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Abstract

Rapid learning requires flexible representations
to quickly adopt to new evidence. We develop a
novel class of models called Attentive Recurrent
Comparators (ARCs) that form representations
of objects by cycling through them and making
observations. Using the representations extracted
by ARCs, we develop a way of approximating a
dynamic representation space and use it for one-
shot learning. In the task of one-shot classifi-
cation on the Omniglot dataset, we achieve the
state of the art performance with an error rate of
1.5%. This represents the first super-human re-
sult achieved for this task with a generic model
that uses only pixel information.

1. Introduction
Utilizing the success and the potential of Deep Neural Net-
works to solve hard Artificial Intelligence tasks requires
neural models that are capable of performing rapid learning
(Lake et al., 2016). For models to embody such rich learn-
ing capabilities, we believe that a crucial characteristic will
be the employment of dynamic representations – represen-
tations that are formed by observing a growing and con-
tinually evolving set of features. We call the space that is
formed by such evolving representations the dynamic rep-
resentation space.

In this paper, we present a novel model for one-shot learn-
ing that utilizes a crude approximation of such a dynamic
representation space. This is done by constructing the rep-
resentation space lazily and relative to a particular (test)
sample every time. For the purpose of producing such rel-
ative representations, we develop a novel class of models
called Attentive Recurrent Comparators (ARCs).
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We first test ARCs across many tasks that require assess-
ment of visual similarity. We find that ARCs that do not use
any convolutions show comparable performance to Deep
Convolutional Neural Networks on challenging datasets
like CASIA WebFace and Omniglot. Though dense ARCs
are as capable as ConvNets, a combination of both ARCs
and convolutions (ConvARCs) produces much more su-
perior models. In the task of estimating the similarity of
two characters from the Omniglot dataset, ARCs and Deep
ConvNets both achieve about 93.4% accuracy, whereas
ConvARCs achieve 96.10% accuracy. In the task of face
verification on the CASIA Webface dataset, ConvARCs
achieved 81.73% accuracy surpassing the 79.48% accuracy
achieved by a CNN baseline considered.

We then use ARCs as a means for developing a lazy, rel-
ative representation space and use it for one-shot learning.
On the challenging Omniglot one-shot classification task,
our model achieved an accuracy of 98.5%, significantly
surpassing the current state-of-the-art set by all other meth-
ods. This is also the first super-human result achieved for
this task with a generic model that uses only pixel informa-
tion.

1.1. Comparing Objects

ARCs are inspired by our interpretation of how humans
generally compare a set of objects. When a person is asked
to compare two objects and estimate their similarity, the
person does so by repeatedly looking back and forth be-
tween the two objects. With each glimpse of the object, a
specific observation is made. These observations which are
made in both objects are then cumulatively used to come to
a conclusion about their similarity. A crucial characteristic
of this process is that new observations are made condi-
tioned on the previous context that has been investigated
so far by the observer. The observation and it’s contextual
location are all based on intermediate deductions – deduc-
tions that are themselves based on the observations made
so far in the two objects. A series of such guided observa-
tions and their entailing inferences are accumulated to form
a final the judgement on their similarity. We will refer to
how humans compare objects as the human way.

In stark contrast to this, current similarity estimating sys-
tems in Deep Learning are analogues of the Siamese sim-
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ilarity learning system (Bromley et al., 1993). In this sys-
tem, a fixed set of features is detected in both the objects.
The two objects are compared based on mutual agreement
of the detected features. More concretely, comparison be-
tween two objects in this system consists of measuring the
distance between their vector embeddings or representa-
tions. A neural network that is specifically trained to detect
the most salient features in an object for a task defines the
object to embedding mapping. Detection of features in one
object is independent of the features present in the other
object.

There is a major underlying difference between the hu-
man approach discussed above and the siamese approach
to the problem. In the human way, the information from
the two objects is fused from the very beginning and this
combined information primes the subsequent steps in com-
parison. There are multiple lookups on each of the objects
and each of these lookups are conditioned on the observa-
tions of both the objects so far. In the siamese way, when
the embeddings are compared the information fuses mostly
at an abstract level and only in the last stage.

Inspired by the human way, we develop an end-to-end dif-
ferentiable model that can learn to compare objects called
Attentive Recurrent Comparators (ARCs).

