
On the Iteration Complexity of Support Recovery

via Hard Thresholding Pursuit

Jie Shen 1 Ping Li 1

Abstract

Recovering the support of a sparse signal from

its compressed samples has been one of the most

important problems in high dimensional statis-

tics. In this paper, we present a novel analysis for

the hard thresholding pursuit (HTP) algorithm,

showing that it exactly recovers the support of

an arbitrary s-sparse signal within O (sκ log κ)
iterations via a properly chosen proxy function,

where κ is the condition number of the problem.

In stark contrast to the theoretical results in the

literature, the iteration complexity we obtained

holds without assuming the restricted isometry

property, or relaxing the sparsity, or utilizing the

optimality of the underlying signal. We further

extend our result to a more challenging scenario,

where the subproblem involved in HTP cannot be

solved exactly. We prove that even in this setting,

support recovery is possible and the computa-

tional complexity of HTP is established. Numer-

ical study substantiates our theoretical results.

1. Introduction

In the last two decades, pursuing a sparse representation

for high dimensional data has become one of the most sig-

nificant problems in machine learning. To seek a sparse

solution, a large body of work is devoted to efficient meth-

ods, including the convex formulation, for instance, ba-

sis pursuit (Chen et al., 1998) and the Lasso (Tibshirani,

1996), as well as greedy pursuits, e.g., orthogonal match-

ing pursuit (Pati et al., 1993), iterative hard threshold-

ing (Daubechies et al., 2004) and hard thresholding pur-

suit (HTP) (Foucart, 2011), along with elegant theoretical

understanding on parameter estimation and support recov-

ery in either ideal setting or noisy scenario (Candès & Tao,

2005; Wainwright, 2009; Tropp & Gilbert, 2007; Cai et al.,

1Rutgers University, Piscataway, New Jersey, USA. Jie Shen:
js2007@rutgers.edu, Ping Li: pingli@stat.rutgers.edu.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

2010; Blumensath & Davies, 2009; Bouchot et al., 2016).

Compared to parameter estimation, i.e., bounding the ℓ2
distance between the solution and the desired sparse sig-

nal, support recovery is a much more challenging task and

it usually requires more stringent conditions. See Tropp

(2004); Zhao & Yu (2006); Yuan & Lin (2007); Zhang

(2009) for some early results and Nguyen & Tran (2013);

Loh & Wainwright (2014) for more recent developments.

Nevertheless, if the support of a signal can be predicted by

a method, then the solution returned by the method imme-

diately enjoys the oracle property, i.e., with optimal statisti-

cal rate (Wainwright, 2009). Thereby, support recovery has

received broad attention in recent years (Osher et al., 2016;

Wang et al., 2016; Bouchot et al., 2016).

In this work, we follow the research line with a particular

interest in the hard thresholding pursuit algorithm, which

exhibits encouraging performance among many machine

learning applications. The algorithm was originally pre-

sented by Foucart (2011) for recovering the true signal in

compressed sensing (Donoho, 2006). Yuan et al. (2014)

suggested using the HTP algorithm for general sparsity-

constrained machine learning problems, and they showed

that the solution obtained from HTP converges with a geo-

metric rate. Very recently, a rigorous theoretical analysis on

when HTP guarantees support recovery was independently

carried out by Bouchot et al. (2016) and Yuan et al. (2016).

In Bouchot et al. (2016), they considered the compressed

sensing problem and illustrated that HTP recovers the sup-

port of the true signal in finite iterations if the restricted

isometry property (RIP) condition holds (Candès & Tao,

2005). Yuan et al. (2016) showed that in some situations,

HTP eventually terminates and guarantees support recov-

ery without assuming the RIP condition.

Although these appealing theoretical results characterize

the behavior of HTP in particular regimes, it turns out

that a thorough understanding on when HTP identifies the

support of an arbitrary sparse signal is missing in the lit-

erature. To be more precise, the RIP condition used in

Bouchot et al. (2016) amounts to imposing a small condi-

tion number for the underlying problem, which may not be

practical for machine learning applications where the con-

dition number usually grows with the sample size. To guar-

Support Recovery of Hard Thresholding Pursuit

antee the support recovery of an s-sparse signal, Yuan et al.

(2016) required that the signal of interest is the unique

global minimizer of a sparsity-constrained program (which

invokes the RIP condition), or that HTP maintains denser

iterates. This poses an interesting question of whether HTP

is able to recover the support without the RIP assumption,

or the optimality of the signal, or the relaxed sparsity.

In addition, an insightful analysis on the performance of

HTP in a realistic scenario is missing. For concreteness,

recall that HTP proceeds as follows:

(HTP1) bt+1 = xt − η∇F (xt),

(HTP2) St+1 = supp
(

bt+1, k
)

,

(HTP3) xt+1 = argmin
supp(x)⊂St+1

F (x),

where η > 0 is a step size, supp
(

bt+1, k
)

denotes the sup-

port of the k largest absolute elements of bt+1 and F (x)
is a properly chosen function. For general machine learn-

ing problems, we are only guaranteed with ǫ-approximate

solutions in the third step, i.e., for all t ≥ 0,

F (xt+1)− F (xt+1
∗) ≤ ǫ,

where xt+1
∗ is the global minimizer of F (x) restricted on

St+1. Related to the inexact solutions, a natural question

to ask is how the accuracy parameter ǫ affects the recovery

performance of HTP, additively or progressively.

Another issue coming up with the inexact iterates is that

the usually employed stopping criterion St+1 = St may

not be valid, which makes part of the analysis in Yuan et al.

(2016) not applicable to this setting. Note that when exact

solutions are available, HTP becomes stationary as soon as

the detected support does not change, since the solutions

are entirely determined by the support. Yuan et al. (2016)

made use of this feature to establish theoretical guarantee

for HTP. However, allowing approximate iterates quickly

changes the premise because many stochastic solvers, e.g.,

stochastic gradient descent, introduce randomness, render-

ing (HTP3) outputs different results even restricted on the

same support set.

