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Abstract
Recently, researchers have demonstrated state-
of-the-art performance on sequential prediction
problems using deep neural networks and Re-
inforcement Learning (RL). For some of these
problems, oracles that can demonstrate good per-
formance may be available during training, but
are not used by plain RL methods. To take ad-
vantage of this extra information, we propose Ag-
greVaTeD, an extension of the Imitation Learn-
ing (IL) approach of Ross & Bagnell (2014).
AggreVaTeD allows us to use expressive dif-
ferentiable policy representations such as deep
networks, while leveraging training-time ora-
cles to achieve faster and more accurate solu-
tions with less training data. Specifically, we
present two gradient procedures that can learn
neural network policies for several problems, in-
cluding a sequential prediction task and several
high-dimensional robotics control problems. We
also provide a comprehensive theoretical study
of IL that demonstrates that we can expect up
to exponentially-lower sample complexity for
learning with AggreVaTeD than with plain RL
algorithms. Our results and theory indicate that
IL (and AggreVaTeD in particular) can be a more
effective strategy for sequential prediction than
plain RL.

1. Introduction
A fundamental challenge in artificial intelligence, robotics,
and language processing is sequential prediction: to reason,
plan, and make a sequence of predictions or decisions to
minimize accumulated cost, achieve a long-term goal, or
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optimize for a loss acquired only after many predictions.

Although conventional supervised learning of deep mod-
els has been pivotal in advancing performance in sequen-
tial prediction problems, researchers are beginning to uti-
lize Reinforcement Learning (RL) methods to achieve even
higher performance (Ranzato et al., 2015; Bahdanau et al.,
2016; Li et al., 2016). In sequential prediction tasks, fu-
ture predictions often depend on the history of previous
predictions; thus, a poor prediction early in the sequence
can lead to high loss (cost) for future predictions. Viewing
the predictor as a policy ⇡, deep RL algorithms are able to
reason about the future accumulated cost in sequential pre-
diction problems. These approaches have dramatically ad-
vanced the state-of-the-art on a number of problems includ-
ing high-dimensional robotics control tasks and video and
board games (Schulman et al., 2015; Silver et al., 2016).

In contrast with general reinforcement learning methods,
imitation learning and related sequential prediction algo-
rithms such as SEARN (Daumé III et al., 2009), DaD
(Venkatraman et al., 2015), AggreVaTe (Ross & Bagnell,
2014), and LOLS (Chang et al., 2015b) reduce the sequen-
tial prediction problems to supervised learning by leverag-
ing a (near) optimal cost-to-go oracle that can be queried
for the next (near)-best prediction at any point during train-
ing. Specifically, these methods assume access to an ora-
cle that provides an optimal or near-optimal action and the
future accumulated loss Q⇤, the so-called cost-to-go. For
robotics control problems, this oracle may be a human ex-
pert guiding the robot during the training phase (Abbeel &
Ng, 2004) or the policy from an optimal MDP solver (Ross
et al., 2011; Kahn et al., 2016; Choudhury et al., 2017)
that is either too slow to use at test time or leverages in-
formation unavailable at test time. For sequential predic-
tion problems, an oracle can be constructed by optimiza-
tion (e.g., beam search) or by a clairvoyant greedy algo-
rithm (Daumé III et al., 2009; Ross et al., 2013; Rhinehart
et al., 2015; Chang et al., 2015a) that, given the training
data’s ground truth, is near-optimal on the task-specific per-
formance metric (e.g., cumulative reward, IoU, Unlabeled
Attachment Score, BLEU).

Expert, demonstrator, and oracle are used interchangeably.
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We stress that the oracle is only required to be available
during training. Therefore, the goal of IL is to learn a policy
⇡̂ with the help of the oracle (⇡⇤, Q⇤

) during the training
session, such that ⇡̂ achieves similar or better performance
at test time when the oracle is unavailable. In contrast to
IL, reinforcement learning methods often initialize with a
random policy ⇡

0

or cost-to-go estimate Q
0

that may be far
from optimal. The optimal policy (or cost-to-go) must be
found by exploring, often with random actions.

