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Abstract

In this paper, we study the gradient boosted
decision trees (GBDT) when the output space
is high dimensional and sparse. For example,
in multilabel classification, the output space is
a L-dimensional 0/1 vector, where L is num-
ber of labels that can grow to millions and be-
yond in many modern applications. We show
that vanilla GBDT can easily run out of mem-
ory or encounter near-forever running time in
this regime, and propose a new GBDT variant,
GBDT-SPARSE, to resolve this problem by em-
ploying L regularization. We then discuss in de-
tail how to utilize this sparsity to conduct GBDT
training, including splitting the nodes, comput-
ing the sparse residual, and predicting in sub-
linear time. Finally, we apply our algorithm to
extreme multilabel classification problems, and
show that the proposed GBDT-SPARSE achieves
an order of magnitude improvements in model
size and prediction time over existing methods,
while yielding similar performance.

1. Introduction

Gradient boosted decision tree (GBDT) is a powerful
machine-learning technique that has a wide range of com-
mercial and academic applications and produces state-of-
the-art results for many challenging data mining problems.
The algorithm builds one decision tree at a time to fit the
residual of the trees that precede it. GBDT has been widely
used recently mainly due to its high accuracy, fast training
and prediction time, and small memory footprint.

In this paper, we study the GBDT algorithm for problems
with high-dimension and sparse output space. Extreme
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multi-label learning and multi-class classification belong
to this problem, where the goal is to automatically assign
one or a subset of relevant labels from a very large label
set. Dealing with problems with high dimensional output
leads to multiple computational challenges. In this paper
we mainly focus on two important issues that limit the ap-
plication of the existing methods to real world applications:
prediction time and model size. As the output space size
increases, these dimensions become the bottleneck, both
during training and testing. As an example, if a one-versus-
all model is used on a classification problem with 1 million
labels, then we need to evaluate 1 million models for any
testing sample. If these models cannot be kept in memory,
reading them from disks will further increase the predic-
tion time substantially. The linear dependency on number
of labels makes most of the existing approaches very slow
during testing, especially when we do not want to access
the cloud for every test point.

The computation of GBDT is also prohibitively expensive
for applications with high dimensional sparse output. At
each iteration, GBDT builds a regression tree that fits the
residuals from the previous trees. The density of the resid-
ual grows dramatically even after just one single iteration,
and it will soon become an L by N dense matrix where N
is number of samples and L is the number of labels (size
of output space). As a consequence, at least O(N L) time
and memory are required to build GBDT trees. This makes
GBDT infeasible for large scale applications where N and
L can be both large, e.g., several millions.

Our goal is to develop a new approach for problems with
high-dimensional and sparse output spaces that achieves
faster prediction time and smaller model size than exist-
ing algorithms, but has similar prediction accuracy and
training time. To this end, we develop the first Gradient
Boosted Decision Tree (GBDT) algorithm for high dimen-
sional and sparse output, with applications in extreme mul-
tilabel learning problems. We make the crucial observation
that each data point has very few labels; based on that we
solve a L regularized optimization problem to enforce the
prediction of each leaf node in each tree to have only a
small number (k) of nonzero elements or labels. Hence, af-
ter T trees have been added during GBDT iterations, there
will be at most Tk nonzero gradients for any data point.
Another important challenge discussed in this paper is pre-
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diction time. Given the sparsified output, we discuss effi-
cient algorithms to conduct prediction for both top-K rec-
ommendation or the whole sparse output vector. Finally,
we discuss how to handle sparse data, where each feature
is active only on a small fraction of training examples. To
handle this, we use several unsupervised and supervised
dimensional reduction algorithms as pre-processing steps.
This also has the positive effect of reducing the search
space of each node.

For extreme multi-label applications, our algorithm has
competitive accuracy compared with existing state-of-the-
art algorithms, while achieving substantial reductions in
prediction time and model size. For example, on the
Wikil0-31K dataset with 30938 labels, our method takes
only 1.3 secs. for prediction and achieves 84.34% accuracy
with a model size of 85.8MB, while the state-of-the-art fast
multi-label method FASTXML takes more than 10 secs. to
achieve 82.71% accuracy and uses 853.5MB memory to
store the model. Our method can be efficiently parallelized
and achieve almost linear speed up in multi-core settings.