Fundamentally, the excellent performance of ARCs shows
the value of ”early fusion” of information across the con-
text and the value of dynamic representations. Further, it
also gives merit to the view that attention and recurrence
together can be as good as convolutions in a few special
cases.

Finally, the superior similarity learning capability of ARCs
can be of independent interest as an alternative to siamese
neural networks for tasks such as face recognition and
voice verification.

2. Attentive Recurrent Comparators
Our ARC model is essentially an algorithmic imitation of
the human way discussed in Section 1.1 and built with
Deep Neural Networks. Using attention and recurrence,
an ARC makes an observation in one object conditioned
on the observations made so far in both objects. The expo-
sition of an ARC model that can compare two images and
judge their similarity is given below. But it can be trivially
generalised to more images or other modalities.

The model consists of a recurrent neural network controller
and an attention mechanism that takes in a specially con-
structed presentation sequence as the input. Given two im-
ages {xa, xb}, we alternate between the two images for a
finite number of presentations of each image to form the
presentation sequence xa, xb, xa, xb, ..., xa, xb. The model

Figure 1. The abstract graph of an ARC comparing two images.
The controller which is an RNN primes the whole process. The
two images are alternatively and repeatedly attended to. At each
time-step the glimpse taken from the image is based on the atten-
tion parameters Ωt which is calculated using the previous state of
RNN ht−1 by projecting it with Wg . The glimpse obtained Gt

and the previous state ht−1 together used to update the state of
controller to ht.

repeatedly cycles through both the images, attending to one
image at one time-step.

For time-step t the image presented is given by:

It ←− xa if t % 2 is 0 else xb

The attention mechanism focuses on a specific region of
the image current image It to get the glimpse Gt.

Gt ←− attend(It,Ωt) where Ωt = Wght−1

attend(.) is the attention mechanism that acts on image It
(described in the Section 2.1). Ωt are the attention glimpse
parameters which specify the location and size of the at-
tention window. At each step, we use the previous hidden
state of the RNN controller ht−1 to compute Ωt. Wg is the
projection matrix that maps the hidden state to the required
number of attention parameters.

Next, both the glimpse and previous hidden state are uti-
lized to form the next hidden state.

ht ←− RNN(Gt, ht−1)

RNN(.) is the update function for the recurrent controller
being used. This state update function could either be sim-
ple RNN or an LSTM.
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Over the course of many time steps, model observes many
aspects of both the images. The observations are made by
the model at each time step by directing its attention to a
region of interest in each input. Since the controller of the
model is a Recurrent Neural Network, this round robin like
cyclic presentation of images allows for early fusion of in-
formation from both images. This makes the model aware
of the context in which it is operating under. Consequently,
this provides feedback to the attention mechanism to attend
on the relevant and crucial parts of each image considering
the observations made so far in both the images.

If we make g glimpses (or observations) of each image, the
hidden state of the RNN controller at the final time-step
hT = h2g can then be used as the relative representation
of xa with respect to xb or vice versa. Note that It for
some t alternates between xa and xb, while the rest of the
equations are exactly the same for all time steps.

We arrived at the iterative attention paradigm after trying
out many approaches to attend to multiple images at once
on a few toy datasets. Other approaches for early fusion
like attending to both images in the same time-step or hav-
ing 2 controllers with shared weights failed or had poor
empirical performance. Iteratively attending to the inputs
is more computationally efficient, scalable and more con-
sistent statistically than the other approaches.

2.1. Attention Mechanism

The attention mechanism we used is incrementally de-
rived from zoom-able and differentiable image observation
mechanism of DRAW Gregor et al. (2015). The attention
window is defined by anN×N 2D grid of Cauchy kernels.
We found that the heavy tail of the Cauchy curve alleviates
some of the vanishing gradient issues and it also increases
the speed of training.

