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Abstract
In this paper, we consider optimizing submodu-
lar functions that are drawn from some unknown
distribution. This setting arises, e.g., in recom-
mender systems, where the utility of a subset of
items may depend on a user-specific submodu-
lar utility function. In modern applications, the
ground set of items is often so large that even
the widely used (lazy) greedy algorithm is not
efficient enough. As a remedy, we introduce the
problem of sublinear time probabilistic submod-
ular maximization: Given training examples of
functions (e.g., via user feature vectors), we seek
to reduce the ground set so that optimizing new
functions drawn from the same distribution will
provide almost as much value when restricted to
the reduced ground set as when using the full set.

We cast this problem as a two-stage submodular
maximization and develop a novel efficient al-
gorithm for this problem which offers a 1

2 (1 −
1
e2 ) approximation ratio for general monotone
submodular functions and general matroid con-
straints. We demonstrate the effectiveness of
our approach on several real-world problem in-
stances where running the maximization prob-
lem on the reduced ground set leads to two folds
speed-up while incurring almost no loss.

1. Introduction
Motivated by applications in data summarization (Lin &
Bilmes, 2011; Wei et al., 2013; Mirzasoleiman et al.,
2016d) and recommender systems (El-Arini et al., 2009;
Yue & Guestrin, 2011; Mirzasoleiman et al., 2016a), we
tackle the challenge of efficiently solving many statistically
related submodular maximization problems. In these appli-
cations, submodularity arises in the form of user-specific
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utility functions for valuating sets of items, and a proto-
typical problem is to find sets of say k items with near-
maximal value (Krause & Golovin, 2012; Mirzasoleiman
et al., 2016b). Even though efficient greedy algorithms ex-
ist for submodular maximization, those become infeasible
when serving many users and optimizing over large item
collections. To this end, given training examples of (users
and their utility) functions drawn from some unknown dis-
tribution, we seek to reduce the ground set to a small (ide-
ally sublinear) size. The hope is that optimizing new func-
tions drawn from the same distribution will incur little loss
when optimized on the reduced set compared to optimizing
over the full set.

Optimizing the empirical objective is an instance of two-
stage submodular maximization, a problem recently con-
sidered by Balkanski et al. (2016) who provide a 0.316
approximation guarantee for the case of coverage func-
tions (more about it in the related work). One of our
key technical contributions is a computationally efficient
novel local-search based algorithm, called Replacement-
Greedy, for two-stage submodular maximization, that pro-
vides a constant-factor 0.432 approximation guarantee for
the general case of monotone submodular functions. Our
approach also generalizes to arbitrary matroid constraints,
and empirically compares favorably to prior work. We fur-
ther analyze conditions under which our approach prov-
ably enables approximate submodular optimization based
on substantially reduced ground sets, resulting the first vi-
able approach towards sublinear-time submodular maxi-
mization.

Lastly, we demonstrate the effectiveness of our approach
on recommender systems for which we compare the utility
value and running time of maximizing a submodular func-
tion over the full data set and its reduced version returned
by our algorithm. We consistently observe that the loss we
incur is negligible (around 1%) while the speed up is enor-
mous (about two orders of magnitude).

Related work Submodular maximization has found
many applications in machine learning, ranging from fea-
ture/variable selection (Krause & Guestrin, 2005) to dic-
tionary learning (Das & Kempe, 2011) to data summariza-
tion (Wei et al., 2014b; Lin & Bilmes, 2011; Tschiatschek
et al., 2014) to recommender systems (Yue & Guestrin,
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2011; El-Arini et al., 2009). A seminal result of Nemhauser
et al. (1978) proves that a simple greedy algorithm pro-
vides an optimal constant factor (1 − 1/e) approxima-
tion guarantee. Given the size of modern data sets, much
work has focused on solving submodular maximization at
scale. This work ranges from accelerating the greedy al-
gorithm itself (Minoux, 1978; Mirzasoleiman et al., 2015;
2016a; Badanidiyuru & Jan, 2014; Buchbinder et al., 2014)
to distributed (Kumar et al., 2013; Mirzasoleiman et al.,
2013) and streaming (Krause & Gomes, 2010; Badani-
diyuru et al., 2014) approaches, as well as algorithms based
on filtering the ground set in multiple stages (Wei et al.,
2014a; Feldman et al., 2017). All of these approaches aim
to solve a single fixed problem instance, and have computa-
tional cost at least linear in the ground set size. In contrast,
we seek to solve multiple related problems with sublinear
effort.

Solving multiple submodular problems arises in online
submodular optimization (Streeter & Golovin, 2008; Hazan
& Kale, 2009; Jegelka & Bilmes, 2011). In this setting the
goal is to design algorithms that perform well in hindsight
(minimize some form of regret). The computational com-
plexity of these algorithms is typically (super)-linear in the
ground set size. Studying online variants of our problem is
an interesting direction for future work.