1.1. Contribution

We make the following contribution in this paper. First,

suppose that (HTP3) has exact solutions, we show that un-

der very mild conditions, HTP either terminates early or

guarantees support recovery of an arbitrary s-sparse signal

within O (sκ log κ) iterations. Then we move on to the in-

exact case, and prove that under the RIP condition or using

a relaxed sparsity, support recovery with the same itera-

tion complexity holds provided that the optimization error

ǫ is small compared to the magnitude of the target signal.

As a consequence, we present the first bound on the com-

putational complexity of HTP. For concreteness, we relate

our deterministic results to two prevalent statistical models,

and show that the conditions involved in our theorems can

be met with high probability.

We also revisit the role of F (x) of the HTP algorithm. Pre-

vious work, for example, Jain et al. (2014), tends to treat

F (x) as an objective function, the choice of which depends

on the underlying problem and the signal, and views HTP

as an optimization procedure towards the optimal solution.

Interestingly, we find that F (x) behaves more like a proxy

function that guides HTP to the target signal. Hence, to re-

cover a signal, we have many more choices of F (x) as far

as it satisfies the conditions to be present (see Section 4).

From a high level, the paper shares the same merit of

Bouchot et al. (2016); Yuan et al. (2016), i.e., recovering a

sparse signal. Hence, part of our proof is inspired by their

work. Yet, we establish novel RIP-free results based on a

more careful analysis for the problem structure. See a de-

tailed comparison in Section 3.

1.2. Notation

Throughout the paper, we use bold lowercase letters, e.g.,

v, to denote a column vector. The support of a vector v

is denoted by supp (v), whereas that of the largest k ab-

solute elements is denoted by supp (v, k). Both ‖v‖0 and

|supp (v)| are used to count the non-zeros in v. Suppose

that Ω ⊂ {1, 2, . . . , d} is an index set, then for v ∈ R
d, vΩ

can either be explained as an |Ω|-dimensional vector or a

d-dimensional vector with the elements outside of Ω set to

zero. The Euclidean norm of a vector v is denoted by ‖v‖.

We write boldface capital letters, e.g., A, for matrices, and

the transpose is denoted by A⊤.

The s-sparse vector x̄ ∈ R
d is the target signal we aim to

recover, and we reserve the capital letter S for its support.

We define x̄min > 0 as the absolute value of the smallest

element (in magnitude) of x̄S ∈ R
s. With a slight abuse

of the notation, ∇kF (x̄) should be explained as the vector

consisting of the top k elements (in magnitude) of ∇F (x̄)
rather than the kth component of ∇F (x̄).

1.3. Roadmap

The remainder of the paper is organized as follows. Sec-

tion 2 introduces the problem setting and some preliminary

results that the main theorems build on. Section 3 presents

the main results of this paper with a detailed comparison

to closely related work. In Section 4, we specialize our

results to two concrete statistical models. A proof sketch

of the main results is given in Section 5. Next, we ver-

ify our theoretical results with extensive numerical study

in Section 6 and Section 7 concludes the paper. Technical

lemmas and the full proof are deferred to the appendix (see

the supplementary file).

Support Recovery of Hard Thresholding Pursuit

2. Problem Setup and Preliminary Results

In this section, we introduce the problem setting and some

preliminary consequences on which our main results build.

To be clear, the target signal x̄ ∈ R
d we consider in this

paper is only endowed with sparsity.

Our analysis depends on the following two properties of the

function F (x).

Definition 1. A differentiable function F (x) is said to be

restricted strongly convex (RSC) with parameter mK > 0,

if for all vectors x and x′ with ‖x− x′‖0 ≤ K ,

F (x)− F (x′)− 〈∇F (x′),x− x′〉 ≥ mK

2
‖x− x′‖2 .

Definition 2. A differentiable function F (x) is said to be

restricted smooth (RSS) with parameter MK > 0, if for all

vectors x and x′ with ‖x− x′‖0 ≤ K ,

F (x)− F (x′)− 〈∇F (x′),x− x′〉 ≤ MK

2
‖x− x′‖2 .

In particular, we require that the RSC condition holds at

sparsity level k+ s and the RSS condition holds at sparsity

level 2k, respectively. That is,

(A1) F (x) is mk+s-restricted strongly convex;

(A2) F (x) is M2k-restricted smooth.

Note that the RSC and RSS conditions are now stan-

dard and are widely utilized for establishing performance

guarantees for a variety of popular algorithms. See, for

example, Negahban et al. (2009); Agarwal et al. (2012);

Jain et al. (2014) and Loh & Wainwright (2014). For sim-

plicity, throughout the paper we write m := mk+s and

M := M2k. We also denote κ = M/m which is actually

the (restricted) condition number of the problem.

The first result states that if (HTP3) outputs exact solutions,

then HTP decreases the function value with a geometric

rate before the stopping criterion (i.e., St+1 = St) is met.

Formally, we have the following proposition.

Proposition 1. Consider the HTP algorithm with exact so-

lutions in (HTP3). Assume (A1) and (A2), pick η < 1/M
in (HTP1) and set k = s in (HTP2). Then before HTP

terminates, it holds that for all t ≥ 0,

F (xt+1)− F (x̄) ≤ µ
(

F (xt)− F (x̄)
)

,

where

µ = 1− 2ηm(1− ηM)

1 + s
∈ (0, 1).

Remark. Note that we did not assume the optimality of x̄

with respect to the function F (x). In other words, Prop. 1

holds even for F (xt) − F (x̄) < 0. It is also worth men-

tioning that by the proposition, we can deduce

F (xt)− F (x̄) ≤ µt
(

F (x0)− F (x̄)
)

.

