
Robust Budget Allocation via Continuous Submodular Functions

Matthew Staib 1 Stefanie Jegelka 1

Abstract
The optimal allocation of resources for maximiz-
ing influence, spread of information or coverage,
has gained attention in the past years, in particu-
lar in machine learning and data mining. But in
applications, the parameters of the problem are
rarely known exactly, and using wrong parame-
ters can lead to undesirable outcomes. We hence
revisit a continuous version of the Budget Allo-
cation or Bipartite Influence Maximization prob-
lem introduced by Alon et al. (2012) from a ro-
bust optimization perspective, where an adver-
sary may choose the least favorable parameters
within a confidence set. The resulting problem
is a nonconvex-concave saddle point problem
(or game). We show that this nonconvex prob-
lem can be solved exactly by leveraging connec-
tions to continuous submodular functions, and by
solving a constrained submodular minimization
problem. Although constrained submodular min-
imization is hard in general, here, we establish
conditions under which such a problem can be
solved to arbitrary precision ✏.

1. Introduction
The optimal allocation of resources for maximizing influ-
ence, spread of information or coverage, has gained at-
tention in the past few years, in particular in machine
learning and data mining (Domingos & Richardson, 2001;
Kempe et al., 2003; Chen et al., 2009; Gomez Rodriguez &
Schölkopf, 2012; Borgs et al., 2014).

In the Budget Allocation Problem, one is given a bipartite
influence graph between channels S and people T , and the
task is to assign a budget y(s) to each channel s in S with
the goal of maximizing the expected number of influenced
people I(y). Each edge (s, t) 2 E between channel s and
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person t is weighted with a probability pst that, e.g., an
advertisement on radio station s will influence person t to
buy some product. The budget y(s) controls how many in-
dependent attempts are made via the channel s to influence
the people in T . The probability that a customer t is influ-
enced when the advertising budget is y is

It(y) = 1�
Y

(s,t)2E
[1� pst]

y(s), (1)

and hence the expected number of influenced people is
I(y) =

P

t2T It(y). We write I(y; p) = I(y) to make the
dependence on the probabilities pst explicit. The total bud-
get y must remain within some feasible set Y which may
encode e.g. a total budget limit

P

s2S y(s)  C. We allow
the budgets y to be continuous, as in (Bian et al., 2017).

Since its introduction by Alon et al. (2012), several works
have extended the formulation of Budget Allocation and
provided algorithms (Bian et al., 2017; Hatano et al., 2015;
Maehara et al., 2015; Soma et al., 2014; Soma & Yoshida,
2015). Budget Allocation may also be viewed as influ-
ence maximization on a bipartite graph, where information
spreads as in the Independent Cascade model. For integer
y, Budget Allocation and Influence Maximization are NP-
hard. Yet, constant-factor approximations are possible, and
build on the fact that the influence function is submodular
in the binary case, and DR-submodular in the integer case
(Soma et al., 2014; Hatano et al., 2015). If y is continuous,
the problem is a concave maximization problem.

The formulation of Budget Allocation assumes that the
transmission probabilities are known exactly. But this is
rarely true in practice. Typically, the probabilities pst,
and possibly the graph itself, must be inferred from obser-
vations (Gomez Rodriguez et al., 2010; Du et al., 2013;
Narasimhan et al., 2015; Du et al., 2014; Netrapalli &
Sanghavi, 2012). In Section 4 we will see that a misspecifi-
cation or point estimate of parameters pst can lead to much
reduced outcomes. A more realistic assumption is to know
confidence intervals for the pst. Realizing this severe de-
ficiency, recent work studied robust versions of Influence
Maximization, where a budget y must be chosen that maxi-
mizes the worst-case approximation ratio over a set of pos-
sible influence functions (He & Kempe, 2016; Chen et al.,
2016; Lowalekar et al., 2016). The resulting optimization
problem is hard but admits bicriteria approximations.



Robust Budget Allocation via Continuous Submodular Functions

In this work, we revisit Budget Allocation under uncer-
tainty from the perspective of robust optimization (Bert-
simas et al., 2011; Ben-Tal et al., 2009). We maximize the
worst-case influence – not approximation ratio – for p in a
confidence set centered around the “best guess” (e.g., pos-
terior mean). This avoids pitfalls of the approximation ratio
formulation (which can be misled to return poor worst-case
budgets, as demonstrated in Appendix A), while also allow-
ing us to formulate the problem as a max-min game:

max

y2Y
min

p2P
I(y; p), (2)

where an “adversary” can arbitrarily manipulate p within
the confidence set P . With p fixed, I(y; p) is concave in y.
However, the influence function I(y; p) is not convex, and
not even quasiconvex, in the adversary’s variables pst.