Closest to our work is the approach of Balkanski et al.
(2016) that we build on and compare within this paper.
For general submodular objectives, they propose two al-
gorithms: one based on continuous optimization (with pro-
hibitive computational complexity in terms of the size of
the ground set n), which provides constant factor approx-
imation guarantees only for large values of k (i.e., cardi-
nality constraint), as well as one that has exponential com-
plexity in terms of k. To circumvent the large computa-
tional complexity of the above algorithms, they also pro-
posed a heuristic local search method that offers a 1

2 (1− 1
e )

approximation for the special case of coverage functions.
The query complexity of this algorithm is O(km`n2 log n)
where ` is the size of the summary and m is the number
of considered submodular functions in the two-stage op-
timization. One of our key contributions is a novel and
computationally efficient algorithm for the two-stage prob-
lem. More specifically, our method ReplacementGreedy
provides a 1

2 (1 − e−2) approximation guarantee for gen-
eral monotone submodular functions subject to a general
matroid constraint with only O(rm`n) query complexity
(here r denotes the rank of the matroid). As argued by
Balkanski et al. (2016), two-stage submodular maximiza-
tion can be seen as a discrete analogue of representation
learning problems like dictionary learning. It is important
to note that the two-stage submodular maximization prob-
lem is fractionally subadditive (XOS) (Feige, 2009). Al-
though it is tempting to use the XOS property of our two-

stage function especially given the positive results for so-
cial welfare XOS maximization, there are several obstacles
preventing us from doing so. First, evaluating the two stage
function is NP-hard, so we cannot have access to oracle
value queries. Second, as shown by Singer (2010); Sha-
har Dobzinski & Schapira (2005); Ashwinkumar Badani-
diyuru (2012), any n1/2−ε approximation of a XOS re-
quires exponentially many oracle value queries. Therefore
the XOS property itself is not sufficient to get any positive
algorithmic result for our problem. Nevertheless, we can
still provide constant factor approximation with computa-
tionally efficient algorithms.

Repeatedly optimizing related classes of submodular func-
tions is a key subroutine in many applications, such
as structured prediction (Lin & Bilmes, 2012) or lin-
ear submodular bandits (Yue & Guestrin, 2011). In
both of these problems, one needs to repeatedly maxi-
mize weighted combinations of submodular functions, for
changing weights. Our work can be viewed as providing an
approach towards accelerating this central subroutine.

2. Problem Setup
In this paper, we consider the problem of frequently op-
timizing monotone submodular functions f : 2Ω → R+

that are drawn from some unknown probability distribution
D. Hereby, Ω denotes the ground set of size n over which
the submodular functions are defined. W.l.o.g. we assume
that the maximum value of any function f drawn from D
does not exceed 1. This setting arises in many applications,
such as recommender systems, where the random function
f = fu refers to the (predicted) valuation over sets of items
for a particular user u, which may vary depending on their
features (c.f., Yue & Guestrin (2011)). These applications
typically dictate some constraints, i.e., one seeks to solve

T ∗ = arg max f(T ) s.t. T ∈ I,

where I ⊆ 2Ω is a collection of feasible sets. In this
paper we primarily consider cardinality constraints, i.e.,
I = {T ⊆ Ω : |T | ≤ k}. Our results will hold also in
the more general setting where I is the collection of in-
dependent sets in some matroid (Calinescu et al., 2011).
Throughout the paper r denotes the rank of the matroid. In
the special case of cardinality constraint, the rank is r = k.

While NP-hard, good approximation algorithms are known
for submodular maximization. For example, the classical
greedy algorithm of Nemhauser et al. (1978) or its accel-
erated variants (Minoux, 1978; Mirzasoleiman et al., 2015;
2016a; Badanidiyuru & Jan, 2014; Buchbinder et al., 2014)
provide an optimal constant factor (1−1/e) approximation
for maximization under cardinality constraints. In modern
applications, however, the system may face a large num-
ber of users, and large collections of items Ω. Hence the
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naive strategy of even greedily optimizing fu for each user
separately may be too costly.

To remedy this situation, in this paper we consider the fol-
lowing approach: Given training data (i.e., a sample collec-
tion of functions f1, . . . , fm), we invest computation once
to obtain a reduced ground set S of size ` � n = |Ω|.
The hope is that optimizing new functions arising at test
time will provide almost as much value when restricting
the choice to items in S, than when considering arbitrary
items in Ω, while being substantially more computationally
efficient.

More formally, the expected performance when using the
candidate reduced ground set S is

G(S) = Ef∼D max
T∈I(S)

f(T ), (1)

where we use I(S) ≡ {T ∈ I and T ⊆ S} to refer to
the collection of feasible sets restricted to those containing
only elements from S. The optimum achievable perfor-
mance would be G(Ω). Our goal will be to pick a set S
of small size ` to maximize G(S), or equivalently make
|G(Ω)−G(S)| small.