However, the above inequality does not imply the conver-

gence of {F (xt)}t≥0, since F (xt)− F (x̄) is not bounded

from below. Rather, it is invoked to establish parameter

estimation for HTP.

The following proposition shows that when the conditions

in Prop. 1 are satisfied, we have an accurate estimate on the

signal in the ℓ2 metric.

Proposition 2. Assume same conditions as in Prop. 1.

Then before HTP terminates, the following holds for t ≥ 0:

∥

∥xt − x̄
∥

∥ ≤
√
2κ(

√
µ)t
∥

∥x0 − x̄
∥

∥+
3

m
‖∇k+sF (x̄)‖ ,

where µ is given in Prop. 1.

In the literature, a variety of work has established the-

oretical guarantees on parameter estimation, either under

the RIP condition (Bouchot et al., 2016) or by relaxing the

sparsity (Yuan et al., 2016). In contrast, neither of the con-

ditions are assumed in Prop. 2, owing to a careful analysis

on the connection between ∇F (xt) and x̄. See the supple-

mentary file for the proof. However, we point out that such

an appealing behavior is not guaranteed if (HTP3) does not

output exact solutions, and in this case, we have to relax

the sparsity or use the RIP condition. In particular, let

xt
∗ = argmin

supp(x)⊂St

F (x),

and consider that (HTP3) outputs xt obeying

supp
(

xt
)

⊂ St, F (xt)− F (xt
∗) ≤ ǫ. (1)

Note that this is a realistic scenario because even for sim-

ple functions, e.g., F (x) is the logistic loss, convex solvers

only ensure ǫ-approximate solutions. The major issue com-

ing up with the ǫ-approximate solutions is that the gradient

of F (x) evaluated at xt does not vanish on the support St,

which makes our technical analysis of Prop. 2 invalid. Yet,

we can still bound it under proper conditions.

Lemma 3. Assume (A2) and (1). Then at any iteration

t ≥ 0, we have

∥

∥∇StF (xt)
∥

∥ ≤
√
2Mǫ.

Based on the lemma, we show the following RIP-based re-

sult for parameter estimation.

Proposition 4. Consider the HTP algorithm with inexact

solutions (1). Suppose that the condition number κ < 1.25

Support Recovery of Hard Thresholding Pursuit

and set k = s in (HTP2). Then picking η = η′/M with

κ− 0.25 < η′ < 1 guarantees

∥

∥xt − x̄
∥

∥ ≤ (
√
2(κ− η′))t

∥

∥x0 − x̄
∥

∥

+
6κ

m
‖∇k+sF (x̄)‖ +

4
√
Mǫ

m
.

As the RIP condition is hard to fulfill for many machine

learning problems, Jain et al. (2014) proposed to relax the

sparsity parameter k = O
(

κ2s
)

in order to alleviate it.

Shen & Li (2016) further showed that by relaxing the spar-

sity, a stochastic solver is able to produce an accurate so-

lution for sparsity-constrained programs. Inspired by their

interesting work, we derive the following result for HTP.

Proposition 5. Consider the HTP algorithm with inexact

solutions (1). Pick η < 1/M and let k ≥ 2s+ 8s
η2m2 . Then

∥

∥xt − x̄
∥

∥ ≤
√
2κ(

√
µ)t
∥

∥x0 − x̄
∥

∥

+
3

m
‖∇k+sF (x̄)‖ +

√

4ǫ

m(1− µ)
,

where

µ = 1− ηm(1− ηM)

2
.

3. Main Results

This section is dedicated to a deterministic analysis on the

performance of HTP. We first treat the exact case, i.e.,

(HTP3) outputs exact solutions, along with a detailed com-

parison with previous work in the literature. Then we

demonstrate that even when (HTP3) is solved approxi-

mately up to an ǫ-accuracy, support recovery is still pos-

sible provided that ǫ is small enough compared to the mag-

nitude of the target signal.

The following theorem is one of the main results in the pa-

per. It justifies that under proper conditions, HTP recovers

the support of x̄ using finite iterations.

Theorem 6. Consider the HTP algorithm with exact solu-

tions in (HTP3). Assume (A1) and (A2). Pick η < 1/M in

(HTP1) and k = s in (HTP2). Then HTP either terminates

early, or recovers the support of x̄ using at most

tmax =

(

3 log κ

log(1/µ)
+

2 log(2/(1− λ))

log(1/µ)
+ 2

)

‖x̄‖0 (2)

iterations, provided that for some constant λ ∈ (0, 1)

x̄min ≥ 2
√
2 +

√
κ

mλ
‖∇k+sF (x̄)‖ . (3)

Above, the quantity µ is given by

µ = 1− 2mη(1− ηM)

1 + s
∈ (0, 1).

In the theorem, we recall that x̄min is the minimum ab-

solute value of the non-zeros of x̄. Below we discuss the

important messages conveyed by the theorem and contrast

our result to prior work. For ease of exposition, we write

η = η′/M for some constant η′ ∈ (0, 1), and it quickly

indicates that µ = 1−O (1/κ).

Iteration complexity. We remind that the first term in (2)

plays the most crucial role, since it upper bounds the other

two for sufficiently large κ. In the regime where κ itself is

bounded by a constant from above, the iteration complexity

is simply explained as O (‖x̄‖0). Asymptotically, we can

show that the iteration complexity is dominated by κ log κ
as κ tends to infinity, that is,

tmax = O (‖x̄‖0 κ log κ) .

This follows from a simple calculation on the Taylor expan-

sion of log(1/µ) at the point x = 1, with µ being replaced

with 1 − O (1/κ). Note that the number of iterations we

obtained for support recovery is as few as that for accurate

parameter estimation (see Prop. 2). It is also worth men-

tioning that the linear dependency on the sparsity of x̄ is

nearly optimal, because in the worst case HTP may take

several steps to pick only one correct support.