The rest of the paper is outlined as follows. We present
related work in Section 2. Traditional GBDT is explained
in Section 3. Our main algorithm GBDT-SPARSE is pro-
posed and analyzed in Section 4. Experimental results are
given in Section 5. We present conclusions in Section 6.

2. Related Work

Ensemble methods have shown excellent performance in
various machine learning applications and analytics com-
petitions, e.g., Kaggle challenges. Common ensemble
methods include random forests (Liaw & Wiener, 2002),
bagging (Breiman, 1996), and boosting (Schapire, 1999;
Friedman, 2001; 2002). Out of these, boosting is very ef-
fective in reducing model size and prediction time since it
uses the output of previous models to train the next one.

Many classical boosting methods have shown their effi-
ciency in practice. Among them, gradient boosted decision
trees (GBDT) (Friedman, 2001; 2002) has received much
attention because of its high accuracy, small model size
and fast training and prediction. It been widely used for
binary classification, regression, and ranking. In GBDT,
each new tree is trained on the per-point residual defined as
the negative of gradient of loss function wrt. output of pre-
vious trees. GBDT is well studied in the literature: some
research has been done to speed up the computation of
GBDT under different parallel settings (multi-core or dis-
tributed), e.g., XGBoost (Chen & Guestrin, 2016), Light-
GBM,' PLANET (Panda et al., 2009), PV-Tree (Meng
et al., 2016), and YGGDRASIL(Abuzaid et al., 2016) or
exploit its benefit for different machine learning applica-
tions, e.g., using GBDT for CRFs (Chen et al., 2015). How-

Uhttps://github.com/Microsoft/Light GBM

ever, to the best of our knowledge none of them can be effi-
ciently applied to problems with high dimensional output.

Recently, machine learning problems with high dimen-
sional output have drawn considerable attention. Two
popular and representative problems are extreme multi-
class classification and extreme multi-label learning prob-
lem (Prabhu & Varma, 2014; Bhatia et al., 2015; Yu et al.,
2014; Agrawal et al., 2013; Jasinska et al., 2016; Si et al.,
2016) and both deal with very large number of labels.
LOMtree proposed in (Choromanska & Langford, 2015)
constructs trees for extreme multi-class problem, and ob-
tains training and test time complexity logarithmic in the
number of classes, but its extension to multi-label case is
not straightforward. Many algorithms have been devel-
oped to solve extreme multi-label learning problem. For in-
stances, embedding based methods LEML (Yu et al., 2014)
and SLEEC (Bhatia et al., 2015) project the labels and
features to some low-dimensional space while preserving
distances either with the neighboring label vectors or the
full training set; PLT(Jasinska et al., 2016) considers using
sparse probability estimates restricted to the most probable
labels to speed up the F-measure maximization for extreme
multi-label learning; PD-Sparse (Yen et al., 2016) formu-
lates multilabel learning problem as a primal-dual sparse
problem given by margin-maximizing loss with L and Lo
penalties. Tree based methods (Prabhu & Varma, 2014;
Agrawal et al., 2013) generalize the impurity measures de-
fined for binary classification and ranking tasks to multi-
label scenario for splitting the nodes, but require hundreds
of trees to achieve good accuracy. FASTXML (Prabhu &
Varma, 2014) uses NDCG based ranking loss function and
solves a non-convex optimization problem to find a sparse
linear separator for splitting each node. All the approaches
discussed above either do not give good accuracy (Yu et al.,
2014), or, require large sized models with high prediction
times to do so (Prabhu & Varma, 2014).

In contrast, to solve extreme multi-label learning problem,
our method is based on GBDT and hence requires only
a few trees to build a good model. During training, we
also enforce sparsity in the label vector at each leaf node
to reduce the model size and prediction time. Our ap-
proach is different from FASTXML in three aspects:(1) we
do not need to solve a non-convex optimization at each
node, but, rather do a much simpler and faster feature se-
lection; (2) we follow the idea of GBDT to build trees,
while FASTXML is a random forest based method; (3) we
can achieve similar accuracy as FASTXML, but with much
faster prediction time and smaller model size.

3. Background

We first discuss the original GBDT algorithm, and present
the difficulty when applying GBDT to solve problems with
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high dimensional output space.