A classic family of IL methods is to collect data from run-
ning the demonstrator or oracle and train a regressor or
classifier via supervised learning. These methods (Abbeel
& Ng, 2004; Syed et al., 2008; Ratliff et al., 2006; Ziebart
et al., 2008; Finn et al., 2016; Ho & Ermon, 2016) learn
either a policy ⇡̂⇤ or ˆQ⇤ from a fixed-size dataset pre-
collected from the oracle. Unfortunately, these methods
exhibit a pernicious problem: they require the training and
test data to be sampled from the same distribution, despite
the fact they explicitly change the sample policy during
training. As a result, policies learned by these methods can
fail spectacularly (Ross & Bagnell, 2010). Interactive ap-
proaches to IL such as SEARN (Daumé III et al., 2009),
DAgger (Ross et al., 2011), and AggreVaTe (Ross & Bag-
nell, 2014) interleave learning and testing to overcome the
data mismatch issue and, as a result, work well in practi-
cal applications. Furthermore, these interactive approaches
can provide strong theoretical guarantees between training
time loss and test time performance through a reduction to
no-regret online learning.

In this work, we introduce AggreVaTeD, a differentiable
version of AggreVaTe (Aggregate Values to Imitate (Ross
& Bagnell, 2014)) which allows us to train policies with
efficient gradient update procedures. AggreVaTeD extends
and scales interactive IL for use in sequential prediction
and challenging continuous robot control tasks. We pro-
vide two gradient update procedures: a regular gradient
update developed from Online Gradient Descent (OGD)
(Zinkevich, 2003) and a natural gradient update (Kakade,
2002; Bagnell & Schneider, 2003), which is closely re-
lated to Weighted Majority (WM) (Littlestone & Warmuth,
1994), a popular no-regret algorithm that enjoys an almost
dimension-free property (Bubeck et al., 2015).

AggreVaTeD leverages the oracle to learn rich polices that
can be represented by complicated non-linear function ap-
proximators. Our experiments with deep neural networks
on various robotics control simulators and on a depen-
dency parsing sequential prediction task show that Ag-
greVaTeD can achieve expert-level performance and even
super-expert performance when the oracle is sub-optimal,
a result rarely achieved by non-interactive IL approaches.

i.e., the regret bound depends on poly-log of the dimension
of parameter space.

The differentiable nature of AggreVaTeD additionally al-
lows us to employ Recurrent Neural Network policies, e.g.,
Long Short-Term Memory (LSTM) (Hochreiter & Schmid-
huber, 1997), to handle partially observable settings (e.g.,
observe only partial robot state). Empirical results demon-
strate that by leveraging an oracle, IL can learn much faster
than RL.

In addition to providing a set of practical algorithms, we
develop a comprehensive theoretical study of IL on dis-
crete MDPs. We construct an MDP that demonstrates ex-
ponentially better sample efficiency for IL than any RL al-
gorithm. For general discrete MDPs, we provide a regret
upper bound for AggreVaTeD with WM, which shows IL
can learn dramatically faster than RL. We provide a regret
lower bound for any IL algorithm, which demonstrates that
AggreVaTeD with WM is near-optimal.

To summarize the contributions of this work: (1) Aggre-
VaTeD allows us to handle continuous action spaces and
employ recurrent neural network policies for Partially Ob-
servable Markov Decision Processes (POMDPs); (2) un-
derstanding IL from a perspective that is related to pol-
icy gradient allows us to leverage advances from the well-
studied RL policy gradient literature (e.g., gradient vari-
ance reduction techniques, efficient natural gradient com-
putation); (3) we provide a new sample complexity study
of IL and compare to RL, showing that we can expect up to
exponentially lower sample complexity. Our experimental
and theoretical results support the proposition:

Imitation Learning is a more effective strategy
than Reinforcement Learning for sequential pre-
diction with near-optimal cost-to-go oracles.

2. Preliminaries
A Markov Decision Process consists of a set of states, ac-
tions (that come from a policy), cost (loss), and a model
that transitions states given actions. Interestingly, most
sequential prediction problems can be framed in terms
of MDPs (Daumé III et al., 2009). The actions are the
learner’s (e.g., RNN’s) predictions. The state is then the re-
sult of all the predictions made so far (e.g., the dependency
tree constructed so far or the words translated so far). The
cumulative cost is the performance metric such as (nega-
tive) UAS, received at the end (horizon) or after the final
prediction. For robotics control problems, the robot’s con-
figuration is the state, the controls (e.g., joint torques) are
the actions, and the cost is related to achieving a task (e.g.,
distance walked).

Formally, a finite-horizon Markov Decision Process (MDP)
is defined as (S,A, P, C, ⇢

0

, H). Here, S is a set of S states
and A is a set of A actions; at time step t, Pt is the transition
dynamics such that for any st 2 S, st+1

2 S, at 2 A,
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Pt(st+1

|st, at) is the probability of transitioning to state
st+1

from state st by taking action at at step t; C is the
cost distribution such that a cost ct at step t is sampled from
Ct(·|st, at). Finally, we denote c̄t(st, at) as the expected
cost, ⇢

0

as the initial distribution of states, and H 2 N+ as
the finite horizon (max length) of the MDP.