Conditions. We also emphasize that the condition (3) is

now ubiquitous for analyzing the support recovery perfor-

mance. The quantity x̄min involved is natural, because

a signal with large magnitude is easier to recover than

those with small or vanishing components. To see why

‖∇k+sF (x̄)‖ is used to lower bound the magnitude of x̄,

let us consider the compressed sensing problem as an ex-

ample. Suppose that we observe the response vector y,

which obeys y = Ax̄ + e for a given design matrix A

and some noise e. In order to recover the true parameter

x̄, we may choose F (x) as the least-squares, of which the

derivative evaluated at x = x̄ is given by

∇F (x̄) = A⊤ (Ax̄− y) = −A⊤e.

Then the RIP condition asserts that

‖∇k+sF (x̄)‖ ≥
√

1− δk+s ‖e‖ ,

where δk+s ∈ (0, 1) is the (k + s)-th restricted isometry

constant (Candès & Tao, 2005). Therefore, imposing the

condition (3) amounts to distinguishing the true signal from

the observation noise.

Comparison to prior work. We contrast our result to the

state-of-the-art work of Yuan et al. (2016). To recover a

sparse signal x̄, Yuan et al. (2016) required the condition

number κ < 1.14, which might be too restrictive to gen-

eral machine learning problems where the condition num-

ber grows with sample size. In addition, support recovery

was established only for a carefully chosen F (x), i.e., x̄

Support Recovery of Hard Thresholding Pursuit

Table 1. Comparison to previous work on HTP-style algorithm. We present the first support recovery guarantee for an arbitrary

sparse signal without assuming the RIP condition or relaxing the sparsity.

Result Target sparse signal RIP-free No sparsity relaxation Support recovery

Foucart (2011) true signal ✗ ✓ ✗

Yuan et al. (2014) arbitrary ✗ ✗ ✗

Jain et al. (2014) optimal solution ✓ ✗ ✗

Bouchot et al. (2016) true signal ✗ ✓ ✓

Yuan et al. (2016, Theorem 1) optimal solution ✗ ✓ ✓

Yuan et al. (2016, Theorem 3) arbitrary ✓ ✗ ✓

Proposed Theorem 6 arbitrary ✓ ✓ ✓

must be the unique global minimizer of F (x) subject to

a sparsity constraint (see Theorem 1 therein). Such a re-

quirement dramatically excludes many popular and simple

choices of F (x). For example, let us again examine the

compressed sensing problem. With the presence of noise,

it is almost impossible for x̄ to be the global optimum of

F (x) = ‖y −Ax‖2. Hence, one cannot apply the theoret-

ical result of Yuan et al. (2016) to justify the performance

of HTP. In comparison, our theorem ensures that support

recovery is possible as far as the selected F (x) fulfills the

condition (3). Though Theorem 3 in Yuan et al. (2016)

does not assume the RIP condition or the optimality of x̄

with respect to F (x), it requires a relaxed sparsity parame-

ter k = O
(

κ2s
)

, whereas the proposed Theorem 6 asserts

that k = s suffices. We also note that iteration complexity

was not provided by Yuan et al. (2016) in the relaxed spar-

sity case, whereas we clearly state the dependency on all

the parameters.

Compared with Bouchot et al. (2016), it is not hard to see

that the problem considered here is more general, since we

aim to recover an arbitrary sparse signal while they targeted

the true parameter of compressed sensing. Bouchot et al.

(2016) also imposed the RIP condition that is not invoked

here. Jain et al. (2011; 2014) presented HTP-style algo-

rithms with analysis on parameter estimation, but a guaran-

tee on support recovery was not considered. We summarize

the comparison in Table 1.

Weakness. We remark that though Theorem 6 is free of the

RIP condition and the relaxed sparsity, it implicitly requires

that HTP should not terminate too early. Otherwise, HTP

may fail to recover the support. We believe that it is a very

interesting future direction to give a lower bound on the

iteration complexity of HTP. In the sequel, we strengthen

our result by providing sufficient conditions which prevent

HTP from early stopping.

In particular, we move on to the practical scenario where

the results to be established also apply to the exact case.

As a reminder, due to the assumption (A1), (HTP3) is vir-

tually solving a convex program. Yet, since F (x) is a gen-

eral function, (HTP3) can only be solved approximately by,

e.g., gradient descent (Nesterov, 2004), stochastic gradi-

ent descent (Bottou & Bousquet, 2007), or the more recent

variance reduced variant (Johnson & Zhang, 2013). The

question to ask is, whether support recovery is possible un-

der such a “noisy” setting, and how the optimization accu-

racy ǫ enters the conditions for this end.

The following theorem presents an affirmative answer,

though the RIP condition is assumed.

Theorem 7. Consider the HTP algorithm with ǫ-
approximate solutions in (HTP3). Assume (A1) and (A2).
Suppose that the condition number κ < 1.25. Pick η =
η′/M with κ − 0.25 < η′ < 1 and set k = s in (HTP2).

Then HTP recovers the support of x̄ using at most

tmax =

(

log κ

log(1/µ)
+

log(
√
2/(1− λ))

log(1/µ)
+ 2

)

‖x̄‖0

iterations, provided that for some constant λ ∈ (0, 1)

x̄min ≥
√
2 + 3

√
2κ

mλ
‖∇k+sF (x̄)‖+

4

mλ

√
Mǫ. (4)

Above, the quantity µ is given by

µ =
√
2(κ− η′) ∈ (0,

√
2/4).