GBDT for binary classification Let us explain the main
idea behind GBDT using binary classification, in which
a scalar score function is formed to distinguish the two
classes. Given training data X = {z;}Y, with ¢; € RP
and their labels Y = {y;}}V, with y; € {0,1}, the goal
is to choose a classification function F'(x) to minimize the
aggregation of some specified loss function £L(y;, F'(x;)):

N
F* = in S Ly, F(x;)). 1
arg;mn; (yi, F(;)) (1)

Gradient boosting considers the function estimation F' in
an additive form:

m=1

where T is the number of iterations. The { f,,,(x)} are de-
signed in an incremental fashion; at the m-th stage, the
newly added function, f,, is chosen to optimize the aggre-
gated loss while keeping { f; };”:jl fixed.

Each function f,, belongs to a set of parametrized ‘base-
learners’; let 6 denote the vector of parameters of the the
base-learner. GBDT uses decision trees to be the base
learners. For this choice, 6 consists of parameters that rep-
resent the tree structure, such as the feature to split in each
internal node, the threshold for splitting each node, etc.

At stage m, we form an approximate function of the loss:

L(yi, Frn—1(2i) + fn(x)) =
L Frne1 () + i (@) + 3 @, O
where F,,_1(x;) = Z;":_ll f;(x;) and

. 0L F(a)
' OF (x;)
Note that throughout the paper we will only take differen-

tiation with the second parameter of L(-,-), so we define
L' (yi, Fr—1(;)) to be the above differentiation.

|F(@i)=Fpn_1(2:) -

We want to choose f,,, to minimize the right hand side
of (3), which can be written as the following minimization
problem:

N
1
argmin 5 (fn () — )" 4)
™oi=1

Since only the direction is fitted, a suitable step size
(shrinkage parameter) is usually applied to f,,, before it is
added to F,,_;. The advantage of this gradient boosting
approach is that only the expression of the gradient varies
for different loss functions, while the rest of the procedure,
and in particular the decision tree induction step, remains
the same for different loss functions.

4. Proposed Algorithm (GBDT-SPARSE)

Now we discuss the problem with sparse high dimensional
output. For input data X = {z;}, with z; € R, we as-
sume the corresponding output Y = {y, }¥, withy, € RE
are high-dimensional and sparse—L is very large but each
y, only contains a few nonzero elements. We denote the
average number of nonzero elements S = ). ||ly;|lo/N,
and S < L. Multilabel learning is an example, where each
x; is the input features for a training sample, y; € {0,1}*
where L is the number of labels, and (y,), = 1 if sample ¢
has label q.

Now we discuss the proposed GBDT-SPARSE algorithm.
For a general loss function with high dimensional output
y,, we consider

F* :argminZE(yi,F(mi)) + R(F), Q)
S

where R(F') is the regularization term. For simplicity we
assume an Lo regularization, so

T My,

R(F) =X [wf|?, 6)

m=1 j=1

where f;, () = wi,, with J(z) : R” — M, represent-
ing the tree structure which maps a data point  into one
of the M, leaves of the m-th tree, and w;” e RL is the
prediction vector of the j-th leaf node in the m-th tree.

We assume L is differentiable and satisfies the following
properties:

1. L(y, z) is decomposable:

L(y,z) = Zg(yquq)~ (7

2. Each /(- -) satisfies that
U (yq, 2q) = 0if y, = 2z, ®)

Examples include but not limited to the square loss:
U(yq, 24) = (Y4 — 24)* and the square hinge loss (note that
this is the square-hinge loss with center shifted to 0.5 and
width scaled to 0.5):

max(1l — z,,0)? ify, =1

€))

max(zq, 0)?

Hyar2q) = { if yg =0
.=

Using the same Taylor expansion, at each iteration we want
to construct f,,, by solving