Special cases. Some observations are in order. If D is de-
terministic, i.e., puts all mass on a single function f , then
we simply recover classical constrained submodular max-
imization, since G(S) = f(S) for sets up to size k. If D
is known to be the uniform distribution over m functions,
G(S) becomes

Gm(S) =
1

m

m∑
i=1

max
T∈I(S)

fi(T ). (2)

Gm(S) is not generally submodular, but Balkanski et al.
(2016) have developed approximation algorithms for max-
imizing Gm under the constraint that |S| ≤ `,1 i.e., for the
problem:

Sm,` = arg max
S⊂Ω,|S|≤`

1

m

m∑
i=1

max
T∈I(S)

fi(T ). (3)

The general case. In this paper, we consider the problem
of maximizing G(S) for general distributions D. I.e., we
seek to solve:

S∗` = arg max
S⊂Ω,|S|≤`

G(S). (4)

3. Probabilistic Submodular Maximization
Since the distribution D is unknown, we cannot find S∗`
or its corresponding optimum value, G(S∗` ). Instead, we

1Balkanski et al. (2016) only consider cardinality constraints.

can sample functions from D and construct the empirical
average, similar to Problem (2), and try to optimize it by
finding Sm,`. Hence, the total generalization error we incur
in this process is bounded by

error = |G(Ω)−G(Sm,`)|
≤ |G(Ω)−G(S∗` )|

compression error
+ |G(S∗` )−G(Sm,`)|

approximation error
.(5)

Note that once we have error ≤ ε for some small ε > 0 then
maximizing over Sm,` is almost as good as maximizing
over Ω (but possibly much faster). To that end we need
to bound both compression error and approximation error.
In fact we can prove the following result for the required
number of samples to ensure small approximation error.

Theorem 1. For any ε, δ > 0, and any set S of size at most
` we can ensure that

Pr

max
S⊂Ω
|S|≤`

|G(S)−Gm(S)| > ε

 < δ

as long as m = O((` log(n) + log(1/δ))/ε2).

In contrast, the compression error cannot be made arbitrar-
ily small in general as the following example shows.

Bad Example. Suppose Ω = [n], m = n and D is the
uniform distribution over the functions f1, . . . , fn, where
fi(S) is 1 if i ∈ S, 0 otherwise. Each fi is in fact modular.
Let k = 1. It is easy to see that G(S) = |S|/n. Hence to
achieve compression error less than ε, |S| must be greater
than (1 − ε)n. In particular for ε < 1/n, S must be equal
to the full set.

Sufficient conditions for sublinear `. The above exam-
ple shows that one needs additional structural assumptions.
One simple special case arises when the union of the op-
timal sets for all functions in the support of D is of size
` < n, i.e.,∣∣{T ∗ : T ∗ = arg max

T∈I
f(T ) for some f ∈ supp(D)}

∣∣ = `.

I.e., if D is any distribution over at most m functions,
clearly ` ≥ km suffices.

This assumption might be too strong in practice, however.
Instead, we will consider another set of assumptions that al-
low bounding the compression error in the case of cardinal-
ity constraints. We assume Ω is endowed with a metric d.
This metric is extended to sets of equal size so that for any
sets T, T ′ of equal size, d(T, T ′) is the weight of a minimal
matching of elements in T to elements in T ′, where the
weight of (v, v′) for v ∈ T and v′ ∈ T ′ is d(v, v′). We will
assume that any function f ∼ D is L-Lipschitz continuous
w.r.t. d, i.e., |f(T )−f(T ′)| ≤ Ld(T, T ′) for some constant
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L for all sets T and T ′ of size k. Many natural submodular
functions arising in data summarization tasks satisfy this
condition, such as exemplar-based clustering and certain
log-determinants, see, e.g., (Mirzasoleiman et al., 2016c).

Theorem 2. Suppose each function f ∼ D is L-Lipschitz
continuous in (Ω, d). Then, for any ε > 0, the compression
error is bounded by ε as long as ` ≥ knε/2kL, where nδ is
the δ-covering number of (Ω, d).

The proofs of Theorems 1 and 2 are given in the appendix.

4. Algorithm
From the discussions in the previous section, we concluded
that under appropriate statistical conditions, we can ensure
that the error in Eq. 5 can be made small if we have enough
samples dictated by Theorem 1. However, our conclusion
heavily relied on the fact that we can find the set Sm,` in
Problem 3. As we noted earlier, the objective function in
Problem 3 is not submodular in general (Balkanski et al.,
2016), thus the classical greedy algorithm may not provide
any approximation guarantees.

Our proposed algorithm ReplacementGreedy works in `
rounds where in each round it tries to augment the solu-
tion in a particular greedy fashion. It starts out with an
empty set S = ∅, and checks (in each round) whether a
new element can be added without violating the matroid
constraint (i.e., stay an independent set) or otherwise it can
be replaced with an element in the current solution while
increasing the value of the objective function. To describe
how these decisions are made we need a few definitions.
Let

∆i(x,A) = fi({x} ∪A)− fi(A)

denote the marginal gain of adding x to the set A if
we consider function fi. Similarly, we can define the
gain of removing an element y and replacing it with x
as ∇i(x, y,A) = fi({x} ∪ A \ {y}) − fi(A). Since
fi is monotone we know that ∆i(x,A) ≥ 0. However,
∇i(x, y,A) may or may not be positive. Let us consider
I(x,A) = {y ∈ A : A ∪ {x} \ {y} ∈ I}. This is the set
of all elements in A such that if we replace them with x we
will not violate the matroid constraint. Then, we define the
replacement gain of x w.r.t. a set A as follows:

∇i(x,A) =

{
∆i(x,A) if A ∪ {x} ∈ I,
max{0,maxy∈I(x,A)∇i(x, y,A)} o.w.

In words,∇i(x,A) denotes how much we can increase the
value of fi(A) by either inserting x into A or replacing x
with one element of A while keeping A an independent
set. Finally, let Repi(x,A) be the element that should be
replaced by x to maximize the gain and stay independent.