The new, key insight we exploit in this work is that I(y; p)
has the property of continuous submodularity in p – in con-
trast to previously exploited submodular maximization in y
– and can hence be minimized by generalizing techniques
from discrete submodular optimization (Bach, 2015). The
techniques in (Bach, 2015), however, are restricted to box
constraints, and do not directly apply to our confidence
sets. In fact, general constrained submodular minimization
is hard (Svitkina & Fleischer, 2011; Goel et al., 2009; Iwata
& Nagano, 2009). We make the following contributions:

1. We present an algorithm with optimality bounds for
Robust Budget Allocation in the nonconvex adversar-
ial scenario (2).

2. We provide the first results for continuous submodu-
lar minimization with box constraints and one more
“nice” constraint, and conditions under which the al-
gorithm is guaranteed to return a global optimum.

1.1. Background and Related Work

We begin with some background material and, along the
way, discuss related work.

1.1.1. SUBMODULARITY OVER THE INTEGER LATTICE
AND CONTINUOUS DOMAINS

Submodularity is perhaps best known as a property of set
functions. A function F : 2

V ! R defined on subsets
S ✓ V of a ground set V is submodular if for all sets
S, T ✓ V , it holds that F (S) + F (T ) � F (S \ T ) +
F (S[T ). A similar definition extends to functions defined
over a distributive lattice L, e.g. the integer lattice. Such a
function f is submodular if for all x, y 2 L, it holds that

f(x) + f(y) � f(x _ y) + f(x ^ y). (3)

For the integer lattice and vectors x, y, x _ y denotes the
coordinate-wise maximum and x ^ y the coordinate-wise

minimum. Submodularity has also been considered on
continuous domains X ⇢ Rd, where, if f is also twice-
differentiable, the property of submodularity means that all
off-diagonal entries of the the Hessian are nonpositive, i.e.,
@f(x)
@xi@xj

 0 for all i 6= j (Topkis, 1978, Theorem 3.2).
These functions may be convex, concave, or neither.

Submodular functions on lattices can be minimized by a
reduction to set functions, more precisely, ring families
(Birkhoff, 1937). Combinatorial algorithms for submod-
ular optimization on lattices are discussed in (Khachaturov
et al., 2012). More recently, Bach (2015) extended results
based on the convex Lovász extension, by building on con-
nections to optimal transport. The subclass of L\-convex
functions admits strongly polynomial time minimization
(Murota, 2003; Kolmogorov & Shioura, 2009; Murota &
Shioura, 2014), but does not apply in our setting.

Similarly, results for submodular maximization extend to
integer lattices, e.g. (Gottschalk & Peis, 2015). Stronger
results are possible if the submodular function also satis-
fies diminishing returns: for all x  y (coordinate-wise)
and i such that y+ei 2 X , it holds that f(x+ei)�f(x) �
f(y+ei)�f(y). For such DR-submodular functions, many
approximation results for the set function case extend (Bian
et al., 2017; Soma & Yoshida, 2015; Soma et al., 2014). In
particular, Ene & Nguyen (2016) show a generic reduction
to set function optimization that they apply to maximiza-
tion. In fact, it also applies to minimization:

Proposition 1.1. A DR-submodular function f defined
on

Qn
i=1

[ki] can be minimized in strongly polynomial
time O(n4

log

4 k · log

2

(n log k) · EO + n4

log

4 k ·
log

O(1)

(n log k)), where k = maxi ki and EO is the time
complexity of evaluating f . Here, [ki] = {0, 1, . . . , ki�1}.

In particular, the time complexity is logarithmic in k. For
general lattice submodular functions, this is not possible
without further assumptions.

1.1.2. RELATED PROBLEMS

A sister problem of Budget Allocation is Influence Max-
imization on general graphs, where a set of seed nodes
is selected to start a propagation process. The influence
function is still monotone submodular and amenable to
the greedy algorithm (Kempe et al., 2003), but it cannot
be evaluated explicitly and requires approximation (Chen
et al., 2010). Stochastic Coverage (Goemans & Vondrák,
2006) is a version of Set Cover where the covering sets
Si ⇢ V are random. A variant of Budget Allocation can be
written as stochastic coverage with multiplicity. Stochastic
Coverage has mainly been studied in the online or adap-
tive setting, where logarithmic approximation factors can
be achieved (Golovin & Krause, 2011; Deshpande et al.,
2016; Adamczyk et al., 2016).
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Our objective function (2) is a signomial in p, i.e., a lin-
ear combination of monomials of the form

Q

i x
ci
i . Gen-

eral signomial optimization is NP-hard (Chiang, 2005), but
certain subclasses are tractable: posynomials with all non-
negative coefficients can be minimized via Geometric Pro-
gramming (Boyd et al., 2007), and signomials with a sin-
gle negative coefficient admit sum of squares-like relax-
ations (Chandrasekaran & Shah, 2016). Our problem, a
constrained posynomial maximization, is not in general
a geometric program. Some work addresses this setting
via monomial approximation (Pascual & Ben-Israel, 1970;
Ecker, 1980), but, to our knowledge, our algorithm is the
first that solves this problem to arbitrary accuracy.