L(Y;, Frn—1(xi) + fm(®i)) =

Lo Fna @) + {90 Fn(0)) + ()7, (10
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where g, is the L-dimensional gradient for the ¢-th sample
with (g;)q = ¢/ ((y;)q: (Fm—1(xi))q). Following the same
steps as the previous section, for each tree we want to find
the cut value to minimize the following objective function:

m

N M

1 ZI-

min =3 lg; = fm(@) 3+ A3 w3 (b
i=1 j=1

Vanilla extension of GBDT to high-dimensional out-
put space. As in most decision tree induction methods,
we follow a greedy approach, that is, starting from a sin-
gle node and iteratively adding branches to the tree un-
til some stopping conditions are met. At a general step,
we want to split an existing leaf node e in the m-th tree.
Let V. = {i|J(x;) = e} denote the set of examples
that pass through the leaf e. Suppose we fix a split, t =
[feature id, threshold], consisting of the variable to split
and at what threshold it has to be split. This partitions V.
into two disjoint sets: a set V. associated with the right
node and a set V; associated with the left node. Then we
can compute the prediction vectors (h, and h;) associated
with the right and left nodes based on the loss function re-
stricted to the corresponding sets of examples:

1
h, = arghrnln N Z llg; — hr”% =+ AW‘T”%
r i€V,

1
hz=arghmmN§ lg; = hull3 + Al (12)
l i€V,

Since the objectives follow a simple quadratic form, these
problems can be solved in closed form as

1 1
he=——— N g. hi=—— - Sg, (13
/\N+|X/,.|1§91 : /\N+|Vl\i§lg (13)

Now we can use h,. and h; to form prediction: the predic-
tion for example i is h. ; = h, if i € V. andis by if i € V.
This leads to the objective, obj(t) for the split ¢:

, 1
0bj(t) = & D lgi = heall® + IR ? + 1al?) (14)
i€Ve

The best split is chosen to optimize obj(t):
t* = min obj(t) (15)

This completes a general step of the vanilla extension of
GBDT for high dimensional sparse output.

Why vanilla GBDT fails on high dimensional sparse
output?  The vanilla GBDT extension described above
faces several difficulties when it is applied on high dimen-
sional sparse output:

1. The first issue is the size of gradient g, in (11). Each
g, is an L-dimensional vector. Although in the first step
g, 1s sparse, after one step, h; (h,) in (12) will be the
average of |V;.|(|V;]) sparse vectors, which will be dense.
A dense prediction F,, will then lead to dense gradients in
all the trees after the first step, and this N L space and time
complexity is prohibitive in large scale applications where
N and L can be both several millions.

2. The second issue is the model size. The prediction
vector in each leaf of each tree is a dense vector of length
L. This will result in a total model size of O(TML),
where T' is the number of trees and M is the average
number of leaves in each tree. Given that L is large in
extreme multi-label learning, the model size will also
become very large.

3. The third issue is also related to the dense prediction
vector in the tree leaves, and concerns the prediction time.
The prediction time for a test point is O(T 4 T'L),> where
[ is the average depth of the trees. Thus, when L is large,
the prediction is very expensive.

4. The fourth issue relates to the sparsity and large
dimension of the input vector . For many real-world
problems, the input x is sparse. Induction on such data
leads to very unbalanced decision trees with a large
number of leaves; this in turn increases the model size and
prediction time. It is worth noting that decision trees are
generally found to be unsuitable for data with such sparsity.

4.1. Our proposed algorithm: GBDT-SPARSE

We now propose a sparsified approach for resolving the
above mentioned issues, which leads to the first effec-
tive GBDT algorithm for high dimensional sparse output.
These modifications lead to models with high accuracy,
small model size and fast prediction time.

We first discuss the case when the input features are dense.
To handle the first three issues (dense residual vectors,
model size, and prediction time), we use the fact that the
labels y; are high dimensional but very sparse. For the
loss function satisfies our assumptions (Assumption (7)
and (8)), and if both y, and z; are sparse, then the gra-
dient vector g, in (11) will also be a sparse vector, and the
sparsity is at most ||y;|lo + ||z:]lo-

Thus, we enforce a sparsity constraint on the prediction
vector in each leaf of each tree and maintain non-zero pre-
diction values only for a small number (k < L) of labels.
Typically, after each tree induction, each leaf contains a
coherent set of examples related to a small set of labels
and thus the above sparsity constraint makes a lot of sense.
Additionally, the constraint offers a nice form of regular-
ization. Note that by definition of g;, it can have at most

2The first term is the cost of tree traversal while second is the
cost of getting predictions from the leaf nodes.
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Tk+]|y;||o non-zeros after T iterations (the label vector y,
is also sparse). This strategy makes the computation very
efficient and also reduces memory footprint substantially.