Formally,

Repi(x,A) =

{
∅ if A ∪ {x} ∈ I,
arg maxy∈I(x,A)∇i(x, y,A) o.w.

With the above definitions it is easy to explain how Re-
placementGreedy works. At all times, it maintains a so-
lution S and a collection of feasible solutions Ti ⊆ S for
each function fi (all initialized to the empty set in the be-
ginning). In each iteration, it picks the top element x∗ from
the ground set Ω, based on its total contribution to fi’s,
i.e,
∑m
i=1∇i(x, Ti), and updates S. Then Replacement-

Greedy checks whether any of Ti’s can be augmented.
This is done either by simply adding x∗ (without violat-
ing the matroid constraint) or replacing it with an element
from Ti. The condition ∇i(x∗, Ti) > 0 ensures that such
replacement is executed only if the gain is positive.

Why does ReplacementGreedy work? Note that
solving maxT∈I(S) fi(T ) is an NP-hard problem. How-
ever, ReplacementGreedy finds and maintains indepen-
dent sets Ti ⊆ S throughout the course of the algorithm. In
fact, the collection {S, T1, . . . , Tm} lower bounds Gm(S)
by 1

m

∑m
i=1 fi(Ti). Moreover, each iteration increases the

aggregate value
∑m
i=1 fi(Ti) by

∑m
i=1∇i(x∗, Ti). What

we show in the following theorem is that after ` iterations,
the accumulation of those gains reaches a constant factor
approximation to the optimum value.

Theorem 3. In only O(`mnr) function evaluations Re-
placementGreedy returns a set S of size at most ` along
with independent sets Ti ∈ I(S) such that

Gm(S) ≥ 1

2

(
1− 1

e2

)
Gm(Sm,`).

A few comments are in order. Balkanski et al. (2016) pro-
posed an algorithm with (1− 1/e)/2-approximation guar-
antee for the case where fi’s are coverage functions and the
constraint is a uniform matroid. This is achieved by solv-
ing (potentially large) linear programs while maintaining
O(k`mn2 log n) function evaluations. In contrast, our re-
sult holds for any collection of monotone submodular func-
tions and any matroid constraint. Our approximation guar-
antee (1 − e−2)/2 is better than (1 − 1/e)/2. Finally, our
algorithm is arguably faster in terms of both running time
(as it simply runs a modified greedy method) and query
complexity (as it is linear in all the parameters).

5. Experiments
In this section, we describe our experimental setting. We
offer details on the datasets we used and the baselines
we ran ReplacementGreedy against. We first show that
ReplacementGreedy is highly efficient (i.e., high utility,



Probabilistic Submodular Maximization in Sub-Linear Time

Algorithm 1 ReplacementGreedy
S ← ∅, Ti ← ∅ (∀1 ≤ i ≤ m)
for 1 ≤ j ≤ ` do
x∗ ← arg maxx∈Ω

∑m
i=1∇i(x, Ti)

S ← S ∪ {x∗}
for all 1 ≤ i ≤ m do

if ∇i(x∗, Ti) > 0 then
Ti ← Ti ∪ {x∗}\Repi(x∗, Ti)

end if
end for

end for
Return sets S and T1, T2, · · · , Tm

low running time) when solving the two-stage submodu-
lar maximization problem on two concrete summarization
applications: article summarization and image summariza-
tion. We then demonstrate sublinear submodular maxi-
mization by showing that ReplacementGreedy can effi-
ciently reduce the dataset while incurring minimum loss.
We test the performance of ReplacementGreedy on a
movie dataset where movies should be recommended to
users with user-specific utility functions.

5.1. Baselines

LocalSearch. This is the main algorithm described in
Balkanski et al. (2016)2. In our experiments, we use ε =
0.2. We initialize S by incrementally picking ` elements
such that at each step we maximize the sum of marginal
gains for the m functions fi.

GreedySum. It greedily selects ` elements while maxi-
mizing the submodular function F̂ (S) =

∑m
i=1 fi(S). To

find k elements for each fi it runs another greedy algo-
rithm.

GreedyMerge. It ideally serves as an upper bound for the
objective value, by greedily selecting k elements for each
function fi and returning their union. GreedyMerge can
easily violate the cardinality constraint ` as its solution can
have as many as mk elements.

5.2. Metrics

Objective value. We compare algorithms’ solutions S ac-
cording to the scores Gm(S) for the two-stage (empirical)
problem, and G(S) for the sublinear maximization prob-
lem.

Loss. For the sublinear maximization problem, we measure
the relative loss in performance when using the summary,
compared to the full ground set, i.e., report 1−G(S)/G(Ω).

2We thank the authors for providing us with their implemen-
tation.

Running time. We also compare the algorithms based on
their wall-clock running time. The experiments were ran
in a Python 2.7 environment on a OSX 10.12.13 machine.
The processor was a 2.5 GHz Intel Core i7 with 16 GB
1600 MHz DDR3 memory.