The grid’s location and size is defined based on the glimpse
parameters. The N ×N grid of kernels is placed at (x, y)
on the S × S image, with the central Cauchy kernel being
located at (x, y). The elemental square in the grid has a
side of length δ. The glimpse parameter set Ωt is unpacked
to get Ωt → (x̂, ŷ, δ̂). x, y and δ are computed from x̂, ŷ

and,δ̂ using the following transforms:

x = (S − 1) (x̂+1)
2 y = (S − 1) (ŷ+1)

2

δ = S
N (1− |δ̂|) γ = e1−2|̂δ|

The location of a ith row, jth column’s Cauchy kernel in
terms of the pixel coordinates of the image is given by:

µiX = x+(i−(N+1)/2)δ µjY = y+(j−(N+1)/2)δ

The horizontal and vertical filterbank matrices are then cal-

culated as:

FX [i, a] = 1
ZX

{
πγ

[
1 +

(
a−µi

X

γ

)2]}−1
FY [j, b] = 1

ZY

{
πγ

[
1 +

(
b−µj

Y

γ

)2]}−1
ZX and ZY are normalization constants such that they
make ΣaFX [i, a] = 1 and ΣbFX [j, b] = 1

Final result of attention on an image is given by:

attend(It,Ωt) = FY ItF
T
X

attend thus gets an N × N patch of the image, which is
flattened and used in the model.

2.2. Use of Convolutions

As seen in the experimental sections that follow, use of con-
volutional feature extractors gave a significant boost in per-
formance. Given an image, the application of several lay-
ers of convolution produces a 3D solid of activations (or a
stack of 2D feature maps). Attention over this corresponds
to applying the same 2D attention (described in Section 2.1
above) over the entire depth of the 3D feature map. The at-
tended sub-solid is then flattened and used as the glimpse.

3. Dynamic Representations and One-shot
Classification

One-shot learning requires learning models to be at the
apotheosis of data efficiency. In the case of one-shot clas-
sification, only a single example of each individual class is
given and the model is expected to generalise to new sam-
ples of the same class.

3.1. Dynamic Representations

Deep Neural Networks learn useful representations of ob-
jects from data. Representation of a sample is computed by
identifying a fixed set of features in it, and these features
are learnt from scratch and are purely based on data pro-
vided during training. In the end, a trained neural network
can be interpreted as being composed of two components -
a function that maps the input sample to a point in represen-
tation space and a classifier that learns a decision boundary
in this representation space.

Rapid learning expects that this representation space to be
dynamic – representations should change with newly found
data. All features that form a good representation aren’t
known during initial learning and entirely new concepts
with never-before-seen features should be expected. Ide-
ally, the entire representation space should change when
the new concept is introduced. This would enable the as-
similation of new concepts in conjunction with the old con-
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cepts. One way of training such systems is to have a meta-
learning system where the model is trained to represent en-
tities in space (rather than being trained to represent an en-
tity) (Schaul & Schmidhuber, 2010). Deep Learning re-
search in this direction recently (Santoro et al., 2016) has
explored developing complex models that are trained in an
end-to-end manner. But empirically, we found that such
top-down hierarchical models are difficult to train, suffer
from reduced supervision and require specially constructed
datasets.

However, there is another alternative strategy that could be
employed as crude approximation of this ideal scenario.
This involves lazily developing a representation space that
is conditioned on the test sample only at inference time.
Until then, all samples presented to the model are just
stored as-is in a repository. When the test sample is given,
we compare this sample with every other sample in our
repository using ARCs to form a relative representation
of each sample (the representation being the final hidden
state of the recurrent controller). In this relative represen-
tation space, which is relative to a test sample, we use a
trained classifier that can identify the most similar sam-
ple pair, given the entire context of relative representation
space. This relative representation space is dynamic as it
changes relative to the test sample.

3.2. One-shot Learning Models

The standard one-shot classification setup consists of a sup-
port set and a test sample. In an one-shot learning episode,
the support set containing a single example of each class is
first provided to the model. Next, a test sample is given and
the model is expected to make its classification prediction.
Finally, the classification accuracy is calculated based on
all the predictions. We developed the following two mod-
els with ARCs for this task:

3.2.1. NAIVE ARC MODEL

This is a trivial extension of ARCs for used for the verifica-
tion task. A test sample is compared against all the images
in the support set. It is matched to the sample with maxi-
mum similarity and the corresponding class is the predic-
tion of the model. Here, we are reducing the relative repre-
sentations to similarity scores directly. The entire context
of the relative representation space is not incorporated.

