@i, 1) |Sil + - 4 (&5, 11)? [SK]

< (@i +)? (18] + 271 Sigal + -+ 277 |Sk)
<2(&s5,)" (ISl + 27" |Sipa | + -+ 275 |Sk])

AN

where the second inequality follows from (13) and the last inequality follows from the definition of ¢;. Denote for simplicity
As we assume 0 < v/2AZpin, We get

ary - Bm—l ||‘i{sif1+l,...,s}|| +0< \/5047 |‘isi ﬁm_l\/j__‘i + \/5/\ |‘i51| :

Picking

T |

1—-A 2

ni =logy /g
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guarantees (15). It remains to calculate the total number of iterations. In fact, we have

n=ng+ny+...ng

Ll N et e g s/ )
= o179 2T K T a7

K L~ ) o (loglan/(=N)
21og(1/8) <E ZT> (2w
K 2 5~ ) o (loglan/( =)
21og(1/5) log (E ; |Sl|> * ( log(1/5) + 2) K
K 2s log(ay/(1—N))
BET ( log(1/5)

+ 2K

INLY

ING

2log(1/7) B K ”)K

( log 2 log(ay/(1— X)) N 2>
s.
2log(1/8) log(1/5)

Above, (; immediately follows by observing that the logarithmic function is concave. (, uses the fact that after rear-

rangement, the coefficient of |.S;| is Z;;E 277 which is always smaller than 2. Finally, since the function 7 log(2s/r) is
monotonically increasing with respect to r and 1 < r < s, (3 follows. O

—~

ING

Combining this theorem, Lemma 19 and specific results in Prop. 2, Prop. 4 and Prop. 5 gives the main theorems in Section 3.