5.3. Two-Stage Submodular Maximization

Article summarization on Wikipedia. The aim is to se-
lect a small, highly relevant subset of wikipedia articles
from a larger corpus. For this task, we reproduce the ex-
periment from Balkanski et al. (2016) on Wikipedia articles
for Machine Learning. The dataset contains n = 407 arti-
cles divided into m = 22 categories, where each category
represents a subtopic from Machine Learning. The rele-
vance of a set S with respect to a category i is measured
by the submodular function fi that counts the number of
pages that belong to category i with a link to at least one
page in S. These submodular functions are L-Lipschitz
with L = 1 by considering the distance between two arti-
cles as the fraction of all pages that have a link to exactly
one of these two articles. Fig. 1a and 1b show the objective
values for a fix k = 5 (and varying `) and a fixed ` = 20
(and varying k). We find that ReplacementGreedy and
LocalSearch perform the same while GreedySum falls
off somewhat for larger values of `. However, if we look at
the running times (log scale) in Fig. 1e and 1f we observe
that ReplacementGreedy is considerably faster than Lo-
calSearch and close to GreedySum.

Image summarization on VOC2012. For this application
we use a subset of the VOC2012 dataset (Everingham et al.,
2014) where we consider n = 150 withm = 20 categories.
Each category indicates a certain visual queue appearing in
the image such as chair, bird, hand, etc. We wish to obtain
a subset of these images that are relevant to all the cate-
gories. To that end we use Exemplar Based Clustering (c.f.,
Mirzasoleiman et al. (2013)). Let Ωi be the portion of the
ground set associated to category i. For any set S we also
let Si = Ωi ∩ S denote its subset that is part of category
i. We define fi(S) = Li({e0}) − Li(S ∪ {e0}) where
Li(S) = 1

|Ωi|
∑
x∈Ωi

miny∈Si d(x, y). Here, d measures
the distance between images (e.g., `2 norm), and e0 is an
auxiliary element. With respect to distance d, our submod-
ular functions are L-Lipschitz with L = 1. Also, images
are represented by feature vectors obtained from categories.
For example, if there were two categories a and b, and
an image had features [a, a, b], its feature vector would be
(2, 1). Again if we look at Fig. 1c (for fixed k = 5 and
varying `) and Fig. 1d (for ` = 20 and varying k) we see
that ReplacementGreedy and LocalSearch achieve the
same objective value. However, Fig. 1g and 1h show that
LocalSearch is significantly slower than Replacement-
Greedy.



Probabilistic Submodular Maximization in Sub-Linear Time

(a) Wikipedia (k = 5) (b) Wikipedia (` = 20) (c) VOC (k = 5) (d) VOC (` = 20)

(e) Wikipedia (k = 5) (f) Wikipedia (` = 20) (g) VOC (k = 5) (h) VOC (` = 20)

Figure 1. Objective values and runtimes for our experiments. The two columns on the left correspond to the Wikipedia dataset and the
two columns on the right correspond to the VOC2012 dataset. Note that the runtimes are all in log-scale. We let k = 5 and vary ` or fix
` = 20 and vary k.

Figure 2. Images chosen by our algorithm on the VOC2012 dataset, for the case when ` = 7 and k = 5

5.4. Sublinear Summarization

In this part, we experimentally show how Replacement-
Greedy can reduce the size of the dataset to `� nwithout
incurring too much loss in the process. To do so, we con-
sider a movie recommendation application.

Movie recommendation with missing ratings. The
dataset consists of user ratings on a scale of 1 to 5, along
with some movie information. There are 20 genres (An-
imation, Comedy, Thriller, etc) and each movie can have
one or more of these genres assigned to it. The goal is to
find a small set S of movies with the property that each user
will be able to find k enjoyable movies from S.

In our setting we consider the top 2000 highest rated
movies (that were rated by at least 20 users) alongside the
top 200 users ordered by number of movies they rated from
this set. We assign a user-specific utility function fi to each
user i as follows. Let Ai be the subset of A which user i
rated. Let g be the number of movie genres. Furthermore,
we letR(i, A, j) represent the highest rating given by user i
to a movie from the set A with genre j. We also define wi,j
to be the proportion of movies in genre j that user i rated
out of all the movie-genre ratings she provided. Sowi,j will
be higher for the genres that the user provided more feed-

back on, indicating that she might like these genres better.
Then, the valuation function by user i is as follows:

fi(A) =

g∑
j=1

wi,jR(i, A, j).

In words, the way a user evaluates a set A is by picking the
highest rated movie from each genre (contained in A) and
then take a weighted average. If we define the distance be-
tween two movies to be the maximum difference of ratings
they received from the same user, the submodular functions
fi will be L-Lipschitz with L = 1.

For the experiment, we split the users in half. We use the
first 100 of them as a training set for the algorithms to built
up their reduced ground set S of size `. We then com-
pare submodular maximization with cardinality constraint
k = 3 on the reduced sets S (returned by the baselines)
and that of the whole ground set Ω. To this end, we sam-
ple 20 users from the test group and compute their average
values. Given the size of this experiment, we were unable
to run LocalSearch alongside ReplacementGreedy and
GreedySum. In its place, we introduce the random base-
line that simply returns a set of size ` at random. Fig 3a
shows what fraction of the utility is preserved if we reduce
the ground set by ReplacementGreedy, GreedySum,
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(a) Movielens (b) ` = 10 (c) ` = 30 (d) ` = 60