Since the condition number is assumed to be well bounded,

it follows that the iteration complexity is a constant multi-

ple of the sparsity, i.e., O (‖x̄‖0). By examining the x̄min

condition (4), we find that the optimization error ǫ does not

propagate in a progressive manner. Rather, it enters the

condition as an additive error. By comparing (4) to (3), the

exact case, one may argue that (4) is more stringent because

it requires x̄min ≥ O (κ) ‖∇k+sF (x̄)‖ while (3) imposes

x̄min ≥ O (
√
κ) ‖∇k+sF (x̄)‖. Yet, we point out that The-

orem 7 is based on the RIP condition, i.e., κ < 1.25. So it

is not appropriate to examine the asymptotic behavior for

the condition (4).

Finally, we study under which RIP-free conditions can

HTP guarantee support recovery in the face of approximate

solutions. We have the following result.

Support Recovery of Hard Thresholding Pursuit

Theorem 8. Consider the HTP algorithm with ǫ-
approximate solutions in (HTP3). Assume (A1) and (A2).
Pick η < 1/M and let k ≥ 2s + 8s

η2m2 in (HTP2). Then

HTP recovers the support of x̄ using at most

tmax =

(

3 log κ

log(1/µ)
+

4 log(
√
2/(1− λ))

log(1/µ)
+ 2

)

‖x̄‖0

iterations, provided that for some constant λ ∈ (0, 1)

x̄min ≥ 2
√
2 +

√
κ

mλ
‖∇k+sF (x̄)‖

+ λ−1

(√

2

m(1− µ)
+

√

2

m
κ

)

√
ǫ. (5)

Above, the quantity µ is given by

µ = 1− ηm(1− ηM)

2
∈ (0, 1).

To be clear, due to sparsity relaxation, Theorem 8 only en-

sures support inclusion, i.e., S ⊂ Stmax . In Yuan et al.

(2016), they showed that under the condition

x̄min > 1.62

√

2(F (x̄)− F (x∗))

m
,

HTP terminates with output xt satisfying supp (xt, s) =
S. However, the iteration number t was not given. Either,

it is not clear how large the difference F (x̄) − F (x∗) is,

where x∗ is the global s-sparse minimizer of F (x) and we

recall that x̄ is an arbitrary signal.

In contrast to Theorem 7, the quantity
√
ǫ here is multiplied

by the condition number κ, which will consume more com-

putational resources in order to fulfill the condition. This is

not surprising because enlarging the support increases the

chance of detecting the support but as a price, it also in-

troduces more noise. Fortunately, under the RSC and RSS

assumptions, first order solvers converges linearly. For in-

stance, after O (κ log(1/ǫ)) steps, gradient descent guaran-

tees an ǫ-approximate solution.

In view of the existing results from convex optimiza-

tion (Nesterov, 2004), together with Theorem 8, we can

show that the total computational complexity of HTP is
(

d+ κ2s log d+ κ3s log(1/ǫ)
)

sκ log κ. (6)

To see this, note that (HTP1) consumes O (d) operations

and (HTP2) costs O (k log d). Using gradient descent

to solve (HTP3) results in a complexity O (kκ log(1/ǫ)).
Combining them together and noting k = O

(

κ2s
)

, we ob-

tain the above.

We point out that though Theorem 6 and Theorem 7 need to

know the sparsity s, one can set k to be a quantity smaller

than s. In this case, it follows from our analysis that HTP

recovers the support of the top-k elements. Interested read-

ers may refer to Lemma 19 for more details.

4. Statistical Results

In this section, we relate our main results, Theorem 6 to

Theorem 8, to concrete statistical models. In particular, we

study two prevalent models: the sparse linear regression

and the sparse logistic regression.

The sparse linear regression model is in essence the one

considered in the compressed sensing community. It as-

sumes that the given response vector y obeys y = Ax̄+e,

for a known design matrix A, a true sparse parameter x̄ (to

be estimated) and an unknown noise e. In order to estimate

the signal x̄, many researchers (e.g., Jain et al. (2014)) con-

sidered the following formulation:

min
x∈Rd

F (x) := ‖y −Ax‖2 , s.t. ‖x‖0 ≤ s,

and attempted to prove that the (near) optimal solution of

the above program is close enough to x̄. Yet, it turns

out that we can use more flexible functions F (x), e.g.,

F (x) = ‖y −Ax‖2 + α ‖x‖2. To see this, by standard

results (e.g., Vershynin (2010); Shen & Li (2016)), we are

guaranteed that when the entries of A and those of e are

i.i.d. sub-gaussian,

‖∇k+sF (x̄)‖ ≤ O
(

√

N−1(k + s) log d
)

+ α ‖x̄‖

holds with high probability, where N is the sample size.

Hence, by picking α = O
(

√

N−1(k + s) log d
)

, we have

‖∇k+sF (x̄)‖ vanishes as N increases. In light of such an

observation and our theorems (specifically the x̄min con-

ditions), we find that it is not the sparsity-constrained pro-

gram matters. Rather, it is a properly chosen F (x) that

guides HTP to the target signal.

The logistic regression model is used for binary classi-

fication. It has been shown in a number of work (see,

e.g., Yuan et al. (2014)) that ‖∇k+sF (x̄)‖ is bounded from

above by O
(

√

N−1(k + s) log d
)

with high probability,

assuming the data is i.i.d. sub-gaussian. Again, we can

add an ℓ2 regularizer to the logistic loss to make it strongly

convex, without loss of the support recovery guarantee.

Relating these statistical results to our theorems, we con-

clude that the x̄min conditions involved can be satisfied

with high probability as soon as the sample size N grows

with (k + s) log d. Moreover, under the same conditions,

the condition number κ is well bounded from above, say

κ < 9, implying a constant iteration complexity O (‖x̄‖0)
and a fast computation (see the complexity in (6)). We also

remark that in light of the many more choices of F (x), the

function F (x) essentially acts as a proxy that guides HTP

to the target signal, rather than an objective function being

optimized by HTP.