We define a stochastic policy ⇡ such that for any state
s 2 S , ⇡(·|s) 2 �(A), where �(A) is a A-dimensional
simplex, conditioned on state s. ⇡(a|s) 2 [0, 1] outputs the
probability of taking action a at state s. The distribution of
trajectories ⌧ = (s

1

, a
1

, . . . , aH�1

, sH) is determined by
⇡ and the MDP, and is defined as

⇢⇡(⌧) = ⇢
0

(s
1

)

HY

t=2

⇡(at�1

|st�1

)Pt�1

(st|st�1

, at�1

).

The distribution of the states at time step t, induced by run-
ning the policy ⇡ until t, is defined 8st:

d⇡t (st) =
X

{si,ai}it�1

⇢
0

(s
1

)

t�1Y

i=1

⇡(ai|si)Pi(si+1

|si, ai).

Note that the summation above can be replaced by an inte-
gral if the state or action space is continuous. The average
state distribution ¯d⇡(s) =

PH
t=1

d⇡t (s)/H .

The expected average cost of a policy ⇡ can be defined with
respect to ⇢⇡ or {d⇡t }:

µ(⇡) = E
⌧⇠⇢⇡

"
HX

t=1

c̄t(st, at)

#
=

HX

t=1

E
s⇠d⇡t (s),a⇠⇡(a|s)

[c̄t(s, a)] .

We define the state-action value Q⇡
t (s, a) (i.e., cost-to-go)

for policy ⇡ at time step t as:

Q⇡
t (st, at) = c̄t(st, at) + E

s⇠Pt(·|st,at),a⇠⇡(·|s)
Q⇡

t+1

(s, a),

where the expectation is taken over the randomness of the
policy ⇡ and the MDP.

We define ⇡⇤ as the expert policy (e.g., human demonstra-
tors, search algorithms equipped with ground-truth) and
Q⇤

t (s, a) as the expert’s cost-to-go oracle. We emphasize
that ⇡⇤ may not be optimal, i.e., ⇡⇤ 62 argmin⇡ µ(⇡).
Throughout the paper, we assume Q⇤

t (s, a) is known or can
be estimated without bias (e.g., by rolling out ⇡⇤: starting
from state s, applying action a, and then following ⇡⇤ for
H � t steps).

When ⇡ is represented by a function approximator, we use
the notation ⇡✓ to represent the policy parametrized by
✓ 2 Rd: ⇡(·|s; ✓). In this work we specifically consider op-
timizing policies in which the parameter dimension d may
be large. We also consider the partially observable setting
in our experiments, where the policy ⇡(·|o

1

, a
1

, ..., ot; ✓)

is defined over the whole history of observations and ac-
tions (ot is generated from the hidden state st). We use
both LSTM and Gated Recurrent Unit (GRU) (Chung et al.,
2014) based policies where the RNN’s hidden states pro-
vide a compressed feature of the history. To our best knowl-
edge, this is the first time RNNs are employed in an IL
framework to handle partially observable environments.

3. Differentiable Imitation Learning
Policy based imitation learning aims to learn a policy ⇡̂
that approaches the performance of the expert ⇡⇤ at test
time when ⇡⇤ is no longer available. In order to learn rich
policies such as LSTMs or deep networks (Schulman et al.,
2015), we derive a method related to policy gradients for
imitation learning and sequential prediction. To do this, we
leverage the reduction of IL and sequential prediction to
online learning as shown in (Ross & Bagnell, 2014) to learn
policies represented by expressive differentiable function
approximators.

The fundamental idea in Ross & Bagnell (2014) is to use
a no-regret online learner to update policies using the fol-
lowing loss function at each episode n:

`n(⇡) =
1

H

HX

t=1

E
st⇠d⇡n

t

h
E

a⇠⇡(·|st)
[Q⇤

t (st, a)]
i
. (1)

The loss function intuitively encourages the learner to
find a policy that minimize the expert’s cost-to-go under
the state distribution resulting from the current learned
policy ⇡n. Specifically, Ross & Bagnell (2014) sug-
gest an algorithm named AggreVaTe (Aggregate Values
to Imitate) that uses Follow-the-Leader (FTL) (Shalev-
Shwartz et al., 2012) to update policies: ⇡n+1

=

argmin⇡2⇧

Pn
i=1

`n(⇡), where ⇧ is a pre-defined convex
policy set. When `n(⇡) is strongly convex with respect to
⇡ and ⇡⇤ 2 ⇧, after N iterations AggreVaTe with FTL can
find a policy ⇡̂ with:

µ(⇡̂)  µ(⇡⇤
)� ✏N +O(ln(N)/N), (2)

where ✏N = [

PN
n=1

`n(⇡⇤
)�min⇡

PN
n=1

`n(⇡)]/N . Note
that ✏N � 0 and the above inequality indicates that ⇡̂ can
outperform ⇡⇤ when ⇡⇤ is not (locally) optimal (i.e., ✏n >
0). Our experimental results support this observation.