1.1.3. ROBUST OPTIMIZATION

Two prominent strategies of addressing uncertainty in pa-
rameters of optimization problems are stochastic and ro-
bust optimization. If the distribution of the parameters
is known (stochastic optimization), formulations such as
value-at-risk (VaR) and conditional value-at-risk (CVaR)
(Rockafellar & Uryasev, 2000; 2002) apply. In contrast,
robust optimization (Ben-Tal et al., 2009; Bertsimas et al.,
2011) assumes that the parameters (of the cost function and
constraints) can vary arbitrarily within a known confidence
set U , and the aim is to optimize the worst-case setting, i.e.,

min

y
sup

u,A,b2U
{g(y;u) s.t. Ay  b}. (4)

Here, we will only have uncertainty in the cost function.

In this paper we are principally concerned with robust max-
imization of the continuous influence function I(y), but
mention some results for the discrete case. While there
exist results for robust and CVaR optimization of modu-
lar (linear) functions (Nikolova, 2010; Bertsimas & Sim,
2003), submodular objectives do not in general admit such
optimization (Maehara, 2015), but variants admit approxi-
mations (Zhang et al., 2014). The brittleness of submodu-
lar optimization under noise has been studied in (Balkanski
et al., 2016; 2017; Hassidim & Singer, 2016).

Approximations for robust submodular and influence opti-
mization have been studied in (Krause et al., 2008; He &
Kempe, 2016; Chen et al., 2016; Lowalekar et al., 2016),
where an adversary can pick among a finite set of objective
functions or remove selected elements (Orlin et al., 2016).

2. Robust and Stochastic Budget Allocation
The unknown parameters in Budget Allocation are the
transmission probabilities pst or edge weights in a graph.
If these are estimated from data, we may have posterior
distributions or, a weaker assumption, confidence sets for
the parameters. For ease of notation, we will work with
the failure probabilities xst = 1 � pst instead of the pst

directly, and write I(y;x) instead of I(y; p).

2.1. Stochastic Optimization

If a (posterior) distribution of the parameters is known, a
simple strategy is to use expectations. We place a uni-
form prior on xst, and observe nst independent observa-
tions drawn from Ber(xst). If we observe ↵st failures and
and �st successes, the resulting posterior distribution on
the variable Xst is Beta(1 + ↵st, 1 + �st). Given such a
posterior, we may optimize

max

y2Y
I(y;E[X]), or (5)

max

y2Y
E[I(y;X)]. (6)

Proposition 2.1. Problems (5) and (6) are concave max-
imization problems over the (convex) set Y and can be
solved exactly.

Concavity of (6) follows since it is an expectation over con-
cave functions, and the problem can be solved by stochastic
gradient ascent or by explicitly computing gradients.

Merely maximizing expectation does not explicitly account
for volatility and hence risk. One option is to include vari-
ance (Ben-Tal & Nemirovski, 2000; Bertsimas et al., 2011;
Atamtürk & Narayanan, 2008):

min

y2Y
�E[I(y;X)] + "

p

Var(I(y;X)), (7)

but in our case this CVaR formulation seems difficult:
Fact 2.1. For y in the nonnegative orthant, the term
p

Var(I(y;X)) need not be convex or concave, and need
not be submodular or supermodular.

This observation does not rule out a solution, but the appar-
ent difficulties further motivate a robust formulation that, as
we will see, is amenable to optimization.

2.2. Robust Optimization

The focus of this work is the robust version of Budget Al-
location, where we allow an adversary to arbitrarily set the
parameters x within an uncertainty set X . This uncertainty
set may result, for instance, from a known distribution, or
simply assumed bounds. Formally, we solve

max

y2Y
min

x2X
I(y;x), (8)

where Y ⇢ RS
+

is a convex set with an efficient projec-
tion oracle, and X is an uncertainty set containing an es-
timate x̂. In the sequel, we use uncertainty sets X =

{x 2 Box(l, u) : R(x)  B}, where R is a distance (or di-
vergence) from the estimate x̂, and Box(l, u) is the box
Q

(s,t)2E [lst, ust]. The intervals [lst, ust] can be thought of
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as either confidence intervals around x̂, or, if [lst, ust] =

[0, 1], enforce that each xst is a valid probability.