Support Recovery of Hard Thresholding Pursuit

5. Proof Sketch

Our main results, Theorem 6 to Theorem 8, are proved by

mathematical induction. The key idea is partitioning the

support set S into several disjoint subsets S1, S2, . . . , SK

according to the magnitude of the elements (Zhang, 2011;

Bouchot et al., 2016). Then we show that after a few itera-

tions, say n1, HTP identifies the first subset, i.e., S1 ⊂ Sn1 .

Given this, we further examine how many iterations are

needed to include the first two subsets. And we inductively

show that after n1 + n2 · · ·+ ni steps, the support set pro-

duced by HTP contains the first i number of subsets, i.e.,

S1 ∪ S2 · · · ∪ Si ⊂ Sn1+n2···+ni . We then show that each

ni is small, and the sum of them is upper bounded by a

multiple of ‖x̄‖0. Hence, two components are important to

this end. First, we need to construct the subsets properly,

and second, we need to offer an estimate on the ni’s which

should be small enough.

Without loss of generality, suppose that the elements of x̄

are arranged in descending order. Then each subset Si is

inductively constructed as follows:

Si = {si−1 + 1, . . . , si}, 1 ≤ i ≤ K,

where s0 = 0 and for all 1 ≤ i ≤ K , si is defined as the

largest index such that

|x̄si | >
1√
2

∣

∣x̄si−1+1

∣

∣ .

Note that the constant 1/
√
2 can be replaced with any other

quantity smaller than 1. Since si is the largest one, it fol-

lows that

|x̄si+1| ≤
1√
2

∣

∣x̄si−1+1

∣

∣ ,

which immediately implies

∥

∥x̄{si−1+1,...,s}

∥

∥

2 ≤ 2(x̄si)
2Si:K ,

where

Si:K :=

K−i
∑

j=0

2−j |Si+j | .

Then we show that given the above and the condition S1 ∪
S2 · · · ∪Si−1 ⊂ Sn1+n2···+ni−1 , as soon as HTP decreases

the distance to x̄ with a geometric rate (which is the theme

of Section 2), we are guaranteed that S1 ∪ S2 · · · ∪ Si ⊂
Sn1+n2···+ni . Here, ni is given by

|x̄si | > α · βni

√

Si:K + θ,

for some parameters α, β and θ. Now assuming θ <
x̄min ≤ |x̄si | implies that ni is as small as the logarithm of

Si:K . Thus,

tmax =

K
∑

i=1

ni ≤
K
∑

i=1

logSi:K ≤ K log
1

K

K
∑

i=1

Si:K .

The result follows by doing some calculation on the sum of

Si:K’s. See the full proof in the supplementary file.

6. Numerical Study

The HTP algorithm has been studied for several years and

has found plenty of successful applications. There is also a

large volume of empirical study, e.g., Bouchot et al. (2016),

showing that HTP performs better in terms of computa-

tional efficiency and parameter estimation than compres-

sive sampling matching pursuit (Needell & Tropp, 2009),

subspace pursuit (Dai & Milenkovic, 2009), iterative hard

thresholding (Blumensath & Davies, 2009), to name a few.

Hence, the focus of our numerical study is to verify the

theoretical findings in Section 3.

Data. In order to investigate the performance of HTP with

both the exact and inexact solutions, we consider the lin-

ear regression model y = Ax̄ + σe, where x̄ is a 100-

dimensional vector with a tunable sparsity s. The elements

in the design matrix A and the noise e are i.i.d. normal

variables. The response y is an N -dimensional vector. For

a certain sparsity level s, the support of x̄ is chosen uni-

formly and the non-zero components of x̄ are i.i.d. normal

variables. If not specified, we set N = 100 and σ = 0.01.

Evaluation metric. In the experiments, we are mainly in-

terested in examining the percentage of successful support

recovery and the iteration number that guarantees it. We

mark a trial as success if before HTP terminates, there is a

solution xt satisfying supp (xt) = supp (x̄). Otherwise,

we mark it as failure. The iteration number is counted only

for those success trials and we report the averaged result.

Solvers. We choose the least-squares loss as the proxy

function F (x), for which an exact solution can be com-

puted in (HTP3). We also implement the gradient de-

scent (GD) algorithm to approximately solve (HTP3). In

order to produce solutions with different accuracy ǫ, we run

the GD algorithm with a various number of gradient oracle

calls. In this way, we are able to examine how ǫ affects

support recovery through the number of oracle calls.

Other settings. The step size η in HTP is fixed as η =
1. We use the true sparsity for the sparsity parameter k in

(HTP2). For each configuration of sparsity, we generate

100 independent copies of x̄. Hence, all the experiments

are performed with 100 trials.

A notable aspect of our theoretical results is that after

O (sκ logκ) iterations, HTP captures the support. For the

purpose of justification, we vary the sparsity s from 1 to 50,

Support Recovery of Hard Thresholding Pursuit

1 10 20 30 40 50
0

2

4

6

8

10

#non−zeros

#i
te

ra
tio

ns

Exact
GD−10
GD−20
GD−50
GD−100
GD−200

1 10 20 30 40 50
0

20

40

60

80

100

#non−zeros

pe
rc

en
ta

ge
 o

f s
uc

ce
ss

Exact
GD−10
GD−20
GD−50
GD−100
GD−200

Figure 1. Iteration number and percentage of success against

the sparsity. The number of measurements N = 100. GD–“T ”

means we run the gradient descent algorithm for T steps. As pre-

dicted by our theorem, the iteration number is nearly proportional

to the sparsity (left panel). Note that using approximate solutions

does not affect the iteration complexity. From the right panel,

we observe that gradient descent with 50 steps already ensures

comparable performance to the exact solution, possibly due to the

geometric convergence rate of gradient descent.

and plot the curve of the iteration number used to identify

the support against the true sparsity s. Note that we use the

same design matrix for all trials, hence a fixed condition

number κ. The result is recorded in the left panel of Fig-

ure 1. As predicted by our theorem, the iteration number is

(almost) linear with the sparsity. Interestingly, we also find

that HTP uses far fewer steps than expected. For example,

to recover the support of a 20-sparse signal, 4 iterations

suffice in average, suggesting possible improvement of our

theorems in special cases. Also note that for a given spar-

sity level, applying an inexact solver for (HTP3) does not

increase the iteration number of HTP. This is not surpris-

ing since our theorem states that the optimization error in

(HTP3) only enters the x̄min condition. In other words, it

only affects the percentage of success as shown in the right

panel of Figure 1. Thanks to the linear convergence of gra-

dient descent, it turns out that using 50 calls of gradient

oracle guarantees an appealing performance.