To enforce the sparsity, we add Lg constraint into the ob-
jective function (11), and we have

N My,
min " |lg; — fm(@)lI5 + A D lwi3
=1 =1

mn
fmij i

s.t. [lwllo < K, V. (16)

For each cut ¢, the objective of the left partition becomes:

min
Ihillo=F

where, like before, V; denotes the set of examples that fall
in leaf [. Interestingly, (17) has a closed form solution,
and there is no additional time cost by enforcing the sparse
constraints. Let p}, = > icv; (i)q be sorted by the absolute
values with the order to be 7, such that

S flgi — al3 + A||hl||§} = filh), (D)

i€y

Py| = [Pk = - = 1Pl (18)
then the optimal solution of (17) is
! ) if <k
()t = pg/(IVil+2A) i W(Q)'_ (19)
1 0 otherwise ,
and the objective function is
. (p})°
AR =HO) = >0 Tt (20)
q:m(q)<k Vil +

Similarly we can get the same A} and f,(h}) for the right
child, and compute the objective function gain.

Using this closed form solution of the objective function,
we want to find the best split ¢t = [feature id, threshold)
for the current node by minimizing the objective function
fi(hi) + fr(h%). For simplicity, we assume all the data
are in the current node (e.g. the root) in order to simplify
the notation, while the same algorithm can be applied to a
node with partial samples. Also, we assume a sorted list
o;(-) according to each feature j’s value is given, where

(To;1))5 < (®oy2))5 < -+ < (Foy (1))

This can be typically done as a pre-processing step before
building GBDT because the ordering will not be changed.
We then test the decrease of objective function for each
threashold according to this order, and select the best one.
See Algorithm 1 for detail.

For each feature, although selecting the best threshold from
all potential values can optimize objective function, we

A BE W N -

10

Algorithm 1: GBDT-SPARSE tree node splitting algo-
rithm

Input: {x;,y,}~ ,, sorted list according to each feature
{o; }]D:p A (the regularization parameter), k
(sparsity constraint)

Output: Best split ¢ = [feature id, threshold)

Initial: f5' =0 ;

forj=1,---,Ddo

(pl)s :07 VS: 17 7Ls

(pT>S = Zi(gi)m Vs = 1a e 7L 5

fori=1,...,Ndo

for s lWlth (90.7[(2))9 7& 0do

(p)s < (p')s + (goj(i))s ;

(p")s < (p")s — (ga_,»(i))s 5
Zste(pi)z _ Zsé@’yv(pg)z

(DY N—itx °
where @; and Q,- are the index set of top-k |p!,]
and |p”| values respectively;

Iff < fbest’ set fbest — f, 7fbesl — []7 ("Boj(i))j] :

Compute the f = —

found this also leads to over-fitting. Therefore, in our im-
plementation we consider the “inexact” version where we
only test the threshold for every S values in the sorted list:
{(woj(i))j}i:1,1+§,1+25’,...,n‘

Algorithm 1 can be implemented in O(D||G||olog(k))
time, where ||G||o = Zf\; lg;|lo is the number of nonzero
elements in the current gradient. The main trick is to use
two priority queues to maintain two lists of k features with
top-k ps values (correspond to sum of gradient) for left
tree and right tree. When scanning through one sample in
the inner step, only one term of py will change, which has
O(log k) complexity using a priority queue. However, in
practice we set S to be very large (5% of samples), so a
sorting algorithm for finding the top-k list is fast enough,
since it only needs to be executed 20 times.

4.2. GBDT-SPARSE: Dealing with Sparse Features

Decision trees usually have difficulty handling sparse fea-
tures. When feature vectors are sparse, e.g., only 100 out of
10,000 training samples have nonzero values on a feature,
the tree will be always imbalanced and extremely deep.

To handle sparse input features, we consider several projec-
tion methods that transform sparse features to dense ones.
The most simple yet useful one is to use random projection,
that is, projecting the data point to &; = Gx; using a fixed
random Gaussian matrix G € R4*P as projection matrix.
To reduce reconstruction error, another approach is to use
Principal Component Analysis (PCA) (Halko et al., 2011)
via SVD (Si et al., 2014).

Both random projection and PCA are un-supervised learn-
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Table 1: Comparison between traditional GBDT, our proposed GBDT-SPARSE, and FASTXML in terms of training time,
prediction time, model size and accuracy. Prediction time includes feature projection time. All time in seconds.