(e) Movielens Completed (f) ` = 10 (g) ` = 30 (h) ` = 60

Figure 3. Experimental results in the sublinear regime. The first row corresponds to the sublinear experiment where the data set has
missing entries, and the second row refers to the experiment where we used a completed user-ratings matrix. The first column portrays
the ratio between the mean objective obtained on the summary set versus the ground set for 20 random users from the test set. Columns
2 through 4 showcase the loss versus runtime for ` = 10, ` = 30 and ` = 60 respectively. In these experiments k = 3.

and RandomSelection. Clearly, RandomSelection per-
forms poorly. ReplacementGreedy has the highest util-
ity, starting from 80% and practically closing the gap by re-
ducing the ground set to only 60 movies. GreedySum also
closely follows ReplacementGreedy. Fig. 3b, 3c, 3d
show the loss versus the running time for ` = 10, ` = 30,
and ` = 60. Of course, if we use use the whole ground set
Ω, the loss will be zero. This is shown by GreedyMerge.
However, this comes at the cost of maximizing the utility
of each user on 2000 movies. Instead, by using Replace-
mentGreedy, we see that the loss is negligible (even for
` = 30) while the running time suddenly improves by two
orders of magnitude.

Complete matrix movie recommendation. The previ-
ous experiment suffers from the potential issue that val-
ues are estimated conservatively: i.e., a user derives value
only if we happen to select movies that she actually rated
in the data. To explore this potential bias, we repeat the
same experiment, this time by first completing the matrix
of (movie, rating) using standard techniques (Candés &
Recht, 2008). We again consider 200 users and divide them
into training and test sets. The results are shown in Fig. 3e,
3f, 3g, 3h. We observe exactly the same trends. Basically,
a dataset with size 60 is approximately as good as a data set
of size 2000 if the reduced ground set is carefully selected
by ReplacementGreedy.

6. Analysis
In this section, we prove that Algorithm Replacement-
Greedy returns a valid solution S of at most ` elements
along with independent sets Ti for all different categories

such that the aggregate value 1
m

∑m
i=1 fi(Ti) is at least

1
2 (1 − 1

e2 ) > 0.43 fraction of the optimum solution’s ob-
jective value, namely Gm(Sm,`). We note that the objec-
tive value of ReplacementGreedy’s solution, Gm(S), is
at least 1

m

∑m
i=1 fi(Ti), and therefore Algorithm Replace-

mentGreedy is a 1
2 (1 − 1

e2 )-approximation algorithm for
our two stage submodular maximization problem.

Proof of Theorem 3. Since Algorithm Replacement-
Greedy runs in ` iterations, and adds an element to S
in each iteration, the final output size, |S|, will not be
more than `. Each set Ti is initialized with ∅ at the
beginning which is an independent set. Also whenever
ReplacementGreedy adds an element x∗ to Ti, it re-
moves Repi(x

∗, Ti). By definition, either Repi(x
∗, Ti) is

equal to some element y ∈ Ti such that set {x∗}∪Ti \ {y}
is an independent set or Repi(x

∗, Ti) is the empty set and
{x} ∪ Ti is an independent set. In either case, set Ti after
the update will remain an independent set. Therefore the
output of ReplacementGreedy consists of independent
sets Ti ∈ I(S) for every category i. It remains to lower
bound the aggregate values of these m sets.

We lower bound the aggregate increments of values in-
curred by adding each element we add to S in terms of
the gap between the current objective value 1

m

∑m
i=1 fi(Ti)

and the optimum objective value Gm(Sm,`). This way, we
can show that for each of the ` elements added to S, the cur-
rent objective value is incremented enough that in total we
reach at least 1

2 (1− 1
e2 ) fraction of the optimum value. By

definition of∇ and the update operations of Algorithm Re-
placementGreedy, addition of element x to S, increases
the summation

∑m
i=1 fi(Ti) by

∑m
i=1∇i(x, Ti). We also
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note that the selected element x∗ maximizes this aggregate
increment. We prove a lower bound benchmark according
to the potential increments of values by elements in Sm,` if
we add them instead of x∗. In particular, we know that:

m∑
i=1

∇i(x∗, Ti) ≥
1

|Sm,`|
∑

x∈Sm,`

m∑
i=1

∇i(x, Ti)

This equation holds because the rightmost side is the aver-
age increments of values of optimum elements if we add
them instead of x∗, and we know that x∗ is the maxi-
mizer of the total value increments. Let Sm,`i be the in-
dependent subset of Sm,` with maximum fi value, i.e.
Sm,`i = arg maxA∈I(Sm,`) fi(A). Since the ∇ values are
all non-negative, we can narrow down the rightmost side of
above equation, and imply that:

m∑
i=1

∇i(x∗, Ti) ≥
1

|Sm,`|

m∑
i=1

∑
x∈Sm,`i

∇i(x, Ti) (6)

We can apply exchange properties of matroids to lower
bound the total ∇ values (the rightmost side) for each cat-
egory. By Corollary 39.12a of (Schrijver, 2003), we know
that there exists a mapping π that maps every element of
Sm,`i \Ti to either the empty set or an element of Ti \Sm,`i

such that:

• for every x ∈ Sm,`i \ Ti, the set {x} ∪ Ti \ {π(x)} is
an independent set, and

• for every x1, x2 ∈ Sm,`i \ Ti, we either have π(x1) 6=
π(x2) or both of π(x1) and π(x2) are equal to the
empty set.

