Gradient Boosted Decision Trees for High Dimensional Sparse Output

A. Additional Experiments on DisMEC

DisMEC (Babbar & Scholkopf, 2017) is a distributed ex-
treme multi-label learning framework based on one-versus-
rest linear classifiers with explicit model size controlled
by pruning small weights. Unlike other methods we have
compared in Section 5, DisMEC mainly focuses on paral-
lelizing an extremely large number of one-versus-all clas-
sifiers in large-scale distributed settings with double layers
of parallelization (multi-core and multi-machine).

DisMEC’s primarily advantage is that it does not make any
low-rank or sparsity assumption for the data and thus pre-
diction performance is better, and its model size is reason-
ably small due to weight pruning. However, it has the same
time complexity as the naive one-versus-all method and
requires much more computation than all other methods
we have compared in Section 5. For example, on dataset
Wikil0-31K, our algorithm needs less than 20 minutes on 1
core (refer to Table 1), while DisMEC requires 10 minutes
on 300 cores as reported in (Babbar & Scholkopf, 2017)
and we record about 450 minutes training time using 4
cores.

Table 5: Experiments on DISMEC. Time refers to predic-
tion times in seconds. Size is the modelsize in megabytes.

DISMEC GBDT-SPARSE (proposed)

Time Size P@]/ P@3|Time Size P@] P@3

Mediamill 0.59 0.087 87.77 70.25| 0.60 3.54 84.23 67.85

Delicious 0.24 34 66.80 61.79 | 0.13 476 69.29 63.62

Wikil0-31K | 771.8 880 84.12 74.71 | 1.30 85.81 84.34 70.82

We use the DisMEC implementation from its authors #. We
found that in their experiment implementation, a TF-IDF
(term frequency inverse document frequency) feature con-
version is used. Using TF-IDF features can improve pre-
diction accuracy for text based datasets, and we found that
it is necessary to use TF-IDF to get a good accuracy for
Wikil0-31K. Therefore, we pre-process Wikil0-31K us-
ing TF-IDF for DisMEC in this section (we do not use TF-
IDF pre-processing in all other experiments). Due to our
limited computing resources, we only include Mediamill,
Wikil0-31K and Delicious in this experiment. The re-
sult is shown in Table 5. DisMEC achieves similar per-
formance with our method, but note that DisMEC requires
much more computation resources than our method. Larger
Datasets like Delicious-200K is practically unfeasible on a
single machine (with only a few cores) using DisMEC.

B. Prediction time for GBDT-Sparse

In many real world applications, only top-B labels are
needed with very small B (typically 1,3,5). In those cases,
we can further reduce the prediction time to O(Tk log B).
To do that, we need a hash (with O(Tk) size) and a min-

*“https://sites.google.com/site/rohitbabbar/code/dismec

heap ). The algorithm scans through all the elements in
the prediction vectors (each contains k (idx, value) pairs)
for each tree hi(x;), - , hym(x;). For each (idx,value)
pair, we first use hash to add the value to the corresponding
index p;q,. If the index is already in the heap, then up-
date the corresponding value. If Q.size() is smaller than
B, then add the (idx, p;4.) pair to (). Otherwise compare
Dide: With Q.min(), and replace the minimum number in @
by Didz if pias is larger than Q.min(). Since the size of @
is always < B, the complexity is O(Tk log B).