3.2.2. FULL CONTEXT ARC

This model incorporates the full knowledge of the relative
representation space generated before making a prediction.
While Naive ARC model is simple and efficient, it does not
incorporate the whole context in which our model is ex-
pected to make the decision of similarity. When the test
sample is being compared with all support samples, the

comparisons are all independently done.

It is highly desirable to have a 20-way ARC, where each
observation is conditioned on the all images in the back-
ground set. Unfortunately, such a model is not practical.
This would require maintaining a lot of context in the con-
troller state. But, scaling up the controller memory incurs a
huge (quadratic) parameter burden. So instead, we use a hi-
erarchical setup, which decomposes the comparisons to be
at two levels - first local pairwise comparison and a second
global comparison. We found that this model reduces the
information that has to be crammed in the controller state,
while still providing sufficient context.

As with the Naive method, we compare test sample from
evaluation set with each image from support set in pairs.
But instead of emitting a similarity score immediately, we
process the relative representations of each comparison.
Relative representations are the final hidden state of the
controller when the test image T is being compared to im-
age Sj from the support set: ej = hL

T,Sj . These em-
beddings are further processed by a Bi-Directional LSTM
layer. This merges the information from all comparisons,
thus providing the necessary context before prediction. The
approach taken here is very similar to Matching Networks
(Vinyals et al., 2016), but it is slightly more intuitive and
provides superior results.

cj = [
−−−−→
LSTM(ej);

←−−−−
LSTM(ej) ] ∀j ∈ [1, 20]

Each embedding is mapped to a single score sj = f(cj),
where f(.) is an affine transform followed by a non-
linearity. The final output is the normalized similarity with
respect to all similarity scores.

pj = softmax(sj) ∀j ∈ [1, 20]

This whole process is to make sure that we adhere to the
fundamental principle of Deep Learning, which is to opti-
mise objectives that directly reflect the task. The softmax
normalisation allows for the expression of relative similar-
ity rather than absolute similarity.

4. Experiments
In this section, we first detail the analysis done to better
understand the empirical functioning of ARCs, both qual-
itatively and quantitatively. We then benchmark ARCs
on standard similarity learning tasks on two datasets and
present the results.

4.1. Model Analysis

For the analysis presented below, we use the simple ARC
model described in Section 2 trained for the verification (or
similarity learning) task on the Omniglot dataset. The ver-
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(a) It can be seen that the two characters look very similar in
their stroke pattern and differ only in their looping structure.
ARC has learnt to focus on these crucial aspects.

(b) ARC parses over the characters in a left to right, top to bot-
tom fashion. Finally, it ends up focussing in the region where
the first character has a prolonged downward stroke, whereas
the second one does not.

Figure 2. Attention windows over time when comparing the two
Omniglot characters. The top row has the first image and the bot-
tom row has the second. Each column represents a glimpse step.
(a) Comparing two dissimilar characters and (b) Comparing two
similar characters.

ification task is a binary classification problem wherein the
model is trained to predict whether the 2 drawings provided
are of the same character or not.

The final hidden state of the RNN controller hT is used to
output at a single logistic neuron that estimates the proba-
bilty of similarity. The particular model under considera-
tion has an LSTM controller (Hochreiter & Schmidhuber,
1997) with forget gates (Gers et al., 2000). The number
of glimpses per image was fixed to 8, thus making the total
number of recurrent steps 16. 32 × 32 greyscale images
of characters were used and the attention glimpse resolu-
tion of 4×4 was used. Similar/dissimilar pairs of character
drawings were randomly chosen from within the same lan-
guage to make the task more challenging.

4.1.1. OMNIGLOT DATASET

Omniglot is a dataset by (Lake et al., 2015) that is specially
designed to compare and contrast the learning abilities of
humans and machines. The dataset contains handwritten
characters of 50 languages (alphabets) with 1623 total char-
acters. The dataset is divided into a background set and an
evaluation set. Background set contains 30 alphabets (964
characters) and only this set should be used to perform all
learning (e.g. hyper-parameter inference or feature learn-
ing). The remaining 20 alphabets are for pure evaluation
purposes only. Each character is a 105× 105 greyscale im-
age. There are only 20 samples for each character, each
drawn by a distinct individual.