Metrics FASTXML | vanilla GBDT (LEML) | GBDT-SPARSE (Random Projection) | GBDT-SPARSE (PCA) | GBDT-SPARSE (LEML)
Dimension reduction time N/A 100.74 4.97 99.86 100.74
Training Time 1275.9 41078.76 931.57 1025.03 1054.12
Prediction Time 9.1175 52.139 1.0766 1.0796 1.087
Accuracy P@1(%) 82.71 84.11 80.79 83.51 84.36
Accuracy P@3(%) 67.87 68.94 50.68 67.04 69.49
Model size 813MB 809.39M 79.01MB 79.23MB 79.26MB
Table 2: Data set statistics for multi-label learning problems.
Dataset # Training samples | # Testing samples | # Features | # Labels | Avg. points per label | Avg. labels per point
Mediamill 30,993 12,914 120 101 1338.8 4.36
Delicious 12,920 3,185 500 983 250.06 19.02
NUS-WIDE 161,789 107,859 1,134 1,000 935.22 5.78
Wikil0-31K 14,146 6,616 101,938 30,938 8.52 18.64
Delicious-200K 196,606 100,095 782,585 | 205,312 72.34 75.54

ing approaches—in the sense that they do not use any la-
bel information; however, in our problem setting there is
rich information in the high dimensional output space Y.
Therefore, we can use a supervised algorithm LEML (Yu
et al., 2014) to construct dense features, which solves the
following optimization problem:

min Y = XWH|[5 + (W% + | H]F)
WERDXd,HERLXd

where < is a regularization term to control the over-fitting
and d is the projected dimension. This has been discussed
in (Yu et al., 2014) for solving the multi-label classification
problems, and the resulting algorithm uses an alternating
minimization algorithm to compute the solutions W and
H. After we get W from LEML, we use the new features
X as X = XW to construct the decision trees. Using this
projection has two benefits:(1) the projection incorporates
the label information; and, (2) the new data after projection,
X is dense, and thus results in shallow and balanced trees.

We compare GBDT-SPARSE with different projection
methods as well as vanilla GBDT for extreme multilabel
learning problem in Table 1. We used the Wikil0-31K
dataset with training parameters the same as the ones in
section 5, except we terminate all methods (except vanilla
GBDT) in about 1000 seconds. Three dimension reduc-
tion techniques, LEML, PCA and random projections are
used to reduce the feature size to 100. We also include
FASTXML as a comparison for training time. From Ta-
ble 1 we can see that using LEML is more accurate than
using PCA and random projections, but takes longer time
to train the model. Different from vanilla GDBT, GBDT-
SPARSE enforces the sparsity in the leaf nodes, which
brings significant speedup (about 40x) for training. This
table shows the benefits of using feature projection and
enforcing sparsity in leaf nodes when applying GDBT on
problems with high-dimensional sparse output.

4.3. GBDT-SPARSE: Fast Prediction

When performing prediction, the data points will go
through each tree and then the prediction is f(x;) =
Z,ﬁzl hm(2;). In vanilla GBDT, this requires O(LT)
time since we have to sum over the prediction for 7T’ trees,
each one is an L-dimensional dense vector. Note that the
tree traversal time can be omitted because each node only
takes 1 comparison to look at whether a feature is larger or
smaller than the threshold.

In GBDT-SPARSE, when making prediction for a new data
point, we can utilize the sparsity structure of each predic-
tion vector to achieve fast prediction time: adding up 7" of
the k-sparse vectors together. The naive approach is to cre-
ate an array of size Tk, copy all the index-value pairs to
the array, and sort them by index. This has O(Tk log(Tk))
time complexity. A more efficient approach is to use a min-
heap data structure to merge these & lists which can reduce
time complexity: first, sort each list according to the index
orders, and then create a min heap of size k£ and insert the
first element in all lists to the heap. Then repeatedly con-
duct the following process: (1) get the minimum element
from heap, store to the output array, and (2) update the heap
root value by the next index from the list that the element is
fetched. The overall algorithm will take O(T'k log k) time.

In some real world applications, only top-B labels are
needed with very small B (typically 1,3,5). In those cases,
we can further reduce the prediction time to O(T'k log B)
(see details in appendix B). Since we test on small k for all
our experiments, we do not use this technique in practice.