Common examples of uncertainty sets used in Robust Op-
timization are Ellipsoidal and D-norm uncertainty sets
(Bertsimas et al., 2011). Our algorithm in Section 3.1 ap-
plies to both.

Ellipsoidal uncertainty. The ellipsoidal or quadratic un-
certainty set is defined by

XQ
(�) = {x 2 Box(0, 1) : (x� x̂)T⌃�1

(x� x̂)  �},

where ⌃ is the covariance of the random vector X of proba-
bilities distributed according to our Beta posteriors. In our
case, since the distributions on each xst are independent,
⌃

�1 is actually diagonal. Writing ⌃ = diag(�2

), we have

XQ
(�) =

n

x 2 Box(0, 1) :
X

(s,t)2E

Rst(xst)  �
o

,

where Rst(x) = (xst � x̂st)
2��2

st .

D-norm uncertainty. The D-norm uncertainty set is simi-
lar to an `

1

-ball around x̂, and is defined as

XD
(�) =

n

x : 9c 2 Box(0, 1) s.t.

xst = x̂st + (ust � x̂st)cst,
X

(s,t)2E

cst  �
o

.

Essentially, we allow an adversary to increase x̂st up to
some upper bound ust, subject to some total budget �
across all terms xst. The set XD

(�) can be rewritten as

XD
(�) =

n

x 2 Box(x̂, u) :
X

(s,t)2E

Rst(xst)  �
o

,

where Rst(xst) = (xst � x̂st)/(ust � x̂st) is the fraction
of the interval [x̂st, ust] we have used up in increasing xst.

The min-max formulation maxy2Y minx2X I(y;x) has
several merits: the model is not tied to a specific learning
algorithm for the probabilities x as long as we can choose a
suitable confidence set. Moreover, this formulation allows
to fully hedge against a worst-case scenario.

3. Optimization Algorithm
As noted above, the function I(y;x) is concave as a func-
tion of y for fixed x. As a pointwise minimum of concave
functions, F (y) := minx2X I(y;x) is concave. Hence, if
we can compute subgradients of F (y), we can solve our
max-min-problem via the subgradient method, as outlined
in Algorithm 1.

A subgradient gy 2 @F (y) at y is given by the gradient of
I(y;x⇤

) for the minimizing x⇤ 2 argminx2X I(y;x), i.e.,

Algorithm 1 Subgradient Ascent
Input: suboptimality tolerance " > 0, initial feasible
budget y(0) 2 Y
Output: "-optimal budget y for Problem (8)
repeat
x(k)  argminx2X I(y(k);x)
g(k)  ryI(y(k);x(k)

)

L(k)  I(y(k);x(k)
)

U (k)  maxy2Y I(y;x(k)
)

�(k)  (U (k) � L(k)
)/kg(k)k2

2

y(k+1)  projY(y
(k)

+ �(k)g(k))
k  k + 1

until U (k) � L(k)  "

gy = ryI(y;x⇤
). Hence, we must be able to compute x⇤

for any y. We also obtain a duality gap: for any x0, y0 we
have

min

x2X
I(y0;x)  max

y2Y
min

x2X
I(y;x)  max

y2Y
I(y;x0

). (9)

This means we can estimate the optimal value I⇤ and
use it in Polyak’s stepsize rule for the subgradient method
(Polyak, 1987).

But I(y;x) is not convex in x, and not even quasicon-
vex. For example, standard methods (Wainwright & Chi-
ang, 2004, Chapter 12) imply that f(x

1

, x
2

, x
3

) = 1 �
x
1

x
2

� px
3

is not quasiconvex on R3

+

. Moreover, the
above-mentioned signomial optimization techniques do not
apply for an exact solution either. So, it is not immediately
clear that we can solve the inner optimization problem.

The key insight we will be using is that I(y;x) has a dif-
ferent beneficial property: while not convex, I(y;x) as a
function of x is continuous submodular.
Lemma 3.1. Suppose we have n � 1 differentiable func-
tions fi : R! R

+

, for i = 1, . . . , n, either all nonincreas-
ing or all nondecreasing. Then, f(x) =

Qn
i=1

fi(xi) is a
continuous supermodular function from Rn to R

+

.