4.1.2. QUALITATIVE ANALYSIS

ARCs tend to adopt a left to right parsing strategy for most
pairs, during which the attention window gradually reduces
in size. As seen in Figures 2(a) and 2(b), the observations
made by ARC in one image are definitely being condi-
tioned on the observations in the other image. We also fre-
quently encountered cases wherein the attention window,
would end up focusing on a blank region.

4.1.3. QUANTITATIVE ANALYSIS

We performed simple yet insightful ablation studies to un-
derstand ARC’s dynamics. The ARC accumulates infor-
mation about both the input images by a series of attentive
observations. To see how the information content varied
with observations, we trained 8 separate binary classifiers
to classify images as being similar or not based on hidden
states of the LSTM controller at every even time-step. The
performance of these classifiers is summarized in Table 1.
Since the ARC has an attention window of only 4×4 pixels,
it can barely see anything in the first time step, where its at-
tention is spread throughout the whole image. With more
glimpses, finer observations bring in more precise informa-
tion and the recurrent transitions make use of this knowl-
edge, leading to higher accuracies. We also used the 8 bi-
nary classifiers to study how models confidence grows with
more glimpses and such examples are provided in Figure 3.

Table 1. Glimpses per image versus classification accuracy of
ARC. Out of the 50 alphabets provided in the Omniglot dataset,
30 were used for training and validation and the last 20 for testing

GLIMPSES ACCURACY (TEST SET)

1 58.2%
2 65.0%
4 80.8%
6 89.25%
8 92.08%

4.2. Similarity Learning

In this section we compare ARCs with other Deep Learning
methods in the task of similarity learning on two datasets:
Omniglot and CASIA WebFace Dataset. We consider
strong convolutional baselines, which have been shown
time and again to excel at such visual tasks. Particularly,
we use Wide Resnets (WRNs) (Zagoruyko & Komodakis,
2016) which are the current state of the art models in image
classification. Wide ResNets used contain 4 blocks of con-
volutional feature extractors. ConvARC models also used
Wide Resnets for feature extraction but with one less block
of convolutions. We used moderate data augmentation con-
sisting of translation, flipping, rotation and shearing, which
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(a) ARC is very unsure of similarity at the beginning. But at 5th
glimpse (4th column), the attention goes over the region where
there are strokes in the first image and no strokes in the second
one resulting in dropping of the score.

(b) Initially ARC is unsure or thinks that the characters are simi-
lar. But towards the end, at 6th glimpse (5th column), the model
focusses on the region where the connecting strokes are differ-
ent. The similarity score drops and with more ”ponder”, it falls
down significantly.

Figure 3. Attention windows over time and instantaneous predic-
tions from independent binary classifiers. The first glimpse is
omitted as it covers the whole image. In the graph: x-axis:
glimpse number, y-axis: similarity score. The red line is the de-
cision threshold, above which the images are considered to be
similar. Both of the cases above are examples of a dissimilar pair.

we found to be critical for training ARC models (WRNs
also were trained with the same augmentation). Hyper pa-
rameters were set for reasonable values for all our ARC
models and no hyper-parameter tuning of any kind was em-
ployed.

4.2.1. OMNIGLOT

The same exact model used in the previous section was
used for this comparison as well. The data split up of
the Omniglot dataset used for this comparison is different
from the above: 30 alphabets were used for training, 10
for validation and 10 for testing (this was in order to be
comparable to the ConvNets in (Koch et al.)).The results
are aggregated in Table 2. Our simple ARC model without
using any convolutional layers obtains a performance that
matches a AlexNet style 6 layer Deep Convnet. Using con-
volutional feature extractors, ARCs outperform the Wide
ResNet based Siamese ConvNet baselines, even the ones
containing an order of magnitude more parameters.