4.4. Summary of GBDT-SPARSE

In summary, the training time of GBDT-SPARSE is
O(D||G||o log(k)) for each node, where |G || is total num-
ber of nonzeros of the samples belonging to the node. So
each level of the tree requires O(D|| X ||o log(k)) time. If
we build 7T trees and each with h levels, the total training
time is O(DTh|| X ||o log(k)).
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As discussed in the previous section, the prediction time is
O(Tklog k) for prediction. k (sparsity constraint) is usu-
ally set to be less than 50; T' (number of tress) is usually
less than 100. Therefore GBDT-SPARSE has a sub-linear
(constant) prediction time.

Now we discuss model size. Each intermediate node only
stores the [feature id, threshold] pair, which is one inte-
ger and one floating point. Each leaf node only stores the k
index-value pairs. Therefore, the model size is O(kT2").
As long as tree depth h is not too large (usually less than
12), the model size is very small.

5. Experiments

We compare GBDT-SPARSE against other key methods
for extreme multi-label classification problems and demon-
strate its value with respect to model size, prediction time
and performance.

Data: We conducted experiments on 5 standard and pub-
licly available multi-label learning datasets.®> Table 2 shows
the associated details. Note the diversity in the number
of training samples, label size and feature dimensionality.
Delicious-200K has more than 200, 000 labels.

Baselines: We compare our method to four state-of-the-art
extreme multi-label learning baselines.

1. LEML (Yu et al., 2014) is an embedding technique
based on low-rank empirical risk minimization.

2. FASTXML (Prabhu & Varma, 2014) is a random forest
based approach where each tree is constructed by jointly
optimizing both nDC'G ranking loss and tree structure. A
sparse linear separator is used as the splitting criteria at
each node.

3. SLEEC (Bhatia et al., 2015) learns an ensemble of lo-
cal distance preserving embeddings. Pairwise distances are
preserved between only the nearest label vectors.

4. PD-SPARSE (Yen et al., 2016) proposes to solve L
regularized multi-class loss using Frank-Wolfe based algo-
rithm. However, it needs to store weight vectors in size
O(DL), which is hard to scale to large datasets.

For the baselines, we use their highly optimized C++ im-
plementation published along with the original papers. We
also compare with DisSMEC (Babbar & Scholkopf, 2017)
in the Appendix.

Parameter Setting: For FASTXML and LEML, we use
the default parameter settings in the code. SLEEC’s code
also has optimal parameter settings for all the datasets ex-
cept NUS-WIDE. It has 7 parameters and their settings
vary widely for different datasets. For PD-SPARSE, we use

SNUS-WIDE is available at http://Ims.comp.nus.edu.sg/
research/NUS-WIDE.htm. All other datasets are available at
http://manikvarma.org/downloads/X C/XMLRepository.html.

a grid search to find the best regularization parameter A and
cost C. For our method, we kept most of the parameters
fixed for all the datasets: hjqz = 10,M5eqp = 100, and,
A = 5, where hyqz and nyeqp are the maximum level of
the tree and the minimal number of data points in each leaf.
Leaf node sparsity k was set to 100 for Delicious-200K and
20 for all others. This parameter can be very intuitively
set as an increasing function of label set size. We hand
tuned the projection dimensionality d and set it to 100 for
Delicious and Wikil0-31K, and 50 for others.

Results:  Table 3 shows the performance of different
methods along the dimensions of prediction time, model
size and prediction accuracy (Precision@] (P@]) and
Precision@3(P@3)). Note that the strength of our method
is to achieve similar accuracy with smaller memory foot-
print and prediction time. Also note that LEML has infe-
rior performance to all other methods. However, its pre-
diction times are similar to our method on many datasets.
FASTXML, SLEEC and GBDT-SPARSE achieve simi-
lar accuracy on almost all the datasets. For PD-SPARSE,
we observe that its accuracy can fluctuate badly across it-
erations in dataset Delicious and Delicious-200K despite
of trying different set of parameters, even though the re-
ported dual objective is monotonically decreasing. Also,
due to its linear nature, its model size is small, but ac-
curacy is also limited by the capacity of the learner. In
terms of accuracy P@/ and P@3, there is no clear trend of
GBDT-SPARSE being better or worse than others. How-
ever, GBDT-SPARSE gives an order of magnitude speed-
up in prediction times for almost all the datasets. For exam-
ple, for Delicious-200K, our method is 10.58x and 14.72x
faster than FASTXML and SLEEC respectively. Similar
gains can be observed for the model size. It is worth noting
that we do not fine-tune most hyper parameters for deci-
sion tree building process, and the set of parameters can
get good accuracy on all of our datasets.