Proof. For n = 1, the resulting function is modular and
therefore supermodular. In the case n � 2, we simply need
to compute derivatives. The mixed derivatives are

@f

@xi@xj
= f 0

i(xi)f
0
j(xj) ·

Y

k 6=i,j

fk(xk). (10)

By monotonicity, f 0
i and f 0

j have the same sign, so their
product is nonnegative, and since each fk is nonnegative,
the entire expression is nonnegative. Hence, f(x) is contin-
uous supermodular by Theorem 3.2 of (Topkis, 1978).

Corollary 3.1. The influence function I(y;x) defined in
Section 2 is continuous submodular in x over the nonnega-
tive orthant, for each y � 0.
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Proof. Since submodularity is preserved under summation,
it suffices to show that each function It(y) is continuous
submodular. By Lemma 3.1, since fs(z) = zy(s) is non-
negative and monotone nondecreasing for y(s) � 0, the
product

Q

(s,t)2E xy(s)
st is continuous supermodular in x.

Flipping the sign and adding a constant term yields It(y),
which is hence continuous submodular.

Conjecture 3.1. Strong duality holds, i.e.

max

y2Y
min

x2X
I(y;x) = min

x2X
max

y2Y
I(y;x). (11)

If strong duality holds, then the duality gap
maxy2Y I(y;x⇤

) � minx2X I(y⇤;x) in Equation (9)
is zero at optimality. If I(y;x) were quasiconvex in x,
strong duality would hold by Sion’s min-max theorem, but
this is not the case. In practice, we observe that the duality
gap always converges to zero.

Bach (2015) demonstrates how to minimize a continu-
ous submodular function H(x) subject to box constraints
x 2 Box(l, u), up to an arbitrary suboptimality gap " > 0.
The constraint set X in our Robust Budget Allocation prob-
lem, however, has box constraints with an additional con-
straint R(x)  B. This case is not addressed in any pre-
vious work. Fortunately, for a large class of functions R,
there is still an efficient algorithm for continuous submod-
ular minimization, which we present in the next section.

3.1. Constrained Continuous Submodular Function
Minimization

We next address an algorithm for minimizing a monotone
continuous submodular function H(x) subject to box con-
straints x 2 Box(l, u) and a constraint R(x)  B:

minimize H(x)
s.t. R(x)  B

x 2 Box(l, u).
(12)

If H and R were convex, the constrained problem would
be equivalent to solving, with the right Lagrange multipler
�⇤ � 0:

minimize H(x) + �⇤R(x)
s.t. x 2 Box(l, u).

(13)

Although H and R are not necessarily convex here, it turns
out that a similar approach indeed applies. The main idea
of our approach bears similarity with (Nagano et al., 2011)
for the set function case, but our setting with continuous
functions and various uncertainty sets is more general, and
requires more argumentation. We outline our theoretical
results here, and defer further implementation details and
proofs to the appendix.

Following (Bach, 2015), we discretize the problem; for a
sufficiently fine discretization, we will achieve arbitrary ac-
curacy. Let A be an interpolation mapping that maps the

discrete set
Qn

i=1

[ki] into Box(l, u) =
Qn

i=1

[li, ui] via the
componentwise interpolation functions Ai : [ki]! [li, ui].
We say Ai is �-fine if Ai(xi + 1) � Ai(xi)  � for all
xi 2 {0, 1, . . . , ki � 2}, and we say the full interpolation
function A is �-fine if each Ai is �-fine.

This mapping yields functions H�
:

Qn
i=1

[ki] ! R and
R�

:

Qn
i=1

[ki] ! R via H�
(x) = H(A(x)) and R�

(x) =
R(A(x)). H� is lattice submodular (on the integer lattice).
This construction leads to a reduction of Problem (12) to a
submodular minimization problem over the integer lattice:

minimize H�
(x) + �R�

(x)
s.t. x 2

Qn
i=1

[ki].
(14)

Ideally, there should then exist a � such that the associated
minimizer x(�) yields a close to optimal solution for the
constrained problem. Theorem 3.1 below states that this is
indeed the case.

Moreover, a second benefit of submodularity is that we can
find the entire solution path for Problem (14) by solving a
single optimization problem.

Lemma 3.2. Suppose H is continuous submodular, and
suppose the regularizer R is strictly increasing and sepa-
rable: R(x) =

Pn
i=1

Ri(xi). Then we can recover a min-
imizer x(�) for the induced discrete Problem (14) for any
� 2 R by solving a single convex optimization problem.

The problem in question arises from a relaxation h# that
extends H� in each coordinate i to a function on distribu-
tions over the domain [ki]. These distributions are repre-
sented via their inverse cumulative distribution functions
⇢i, which take the coordinate xi as input, and output the
probability of exceeding xi. The function h# is an analogue
of the Lovász extension of set functions to continuous sub-
modular functions (Bach, 2015), it is convex and coincides
with H� on lattice points.