4.2.2. CASIA WEBFACE

CASIA Webface is the largest public repository of faces
consisting of 494,414 distinct images of over 10 thousand
people. We split the data as follows: Training set: 70%
(7402 people), validation set: 15% (1586 people) and Test
set: 15% (1587 people). The images were downscaled to
32x32 pixels and an attention window of 4x4 pixels was
used. The rest of the architecture is same as the Omniglot

Table 2. Performance of ARC vs conventional methods on the
verification task on Omniglot dataset. Wide ResNets suffixes
specify the depth and width. Example, (d=60, w=4) means that it
is a ResNet that 60 is layers deep with each residual block having
a width multiplier of 4. Out of the 50 alphabets provided in the
Omniglot dataset, 30 were used for training, 10 for validation and
the last 10 for testing

MODEL ACCURACY (TEST SET)

SIAMESE NETWORK 60.52%
DEEP SIAMESE NET (KOCH ET AL.) 93.42%

SIAMESE RESNET (D=24, W=1) 93.47%
SIAMESE RESNET (D=30, W=2) 94.61%
SIAMESE RESNET (D=60, W=4) 93.57%

ARC 93.31%
CONVARC 96.10%

Table 3. Performance of ARC vs conventional methods on the
verification task on CASIA Webface dataset. Wide ResNets suf-
fixes notation is same as used in Table 2.

MODEL ACCURACY (TEST SET)

SIAMESE RESNET (D=36, W=4) 79.48%
ARC 72%

CONVARC 81.73%

model. Results are tabluated in Table 3.

5. One Shot Classification
One-shot classification on the Omniglot dataset is a very
challenging task as most Deep Learning systems do not
work well on this dataset. (Lake et al., 2015) devel-
oped a dedicated system for such rapid knowledge acqui-
sition called Bayesian Programming Learning, which sur-
passes human performance and is the current state of the
art method.

The details of the Omniglot dataset are given in Section
4.1.1 . One-shot classification task on this dataset is setup
as follows: from a randomly chosen alphabet, 20 charac-
ters are chosen which becomes the support set classes. One
character among these 20 becomes the test character. 2
drawers are chosen, one each for the support set drawings
and the test character drawing. The task is to match the test
drawing to the correct character’s class in the support set.
Assigning an image to one of the 20 characters results in a
20-way, 1-shot classification task.
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5.1. Baselines and Other Methods

We compare the two models discussed in Section 3.2 with
other methods in literature: starting from the simplest base-
line of k-Nearest Neighbours to the latest meta-learning
methods. The training and evaluation practices are non-
consistent and the two main threads of variation are de-
tailed below.

Across Alphabets: Many papers recently, like Matching
Networks (Vinyals et al., 2016) and MANNs (Santoro
et al., 2016) have used 1200 chars for the background set
(instead of 964 specified by (Lake et al., 2015)). The re-
maining 423 characters are used for testing. Most impor-
tantly, the characters sampled for both training and evalua-
tion are across all the alphabets in the training set.

Within Alphabets: This corresponds to standard Omniglot
setting where characters are sampled within an alphabet
and only the 30 background characters are used for training
and validation.

The across alphabet task is much simpler as it is easy to dis-
tinguish characters belonging to different languages, com-
pared to distinguishing characters belonging to the same
language.

There are large variations in the resolution of the images
used as well. The Deep Siamese Network of Koch et al.
uses 105x105 images and thus not directly comparable to
out model, but we include it as it is the current best result
using deep neural nets. The performance of MANNs in this
standard setup is interpreted from the graph in the paper
as the authors did not report it. It should also be noted
that Bayesian Program Learning (BPL) (Lake et al., 2015)
incorporates human stroke data into the model. Lake et al
estimate the human performance to be at 95.5%.

Results are presented in Table 4 and 5. Our ARC models
outperform all previous methods according to both of the
testing protocols and establish the corresponding state of
the art results.

Table 4. One-shot classification accuracies of various methods
and our ARC models on Omniglot dataset - Across Alphabets

MODEL ACCURACY

KNN 26.7%
CONV SIAMESE NETWORK 88.1%
MANN ≈ 60%
MATCHING NETWORKS 93.8%
NAIVE ARC 90.30%
NAIVE CONVARC 96.21%
FULL CONTEXT CONVARC 97.5%

Table 5. One-shot classification accuracies of various methods
and our ARC models on Omniglot dataset - Within Alphabets

MODEL ACCURACY

KNN 21.7%
SIAMESE NETWORK 58.3%
DEEP SIAMESE NETWORK (KOCH ET AL.) 92.0%
HUMANS 95.5%
BPL 96.7%
NAIVE ARC 91.75%
NAIVE CONVARC 97.75%
FULL CONTEXT CONVARC 98.5%