We note that Corollary 39.12a of (Schrijver, 2003) is stated
for equal size sets (e.g. |Ti| = |Sm,`i |) which can be eas-
ily adapted to non-equal size sets and achieve the above
mapping by applying the exchange property of matroids it-
eratively, and making these two sets equal size. Given the
mapping π, the next step is to lower bound each ∇i(x, Ti)
by how much we can increase the value of Ti by replac-
ing π(x) with x in set Ti. Since {x} ∪ Ti \ {π(x)} is an
independent set, we have

∇i(x, Ti) ≥ fi({x} ∪ Ti \ {π(x)})− fi(Ti)
= ∆i(x, Ti)−∆i(π(x), Ti ∪ {x} \ {π(x)})
≥ ∆i(x, Ti)−∆i(π(x), Ti \ {π(x)})

where the equality holds by definition of ∆i values, and the
last inequality holds by submodularity of fi. Combining
this lower bound on∇ with Equation 6 implies that in each
step, adding element x∗ to set S increases the total value of
the current solution by at least:

1

|Sm,`|

m∑
i=1

∑
x∈Sm,`i \Ti

∆i(x, Ti)−∆i(π(x), Ti \ {π(x)})

It is well-known (see Lemma 5 of (Bateni et al., 2010))
that submodularity of fi implies

∑
x∈Sm,`i \Ti ∆i(x, Ti) ≥

fi(S
m,`
i )−fi(Ti). We also have

∑
x∈Sm,`i \Ti ∆i(π(x), Ti\

{π(x)}) ≤
∑
y∈Ti ∆i(y, Ti \ {y}) because range of map-

ping π is a subset of Ti, and no two elements are mapped
to the same y ∈ Ti. By submodularity of fi, the latter term∑
y∈Ti ∆i(y, Ti \ {y}) is upper bounded by fi(Ti). We

conclude that in each step the total value is increased by at
least 1

`m

∑m
i=1 fi(S

m,`
i ) − 2f(Ti) (we assume |Sm,`| = `

since objective function Gm is monotone increasing). In
other words, in each iteration 1 ≤ t ≤ `, the increment
Xt − Xt−1 is at least 1

`Gm(Sm,`) − 2
`Xt−1 where Xt is

defined to be the total value 1
m

∑m
i=1 fi(Ti) at the end of

iteration t. Solving this recurrence equation inductively
yields Xt ≥ 1

2 (1 − (1 − 1
` )2t)Gm(Sm,`). We note that

X0 = 0 denotes the total value before the algorithm starts.
The induction step is proved as follows:

Xt+1 −Xt ≥
Gm(Sm,`)

`
− 2Xt

`

=⇒ Xt+1 ≥
Gm(Sm,`)

`
+ (1− 2

`
)Xt

≥ Gm(Sm,`)

`
+ (1− 2

`
)
1

2
(1− (1− 1

`
)2t)Gm(Sm,`)

≥ 1

2
(1− (1− 1

`
)2t+2)Gm(Sm,`)

At the end of Algorithm ReplacementGreedy, the total
value X` is at least 1

2 (1 − (1 − 1
` )2`)Gm(Sm,`) ≥ 1

2 (1 −
1
e2 )Gm(Sm,`) which completes the proof.

7. Conclusions
In this paper, we have studied the novel problem of sub-
linear time probabilistic submodular maximization: By in-
vesting computational effort once to reduce the ground set
based on training instances, faster optimization is achieved
on test instances. Our key technical contribution is Re-
placementGreedy, a novel algorithm for two-stage sub-
modular maximization (the empirical variant of our prob-
lem). Compared to prior approaches, Replacement-
Greedy provides constant factor approximation guarantees
while applying to general submodular objectives, handling
arbitrary matroid constraints and scaling linearly in all rel-
evant parameters.
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A. Omitted Proofs
Proof of Theorem 1. For any set S ⊆ Ω, we upper bound
the deviation probability, PrD (|G(S)− gm(S)| > ε) in
terms of the number of sampled functions m. We then use
the union bound to prove that the maximum deviation is
small over all sets with size at most ` with high probability
if we choose a large enough m.

For any 1 ≤ i ≤ m, define Xi to be maxT :T⊂S
|T |≤k

fi(T ).

So gm(S) is simply the average
∑m
i=1Xi
m . Since each func-

tion fi is drawn independently from distribution D. Each
Xi is a random variable whose mean is equal to G(S) by
definition of function G. We use concentration bounds
(upper and lower tails) on the aggregate random variable
Y =

∑m
i=1Xi. Variable Y has mean µ = mG(S) as each

of the variables Xi has mean G(S). By applying Theorem
6 of (Goemans, 2015), we have:

Pr
D

(|G(S)− gm(S)| > ε) =

Pr
D

(
Y >

(
1 +

ε

G(S)

)
µ

)
+

Pr
D

(
Y <

(
1− ε

G(S)

)
µ

)

≤ exp

−2
(

ε
G(S)

)2

µ2

m

+ exp

−
(

ε
G(S)

)2

µ2

m


= exp

(
−2ε2m

)
+ exp

(
−ε2m

)
< 2 exp

(
−ε2m

)
where exp(x) is defined to be ex for any real number x.
The only inequality in above equations hold by applying
the upper and lower tails Chernoff bounds as in Theorem
6 of (Goemans, 2015). The rest of the equations hold by
definition of Y and µ, and also the assumption that every
function f in the support of distribution D is normalized
such that 0 ≤ f(A) ≤ 1 for every subset A ⊆ Ω.