Formally, this resulting single optimization problem is:

minimize h#(⇢) +
Pn

i=1

Pki�1

ji=1

aixi(⇢i(xi))

s.t. ⇢ 2
Qn

i=1

Rki�1

#
(15)

where Rk
# refers to the set of ordered vectors z 2 Rk that

satisfy z
1

� z
2

� · · · � zk, the notation ⇢i(xi) denotes the
xi-th coordinate of the vector ⇢i, and the aixi are strictly
convex functions given by

aixi(t) =
1

2

t2 · [R�
i (xi)�R�

i (xi � 1)]. (16)

Problem (15) can be solved by Frank-Wolfe methods
(Frank & Wolfe, 1956; Dunn & Harshbarger, 1978;
Lacoste-Julien, 2016; Jaggi, 2013). This is because the
greedy algorithm for computing subgradients of the Lovász
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extension can be generalized, and yields a linear optimiza-
tion oracle for the dual of Problem (15). We detail the re-
lationship between Problems (14) and (15), as well as how
to implement the Frank-Wolfe methods, in Appendix C.

Let ⇢⇤ be the optimal solution for Problem (15). For any
�, we obtain a rounded solution x(�) for Problem (14) by
thresholding: we set x(�)i = max{j | 1  j  ki �
1, ⇢⇤i (j) � �}, or zero if ⇢⇤i (j) < � for all j. Each x(�0

) is
the optimal solution for Problem (14) with � = �0. We use
the largest parameterized solution x(�) that is still feasible,
i.e. the solution x(�⇤

) where �⇤ solves

min H�
(x(�))

s.t. � � 0

R�
(x(�))  B.

(17)

This �⇤ can be found efficiently via binary search or a lin-
ear scan.
Theorem 3.1. Let H be continuous submodular and mono-
tone decreasing, with `1-Lipschitz constant G, and let R
be strictly increasing and separable. Assume all entries
⇢⇤i (j) of the optimal solution ⇢⇤ of Problem (15) are dis-
tinct. Let x0

= A(x(�⇤
)) be the thresholding correspond-

ing to the optimal solution �⇤ of Problem (17), mapped
back into the original continuous domain X . Then x0 is
feasible for the continuous Problem (12), and is a 2G�-
approximate solution:

H(x0
)  2G� + min

x2Box(l,u), R(x)B
H(x).

Theorem 3.1 implies an algorithm for solving Problem (12)
to "-optimality: (1) set � = "/G, (2) compute ⇢⇤ which
solves Problem (15), (3) find the optimal thresholding of
⇢⇤ by determining the smallest �⇤ for which R�

(x(�⇤
)) 

B, and (4) map x(�⇤
) back into continuous space via the

interpolation mapping A.

Optimality Bounds. Theorem 3.1 is proved by compar-
ing x0 and x⇤ to the optimal solution on the discretized
mesh

x⇤
d 2 argmin

x2
Qn

i=1[ki]:R�
(x)B

H�
(x).

Beyond the theoretical guarantee of Theorem 3.1, for any
problem instance and candidate solution x0, we can com-
pute a bound on the gap between H(x0

) and H�
(x⇤

d). The
following two bounds are proved in the appendix:

1. We can generate a discrete point x(�
+

) satisfying

H(x0
)  [H(x0

)�H�
(x(�

+

))] +H�
(x⇤

d).

2. The Lagrangian yields the bound

H(x0
)  �⇤

(B �R(x0
)) +H�

(x⇤
d).

Improvements. The requirement in Theorem 3.1 that the
elements of ⇢⇤ be distinct may seem somewhat restrictive,
but as long as ⇢⇤ has distinct elements in the neighborhood
of our particular �⇤, this bound still holds. We see in Sec-
tion 4.1.1 that in practice, ⇢⇤ almost always has distinct
elements in the regime we care about, and the bounds of
Remark 3.1 are very good.

If H is DR-submodular and R is affine in each coordinate,
then Problem (14) can be represented more compactly via
the reduction of Ene & Nguyen (2016), and hence prob-
lem (12) can be solved more efficiently. In particular, the
influence function I(y;x) is DR-submodular in x when for
each s, y(s) = 0 or y(s) � 1.