5.2. miniImageNet

Recently, Vinyals et al. (2016) introduced a one-shot learn-
ing benchmark based off of the popular ImageNet dataset.
It uses a testing protocol that is very similar to Omniglot.
The dataset consists of 60,000 colour images of size 84×84
with 100 classes of 600 examples each. As with the origi-
nal paper, we used 80 classes for training and tested on the
remaining 20 classes. We report results on 5-way one-shot
task in Table 6, which is a one-shot learning with 5 classes
at a time.

Table 6. 5 way one-shot Classification accuracies of various meth-
ods and our ARC models - miniImageNet

MODEL ACCURACY

RAW PIXELS W/ COSINE SIMILARITY 23.0%
BASELINE CLASSIFIER 38.4%
MATCHING NETWORKS 46.6%
NAIVE CONVARC 49.14%

6. Related Work
Deep Neural Networks (Schmidhuber, 2015) (LeCun et al.,
2015) are very complex parametrised functions which can
be adapted to have the required behaviour by specifying a
suitable objective function. Our overall model is a simple
combination of the attention mechanism and recurrent neu-
ral networks (RNNs).

It is known that attention brings in selectivity in processing
information while reducing the processing load (Desimone
& Duncan, 1995). Attention and (Recurrent) Neural Net-
works were combined in Schmidhuber & Huber (1991) to
learn fovea trajectories. Later attention was used in con-
junction with RBMs to learn what and where to attend
in Larochelle & Hinton (2010) and in Denil et al. (2012).
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Hard Attention mechanism based on Reinforcement Learn-
ing was used in Mnih et al. (2014) and further extended to
multiple objects in Ba et al. (2014); both of these models
showed that the computation required at inference is sig-
nificantly less compared to highly parallel Convolutional
Networks, while still achieving good performance. A soft
or differentiable attention mechanisms have been used in
Graves (2013). A specialised form of location based soft
attention mechanism, well suited for 2D images was devel-
oped for the DRAW architecture (Gregor et al., 2015), and
this forms the basis of our attention mechanism in ARC.

A survey of the methods and importance of measuring sim-
ilarity of samples in Machine Learning is presented in Bel-
let et al. (2013). With respect to Deep Learning methods,
the most popular architecture family is that of Siamese Net-
works (Bromley et al., 1993). The energy based derivation
of the same is presented in Chopra et al. (2005).

A bayesian framework for one-shot visual recognition was
presented in Fe-Fei et al. (2003). Lake et al. (2015)
extensively study one-shot Learning and present a novel
probabilistic framework called Bayesian Program Learn-
ing (BPL) for rapid learning. They have also released
the Omniglot dataset, which has become a testing ground
for one-shot learning techniques. Recently, many Deep
Learning methods have been developed to do one-shot
learning: Koch et al. use Deep Convolutional Siamese
Networks for performing one-shot classification. Match-
ing Networks (Vinyals et al., 2016) and Memory Aug-
mented Neural Networks (Santoro et al., 2016) are other
approaches to perform continual or meta learning in the low
data regime.

7. Conclusion and Future Work
We presented a model that uses attention and recurrence to
cycle through a set of images repeatedly and estimate their
similarity. We showed that this model is not only viable
but is also much better than the popular siamese neural net-
works in wide use today in terms of performance and gen-
eralization. We showed the value of having dynamic rep-
resentations and presented a novel way of approximating
it. Our main result is in the task of one-shot classification
on the Omniglot dataset, where we achieved state of the
art performance surpassing human performance using only
raw pixel data.

Though presented in the context of images, ARCs can be
used for any modality. There are innumerable ways to ex-
tend ARCs. Better attention mechanisms, higher resolution
images, careful hyper-parameter tuning, more complicated
controllers etc ., can be employed to achieve better perfor-
mance. However, one potential downside of this model is
that due to sequential execution of the recurrent core and

by the very design of the model, it might be more compu-
tationally expensive than distance metric methods.

More interesting directions would involve developing more
complex architectures using this bottom-up, lazy approach
to solve even more challenging AI tasks.
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