Next, we tune the number of measurements N from 1 to

100, and study the support recovery performance against

the choice of N . Here, the sparsity level s is fixed to

s = 5. With the sub-gaussian design, standard result

shows that the condition number can be upper bounded

by (C1N + s log d)/(C2N − s log d). See, for exam-

ple, Jain et al. (2014). This indicates that the condition

number is inversely proportional to N after a proper shift-

ing, and hence the iteration number. The curves on the left

panel of Figure 2 matches our assertion. In the right panel,

a phase transition emerges (Donoho & Tanner, 2010). That

is, above a certain threshold (here the threshold is 20), sup-

port recovery is guaranteed with high probability while be-

low that threshold, we have no hope to estimate the sig-

nal. We also find that when sufficient measurements are

available, running GD with 10 gradient oracle calls already

brings desirable performance.

1 20 40 60 80 100

2

3

4

5

6

#measurements

#i
te

ra
tio

ns

Exact
GD−10
GD−20
GD−50
GD−100
GD−200

1 20 40 60 80 100
0

20

40

60

80

100

#measurements

pe
rc

en
ta

ge
 o

f s
uc

ce
ss

Exact
GD−10
GD−20
GD−50
GD−100
GD−200

Figure 2. Iteration number and percentage of success against

the number of measurements. The sparsity s = 5. GD–“T ”

means we run the gradient descent algorithms for T steps. The

left panel shows that the more measurements we have, the faster

we detect the support. The rationale is that the condition num-

ber becomes smaller with additional measurements, and by our

theorem, we need fewer iterations. The right panel shows a phase

transition phenomenon: when we have 20 or more measurements,

HTP guarantees support recovery with high probability while sup-

port recovery is impossible if we do not have sufficient samples.

Again, running GD with 50 gradient oracle calls produces similar

result with the exact solution.

We remind that in Figure 1 and Figure 2, some values of

#iterations are not plotted. For example, we do not have

the iteration number for GD–50 in Figure 1 when s ≥ 45.

This is simply because all the trials are marked as failure.

See the associated percentage of success curve.

Now let us return to the x̄min condition of Theorem 8, i.e.,

Eq. (5). From Figure 1 and Figure 2, we conclude that

as far as the optimization error is small enough, HTP with

inexact iterates behaves comparably to that with exact solu-

tions. For example, the “GD–200” curve (black solid) and

the “Exact” curve (red dashed) in these two figures actually

lie on top of each other even the RIP condition is not met

(smallN or large s). This suggests that the relaxed sparsity

condition in Theorem 8 may not be vital.

7. Conclusion and Future Work

In this paper, we have studied the iteration complexity of

the hard thresholding pursuit algorithm for recovering the

support of an arbitrary s-sparse signal. We have shown that

if the iterates of HTP are exact solutions, HTP recovers

the support within O (sκ logκ) iterations where κ is the

condition number. In a more practical machine learning

setting, we have proved that even with inexact solutions,

support recovery is still possible with the same iteration

bound. We have also investigated two popular statistical

models, and have established probabilistic arguments under

the standard sub-gaussian design. The numerical study has

confirmed the correctness of our theoretical findings.

Orthogonal to the present work, an interesting direction for

future study is establishing a lower bound on the iteration

complexity of HTP for support recovery. It is also interest-

ing to investigate the performance on realistic datasets.

Support Recovery of Hard Thresholding Pursuit

Acknowledgements

The work is supported in part by NSF-Bigdata-1419210

and NSF-III-1360971. We thank the anonymous review-

ers for pointing out several related work and for suggesting

improvement on the proof sketch and the experiments. We

also thank Jian Wang and Jing Wang for valuable discus-

sion on the work.

References

Agarwal, Alekh, Negahban, Sahand, and Wainwright, Mar-

tin J. Fast global convergence of gradient methods for

high-dimensional statistical recovery. The Annals of

Statistics, 40(5):2452–2482, 2012.

Blumensath, Thomas and Davies, Mike E. Iterative hard

thresholding for compressed sensing. Applied and Com-

putational Harmonic Analysis, 27(3):265–274, 2009.

Bottou, Léon and Bousquet, Olivier. The tradeoffs of large

scale learning. In Proceedings of the 21st Annual Con-

ference on Neural Information Processing Systems, pp.

161–168, 2007.

Bouchot, Jean-Luc, Foucart, Simon, and Hitczenko, Pawel.

Hard thresholding pursuit algorithms: number of itera-

tions. Applied and Computational Harmonic Analysis,

41(2):412–435, 2016.

Cai, Tony T., Wang, Lie, and Xu, Guangwu. New bounds

for restricted isometry constants. IEEE Trans. Informa-

tion Theory, 56(9):4388–4394, 2010.

Candès, Emmanuel J. and Tao, Terence. Decoding by linear

programming. IEEE Trans. Information Theory, 51(12):

4203–4215, 2005.

Chen, Scott Shaobing, Donoho, David L., and Saunders,

Michael A. Atomic decomposition by basis pursuit.

SIAM Journal on Scientific Computing, 20(1):33–61,

1998.