By choosing m > 1
ε2 ln( 2n`

δ ), we can ensure that the de-
viation probability for any fixed set S is upper bounded
by δ

n`
where n = |Ω|. In other words, we have

PrD (|G(S)− gm(S)| > ε) < δ
n`

. The number of subsets
of Ω with size ` is

(
n
`

)
≤ n`. Therefore by applying the

union bound, the probability that there exists a set S of size
` with deviation more than ε is not more than the number
of them (at most n`) times the probability of deviation for
each of them (at most δ

n`
). We conclude that with proba-

bility at least 1− δ, we have |G(S)− gm(S)| ≤ ε for every
S ⊂ Ω with size `.

We showed that a large enough number of samples m suf-
fice to achieve a small approximation error. One might ask

whether the dependence of m on ` is necessary or not. Fol-
lowing we show that the number of samples should depend
on ` linearly otherwise we might have a large approxima-
tion error. This shows the optimality of our sample com-
plexity in terms of `.

Remark 1. There exists distribution D for which choosing
at most ` samples will result in an approximation error of
1/e. We note that this happens when the set S∗` that maxi-
mizes functionG achieves a value ofG(S∗` ) = 1−1/e, and
therefore this approximation error is significant compared
to the optimum value we are aiming for.

Proof. Consider a ground set Ω of n elements. For any set
T ⊂ Ω with n/` elements, define function fT as follows.
For any set A ⊆ Ω, define fT (A) = min{1, |A ∩ T |}.
This means the value of A is 1 if only if it has some non-
empty intersection with T , and it is 0 otherwise. Suppose
we choosem < ` sample functions that are associated with
sets T1, T2, · · · , Tm. Construct set S by adding an arbitrar-
ily element from each Ti, and also add some other arbitrary
elements from Ω to make its size equal to `. This is possible
since m ≤ `. Since set S has non-empty intersection with
every Ti, its value fTi(S) is always equal to 1. Therefore
gm(S) is equal to 1. On the other hand, any set S′ ⊂ Ω with
size ` has value G(S′) = 1 − 1/e. This is evident by not-
ing that a random function f drawn from D, is associated
with a random set T of n/` elements, and the probability
that T and S′ have non-empty intersection is approximately
1− (1− n/`

n )` = 1− (1− 1
` )` ≈ 1− 1

e for large enough n.
Therefore for m ≤ `, the maximum value G(S∗` ) is 1 − 1

e
while there exists a set S with gm(S) = 1 which eliminates
the possibility of having a low approximation error.

Proof of Theorem 2. Fix any ε > 0, and let Ωε denote an
ε/2kL-cover of (Ω, d) of minimal size. For each element
x ∈ Ωε, define Nk(x) to be the set of k closest points to
x in Ω with respect to distance metric d. Since distance of
each element to itself is 0, we always have x ∈ Nk(x).
Define Ω′ε =

⋃
x∈Ωε

Nk(x).

Consider the function [·]ε : 2Ω → 2Ω, defined by

[T ]ε = arg min{d(T, T ′) : T ′ ⊆ Ω′ε}.

For any set T of size at most k, we claim that d(T, [T ]ε) ≤
ε/L by constructing a set T ′ ⊆ Ω′ε and a matching of T and
T ′ establishing an upper bound of d(T, T ′) ≤ ε/L. In par-
ticular, let A = T \Ω′ε. All elements in T \A are matched
with themselves, with distance 0. Let A = {v1, . . . , vr}.
Starting from v1, we iteratively find a unique matching el-
ement v′i ∈ Ω′ε for each 1 ≤ i ≤ r such that d(vi, v

′
i) ≤

ε/kL. Let x be the closest point in Ωε to vi. Since there
are at most k elements in set T , and there are k elements in
Nk(x). There exists y ∈ Nk(x) that has not been matched
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to any previous element, and we can set v′i = y. Since
Ωε is an ε/2kL-cover, distance d(vi, x) is at most ε/2kL.
On the other hand, vi is not in set Ω′ε which means it is
not one of the k closest points to x. Therefore d(y, x)
is at most d(vi, x) ≤ ε/2kL. Triangle inequality implies
d(y, vi) ≤ d(y, x) + d(x, vi) ≤ ε/kL. Therefore there ex-
ists a unique matching element v′i for each vi with distance
d(vi, v

′
i) ≤ ε/kL. Hence d(T, T ′) ≤ rε/kL ≤ ε/L. Now

suppose that ` ≥ |Ω′ε|. Then it holds that

|G(Ω)−G(S∗` )| ≤ |G(Ω)−G(Ω′ε)|
≤ Ef∼D|f(T ∗f )− f([T ∗f ]ε)| ≤ ε,

where T ∗f = arg maxT⊆Ω,|T |≤k f(T ). We should also note
that |Ω′ε| is at most

∑
x∈Ωε

|Nk(x)| = knε/2kL.