3.2. Application to Robust Budget Allocation

The above algorithm directly applies to Robust Alloca-
tion with the uncertainty sets in Section 2.2. The ellip-
soidal uncertainty set XQ corresponds to the constraint that
P

(s,t)2E Rst(xst)  � with Rst(x) = (xst � x̂st)
2��2

st ,
and x 2 Box(0, 1). By the monotonicity of I(x, y), there
is never incentive to reduce any xst below x̂st, so we can
replace Box(0, 1) with Box(x̂, 1). On this interval, each
Rst is strictly increasing, and Theorem 3.1 applies.

For D-norm sets, we have Rst(xst) = (xst � x̂st)/(ust �
x̂st). Since each Rst is monotone, Theorem 3.1 applies.

Runtime and Alternatives. Since the core algorithm
is Frank-Wolfe, it is straightforward to show that Prob-
lem (15) can be solved to "-suboptimality in time
O("�1n2��3↵�1|T |2 log n��1

), where ↵ is the mini-
mum derivative of the functions Ri. If ⇢⇤ has dis-
tinct elements separated by ⌘, then choosing " =

⌘2↵�/8 results in an exact solution to (14) in time
O(⌘�2n2��4↵�2|T |2 log n��1

).

Noting that H�
+ �R� is submodular for all �, one could

instead perform binary search over �, each time converting
the objective into a submodular set function via Birkhoff’s
theorem and solving submodular minimization e.g. via one
of the recent fast methods (Chakrabarty et al., 2017; Lee
et al., 2015). However, we are not aware of a practical im-
plementation of the algorithm in (Lee et al., 2015). The
algorithm in (Chakrabarty et al., 2017) yields a solution in
expectation. This approach also requires care in the preci-
sion of the search over �, whereas our approach searches
directly over the O(n��1

) elements of ⇢⇤.

4. Experiments
We evaluate our Robust Budget Allocation algorithm on
both synthetic test data and a real-world bidding dataset
from Yahoo! Webscope (yah) to demonstrate that our
method yields real improvements. For all experiments, we
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Figure 1. Visualization of the sorted values of ⇢⇤
i

(j) (blue dots)
with comparison to the particular Lagrange multiplier �⇤ (orange
line). In most regimes there are no duplicate values, so that The-
orem 3.1 applies. The theorem only needs distinctness at �⇤.

used Algorithm 1 as the outer loop. For the inner sub-
modular minimization step, we implemented the pairwise
Frank-Wolfe algorithm of (Lacoste-Julien & Jaggi, 2015).
In all cases, the feasible set of budgets Y is {y 2 RS

+

:

P

s2S y(s)  C} where the specific budget C depends on
the experiment. Our code is available at git.io/vHXkO.

4.1. Synthetic

On the synthetic data, we probe two questions: (1) how of-
ten does the distinctness condition of Theorem 3.1 hold, so
that we are guaranteed an optimal solution; and (2) what is
the gain of using a robust versus non-robust solution in an
adversarial setting? For both settings, we set |S| = 6 and
|T | = 2 and discretize with � = 0.001. We generated true
probabilties pst, created Beta posteriors, and built both El-
lipsoidal uncertainty sets XQ

(�) and D-norm sets XD
(�).

4.1.1. OPTIMALITY

Theorem 3.1 and Remark 3.1 demand that the values ⇢⇤i (j)
be distinct at our chosen Lagrange multiplier �⇤ and, under
this condition, guarantee optimality. We illustrate this in
four examples: for Ellipsoidal or a D-norm uncertainty set,
and a total influence budget C 2 {0.4, 4}. Figure 3 shows
all elements of ⇢⇤ in sorted order, as well as a horizontal
line indicating our Lagrange multiplier �⇤ which serves as
a threshold. Despite some plateaus, the entries ⇢⇤i (j) are
distinct in most regimes, in particular around �⇤, the regime
that is needed for our results. Moreover, in practice (on the
Yahoo data) we observe later in Figure 3 that both solution-
dependent bounds from Remark 3.1 are very good, and all
solutions are optimal within a very small gap.
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Figure 2. Comparison of worst-case expected influences for D-
norm uncertainty sets XD(�) (left) and ellipsoidal uncertainty
sets XQ(�) (right), for different total budget bounds C. For any
particular adversary budget �, we compare min

x2X (�) I(y;x)
for each candidate allocation y.

4.1.2. ROBUSTNESS AND QUALITY

Next, we probe the effect of a robust versus non-robust so-
lution for different uncertainty sets and budgets � of the
adversary. We compare our robust solution with using
a point estimate for x, i.e., y

nom

2 argmaxy2Y I(y; x̂),
treating estimates as ground truth, and the stochastic solu-
tion y

expect

2 argmaxy2Y E[I(y;X)] as per Section 2.1.
These two optimization problems were solved via standard
first-order methods using TFOCS (Becker et al., 2011).