Figure 1(a)-(c) shows the P@] as a function of time for
three datasets. For GBDT-SPARSE and FASTXML, we
vary the number of trees to get different prediction times.
For LEML and SLEEC, experiments are ran for differ-
ent embedding sizes to generate the curve. The more the
curve is towards top left, better is the performance. For
GBDT-SPARSE, the curves sharply rise in performance;
though not shown, they become stable at the highest perfor-
mance values shown. Though GBDT-SPARSE does not al-
ways beat all methods on performance, we can observe that
for any fixed prediction time our approach impressively
outperforms all others. Figure 1(d)-(f) shows the corre-
sponding curves as a function of model size. Again similar
observations can be made, except for Wikil0-31K where
SLEEC has a similar model size. In summary, we can
see from Figure 1 that to achieve similar accuracy, GBDT-
SPARSE takes much less prediction time and the model size
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Table 3: Comparison on five large-scale multi-label datasets. Time refers to prediction times in seconds. Size is the model
size in megabytes. All experiments are conducted on a machine with an Intel Xeon X5440 2.83GHz CPU and 32GB RAM.
For PD-Sparse we use a similar machine with 192GB memory due to its large memory footprint. Please zoom.

i
IS

LEML FAsTXML SLEEC PD-SPARSE GBDT-SPARSE (proposed)
Time Size P@]/ P@3| Time Size P@] P@3| Time Size P@]/ P@3| Time Size P@] P@3| Time Size P@] P@3
Mediamill 028 0.17 82.83 66.29 344 725 83.13 6639 | 65.16 92.04 85.02 68.40|0.034 0.005 82.99 6232 | 0.60 3.54 84.23 67.85
Delicious 0.16 1.18 63.23 58.51 0.24 39.66 70.14 64.51 152 4.19 66.78 60.32|0.036 0.25 52.02 4591 | 0.13 476 69.29 63.62
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is much smaller than other methods.

Multicore Implementation: Unlike random-forest based
methods, paralllelizing GBDT is not straightforward. In
our problem, because L is large, existing frameworks like
XGBoost (Chen & Guestrin, 2016) do not scale well as it
needs O(L) storage per leaf, and histogram based methods
need O(L) space per bin to accumulate gradients. We im-
plement our algorithm by finding best splits for different
features on a single leaf in parallel. Although this requires
extra time to sort feature values on each leaf, we find that
for datasets with a big L the sorting time is insignificant.
We run our algorithm with Delicious-200K on a 28-core
dual socket E5-2683v3 machine to build a GBDT with 5
trees, and record the average time for building one tree in
Table 4. The good scaling shows that our algorithm is ca-
pable for handling big data. Also, the huge speedup from
parallelization is a big advantage to use our algorithm in
practice, comparing to algorithms that cannot be easily par-
allelized, like PD-SPARSE.

6. Conclusion

We apply GBDT to solve problems with high dimensional
sparse output. Applying GBDT to this setting has sev-

Table 4: Average time (in seconds) for building one tree
using GBDT-SPARSE on dataset Delicious-200K.

Threads 1 4 8 10 14 | 28 (2 sockets)
Time (s) | 1092.60 | 353.07 | 191.22 | 153.53 | 117.49 85.36
Speedup | baseline | 3.09x | 5.71x | 7.12x | 9.30x 12.80x

eral challenges: large dense gradient/residual matrix, im-
balanced trees due to data sparsity, and large memory foot-
print for leaf nodes. We made non-trivial modifications to
GBDT (use embeddings to make features dense, introduce
label vector sparsity at leaf nodes) to make it suitable for
handling high dimensional output. These improvements
can significantly reduce the prediction time and model size.
As an application, we use our proposed method to solve ex-
treme multi-label learning problem. Compared to the state-
of-the-art baselines, our method shows an order of magni-
tude speed-up (reduction) in prediction time (model size)
on datasets with label set size 1000 — 200000.
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