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A. Factored Inference
When training the BJDE in the semi-supervised regime,
we introduce a factored inference procedure that reduce the
number of parameters in the recognition model.

In the semi-supervised regime, the 1-layer BJDE recog-
nition model requires approximating three posteriors:
p(z|x, y) / p(z)p(x, y|z), p(z|x) / p(z)p(x|z), and
p(z|y) / p(z)p(y|z). The standard approach would be to
assign one recognition network for each approximate pos-
terior. This approach, however, does not take advantage
of the fact that these posteriors share the same likelihood
functions, i.e., p(x, y|z) = p(x|z)p(y|z).
Rather than learning the three approximate posteriors in-
dependently, we propose to learn the approximate likeli-
hood functions ˆ

`(z;x) ⇡ p(x|z), ˆ

`(z; y) ⇡ p(y|z) and
let ˆ

`(z;x, y) =

ˆ

`(z;x)

ˆ

`(z; y). Consequently, this factor-
ization of the recognition model enables parameter sharing
within the joint recognition model (which is beneficial for
semi-supervised learning) and eliminates the need for con-
structing a neural network that takes both x and y as in-
puts. The latter property is especially useful when learning
a joint model over multiple, heterogeneous data types (e.g.
image, text, and audio).

In practice, we directly learn recognition networks for
q(z|x) and ˆ

`(z; y) and perform factored inference as fol-
lows
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where ˜

� parameterizes the recognition networks. To en-
sure proper normalization in Eq. (14), it is sufficient for ˆ

`

to be bounded. If the prior p(z) belongs to an exponential
family with sufficient statistics T (z), we can parameterize
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(y) 2 {⌘|{hT (z), ⌘i 8z} is upper bounded}.
Then the approximate posterior can be obtained by simple
addition in the natural parameter space of the correspond-
ing exponential family. When the prior and approximate
likelihood are both Gaussians, this is exactly precision-
weighted merging of the means and variances (Sønderby
et al., 2016).

B. Derivation of the Hybrid Objective
We first provide the derivation of Eq. (11). We begin with
the factorization proposed in Eq. (7), which we repeat here
for self-containedness,
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Since our model includes unpaired y, we modify Eq. (15)
to include
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To account for the variational parameters, we include them
in the joint density as well,
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By taking the log and replacing the necessary densities with
their variational lower bound,
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we arrive at Eq. (11). We note, however, that a more gen-
eral hybrid objective Eq. (13) is achievable. To derive the
general objective, we consider an alternative factorization
of the joint density in Eq. (17),
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We factorize the likelihood term such that X
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We then introduce an auxiliary variable s = {0, 1},
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Using Jensen’s inequality, we can lower bound
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By taking the log of Eq. (19), replacing all remaining
densities with their variational lower bound, and setting
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we arrive at the general hybrid objective. Note that when
↵ = 0, Eq. (26) reduces to Eq. (18).

C. Visualizations for CelebA and SVHN
We show visualizations of the hybrid BCDE predictions for
CelebA and SVHN on the top-down prediction task in the
n

l

= 10000 semi-supervised regime. For each data set, we
visualize both the images sampled during reconstruction as
well as prediction using an approximation of the MAP es-
timate by greedily sampling the mode of each conditional
distribution in the generative path.

(a) Hybrid Rec. (b) Hybrid Pred.

Figure 6. Visualization of the reconstructed and predicted bottom
half of SVHN test set images when conditioned on the top half.

(a) Conditional Rec. (b) Conditional Pred.

(c) Pre-train Rec. (d) Pre-train Pred.

(e) Hybrid Rec. (f) Hybrid Pred.

(g) Hybrid Factored Rec. (h) Hybrid Factored Pred.

Figure 7. Visualization of the reconstructed and predicted bottom
half of CelebA test set images when conditioned on the top half.