Figure 2 demonstrates that indeed, the alternative budgets
are sensitive to the adversary and the robustly-chosen bud-
get y

robust

performs better, even in cases where the other
budgets achieve zero influence. When the total budget C is
large, y

expect

performs nearly as well as y
robust

, but when
resources are scarce (C is small) and the actual choice
seems to matter more, y

robust

performs far better.

4.2. Yahoo! data

To evaluate our method on real-world data, we formulate
a Budget Allocation instance on advertiser bidding data
from Yahoo! Webscope (yah). This dataset logs bids on
1000 different phrases by advertising accounts. We map
the phrases to channels S and the accounts to customers T ,
with an edge between s and t if a corresponding bid was
made. For each pair (s, t), we draw the associated trans-
mission probability pst uniformly from [0, 0.4]. We bias
these towards zero because we expect people not to be eas-
ily influenced by advertising in the real world. We then
generate an estimate p̂st and build up a posterior by gener-
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Figure 3. Convergence properties of our algorithm on real data.
In the first plot, ‘p’ and ‘d’ refer to primal and dual values, with
dual gap shown on the second plot. The third plot demonstrates
that the problem-dependent suboptimality bounds of Remark 3.1
(x for x(�+) and L for Lagrangian) are very small (good) for all
inner iterations of this run.

ating nst samples from Ber(pst), where nst is the number
of bids between s and t in the dataset.

This transformation yields a bipartite graph with |S| =

1000, |T | = 10475, and more than 50,000 edges that we
use for Budget Allocation. In our experiments, the typical
gap between the naive y

nom

and robust y
robust

was 100-
500 expected influenced people. We plot convergence of
the outer loop in Figure 3, where we observe fast conver-
gence of both primal influence value and the dual bound.

4.3. Comparison to first-order methods

Given the success of first-order methods on nonconvex
problems in practice, it is natural to compare these to our
method for finding the worst-case vector x. On one of our
Yahoo problem instances with D-norm uncertainty set, we
compared our submodular minimization scheme to Frank-
Wolfe with fixed stepsize as in (Lacoste-Julien, 2016), im-
plementing the linear oracle using MOSEK (MOSEK ApS,
2015). Interestingly, from various initializations, Frank-
Wolfe finds an optimal solution, as verified by comparing
to the guaranteed solution of our algorithm. Note that, due
to non-convexity, there are no formal guarantees for Frank-
Wolfe to be optimal here, motivating the question of global
convergence properties of Frank-Wolfe in the presence of
submodularity.

It is important to note that there are many cases where first-
order methods are inefficient or do not apply to our setup.
These methods require either a projection oracle (PO) onto
or linear optimization oracle (LO) over the feasible set X
defined by `, u and R(x). The D-norm set admits a LO via
linear programming, but we are not aware of any efficient
LO for Ellipsoidal uncertainty, nor PO for either set, that
does not require quadratic programming. Even more, our
algorithm applies for nonconvex functions R(x) which in-
duce nonconvex feasible sets X . Such nonconvex sets may
not even admit a unique projection, while our algorithm
achieves provable solutions.

0 40 80

7500

8500

9500

10500

Figure 4. Convergence properties of Frank-Wolfe (FW), versus
the optimal value attained with our scheme (SFM).

5. Conclusion
We address the issue of uncertain parameters (or, model
misspecification) in Budget Allocation or Bipartite Influ-
ence Maximization (Alon et al., 2012) from a robust op-
timization perspective. The resulting Robust Budget Allo-
cation is a nonconvex-concave saddle point problem. Al-
though the inner optimization problem is nonconvex, we
show how continuous submodularity can be leveraged to
solve the problem to arbitrary accuracy ", as can be veri-
fied with the proposed bounds on the duality gap. In par-
ticular, our approach extends continuous submodular mini-
mization methods (Bach, 2015) to more general constraint
sets, introducing a mechanism to solve a new class of con-
strained nonconvex optimization problems. We confirm on
synthetic and real data that our method finds high-quality
solutions that are robust to parameters varying arbitrarily in
an uncertainty set, and scales up to graphs with over 50,000
edges.

There are many compelling directions for further study.
The uncertainty sets we use are standard in the robust opti-
mization literature, but have not been applied to e.g. Robust
Influence Maximization; it would be interesting to general-
ize our ideas to general graphs. Finally, despite the inher-
ent nonconvexity of our problem, first-order methods are
often able to find a globally optimal solution. Explaining
this phenomenon requires further study of the geometry of
constrained monotone submodular minimization.
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