Dai, Wei and Milenkovic, Olgica. Subspace pursuit for

compressive sensing signal reconstruction. IEEE Trans.

Information Theory, 55(5):2230–2249, 2009.

Daubechies, Ingrid, Defrise, Michel, and Mol, Chris-

tine De. An iterative thresholding algorithm for linear

inverse problems with a sparsity constraint. Communi-

cations on Pure and Applied Mathematics, 57(11):1413–

1457, 2004.

Donoho, David L. Compressed sensing. IEEE Trans. In-

formation Theory, 52(4):1289–1306, 2006.

Donoho, David L. and Tanner, Jared. Precise undersam-

pling theorems. Proceedings of the IEEE, 98(6):913–

924, 2010.

Foucart, Simon. Hard thresholding pursuit: An algorithm

for compressive sensing. SIAM Journal on Numerical

Analysis, 49(6):2543–2563, 2011.

Jain, Prateek, Tewari, Ambuj, and Dhillon, Inderjit S. Or-

thogonal matching pursuit with replacement. In Pro-

ceedings of the 25th Annual Conference on Neural In-

formation Processing Systems, pp. 1215–1223, 2011.

Jain, Prateek, Tewari, Ambuj, and Kar, Purushottam. On it-

erative hard thresholding methods for high-dimensional

M-estimation. In Proceedings of the 28th Annual Con-

ference on Neural Information Processing Systems, pp.

685–693, 2014.

Johnson, Rie and Zhang, Tong. Accelerating stochastic

gradient descent using predictive variance reduction. In

Proceedings of the 27th Annual Conference on Neural

Information Processing Systems, pp. 315–323, 2013.

Loh, Po-Ling and Wainwright, Martin J. Support recovery

without incoherence: A case for nonconvex regulariza-

tion. CoRR, abs/1412.5632, 2014.

Needell, Deanna and Tropp, Joel A. CoSaMP: Iterative

signal recovery from incomplete and inaccurate samples.

Applied and Computational Harmonic Analysis, 26(3):

301–321, 2009.

Negahban, Sahand, Ravikumar, Pradeep, Wainwright,

Martin J., and Yu, Bin. A unified framework for high-

dimensional analysis of M -estimators with decompos-

able regularizers. In Proceedings of the 23rd Annual

Conference on Neural Information Processing Systems,

pp. 1348–1356, 2009.

Nesterov, Yurii. Introductory lectures on convex optimiza-

tion, volume 87. Springer Science & Business Media,

2004.

Nguyen, Nam H. and Tran, Trac D. Robust lasso with miss-

ing and grossly corrupted observations. IEEE Trans. In-

formation Theory, 59(4):2036–2058, 2013.

Nguyen, Nam H., Needell, Deanna, and Woolf, Tina. Lin-

ear convergence of stochastic iterative greedy algorithms

with sparse constraints. CoRR, abs/1407.0088, 2014.

Osher, Stanley, Ruan, Feng, Xiong, Jiechao, Yao, Yuan,

and Yin, Wotao. Sparse recovery via differential inclu-

sions. Applied and Computational Harmonic Analysis,

41(2):436–469, 2016.

Support Recovery of Hard Thresholding Pursuit

Pati, Yagyensh C., Rezaiifar, Ramin, and Krishnaprasad,

Perinkulam S. Orthogonal matching pursuit: Recur-

sive function approximation with applications to wavelet

decomposition. In Conference Record of The Twenty-

Seventh Asilomar Conference on Signals, Systems and

Computers, pp. 40–44. IEEE, 1993.

Shen, Jie and Li, Ping. A tight bound of hard thresholding.

CoRR, abs/1605.01656, 2016.

Tibshirani, Robert. Regression shrinkage and selection via

the Lasso. Journal of the Royal Statistical Society: Se-

ries B (Methodological), pp. 267–288, 1996.

Tropp, Joel A. Greed is good: algorithmic results for

sparse approximation. IEEE Trans. Information Theory,

50(10):2231–2242, 2004.

Tropp, Joel A. and Gilbert, Anna C. Signal recovery

from random measurements via orthogonal matching

pursuit. IEEE Trans. Information Theory, 53(12):4655–

4666, 2007.

Vershynin, Roman. Introduction to the non-asymptotic

analysis of random matrices. CoRR, abs/1011.3027,

2010.

Wainwright, Martin J. Sharp thresholds for high-

dimensional and noisy sparsity recovery using ℓ1-

constrained quadratic programming (Lasso). IEEE

Trans. Information Theory, 55(5):2183–2202, 2009.

Wang, Jian, Kwon, Suhyuk, Li, Ping, and Shim, Byonghyo.

Recovery of sparse signals via generalized orthogonal

matching pursuit: A new analysis. IEEE Trans. Signal

Processing, 64(4):1076–1089, 2016.

Yuan, Ming and Lin, Yi. On the non-negative garrotte esti-

mator. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 69(2):143–161, 2007.

Yuan, Xiao-Tong, Li, Ping, and Zhang, Tong. Gradient

hard thresholding pursuit for sparsity-constrained opti-

mization. In Proceedings of the 31st International Con-

ference on Machine Learning, pp. 127–135, 2014.

Yuan, Xiao-Tong, Li, Ping, and Zhang, Tong. Exact recov-

ery of hard thresholding pursuit. In Proceedings of the

30th Annual Conference on Neural Information Process-

ing Systems, pp. 3558–3566, 2016.

Zhang, Tong. On the consistency of feature selection us-

ing greedy least squares regression. Journal of Machine

Learning Research, 10:555–568, 2009.

Zhang, Tong. Sparse recovery with orthogonal matching

pursuit under RIP. IEEE Trans. Information Theory, 57

(9):6215–6221, 2011.

Zhao, Peng and Yu, Bin. On model selection consistency of

lasso. Journal of Machine Learning Research, 7:2541–

2563, 2006.