A simple implementation of AggreVaTe that aggregates the
values (as the name suggests) will require an exact solution
to a batch optimization procedure in each episode. When
⇡ is represented by large, non-linear function approxima-
tors, the argmin procedure generally takes more and more
computation time as n increases. Hence an efficient in-
cremental update procedure is necessary for the method to
scale.
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To derive an incremental update procedure, we can take
one of two routes. The first route, suggested already by
(Ross & Bagnell, 2014), is to update our policy with an
incremental no-regret algorithm such as weighted majority
(Littlestone & Warmuth, 1994), instead of with a batch al-
gorithm like FTRL. Unfortunately, for rich policy classes
such as deep networks, no-regret learning algorithms may
not be available (e.g., a deep network policy is non-convex
with respect to its parameters). So instead we propose a
novel second route: we directly differentiate Eq. 1, yield-
ing an update related to policy gradient methods. We work
out the details below, including a novel update rule for IL
based on natural gradients.

Interestingly, the two routes described above yield almost
identical algorithms if our policy class is simple enough:
e.g., for a tabular policy, AggreVaTe with weighted major-
ity yields the natural gradient version of AggreVaTeD de-
scribed below. And, the two routes yield complementary
theoretical guarantees: the first route yields a regret bound
for simple-enough policy classes, while the second route
yields convergence to a local optimum for extremely flexi-
ble policy classes.

3.1. Online Gradient Descent

For discrete actions, the gradient of `n(⇡✓) (Eq. 1) with
respect to the parameters ✓ of the policy is

r✓`n(✓) =
1

H

HX

t=1

E
st⇠d

⇡✓n
t

X

a

r✓⇡(a|st; ✓)Q⇤
t (st, a).

(3)

For continuous action spaces, we cannot simply replace the
summation by integration since in practice it is hard to eval-
uate Q⇤

t (s, a) for infinitely many a, so, instead, we use im-
portance weighting to re-formulate `n (Eq. 1) as

`n(⇡✓) =
1

H

HX

t=1

E
s⇠d

⇡✓n
t ,a⇠⇡(·|s;✓n)

⇡(a|s; ✓)
⇡(a|s; ✓n)

Q⇤
t (s, a)

=

1

H
E

⌧⇠⇢⇡✓n

HX

t=1

⇡(at|st; ✓)
⇡(at|st; ✓n)

Q⇤
t (st, at). (4)

See Appendix B for the derivation of the above equation.
With this reformulation, the gradient with respect to ✓ is

r✓`n(✓) =
1

H
E

⌧⇠⇢⇡✓n

HX

t=1

r✓⇡(at|st; ✓)
⇡(at|st; ✓n)

Q⇤
t (st, at)

=

1

H
E⌧⇠⇢⇡✓n

HX

t=1

r✓ ln(⇡(at|st; ✓n))Q⇤
t (st, at). (5)

The above gradient computation enables a very efficient
update procedure with online gradient descent: ✓n+1

=

✓n � ⌘nr✓`n(✓)|✓=✓n , where ⌘n is the learning rate.

3.2. Policy Updates with Natural Gradient Descent

We derive a natural gradient update procedure for imitation
learning inspired by the success of natural gradient descent
in RL (Kakade, 2002; Bagnell & Schneider, 2003; Schul-
man et al., 2015). Following (Bagnell & Schneider, 2003),
we define the Fisher information matrix I(✓n) using trajec-
tory likelihood:

I(✓n) =
1

H2

E
⌧⇠⇢⇡✓n

r✓n log(⇢⇡✓n
(⌧))r✓n log(⇢⇡✓n

(⌧))T ,

(6)

where r✓ log(⇢⇡⌧ (⌧)) is the gradient of the log like-
lihood of the trajectory ⌧ which can be computed asPH

t=1

r✓ log(⇡✓(at|st)). Note that this representation is
equivalent to the original Fisher information matrix pro-
posed by (Kakade, 2002). Now, we can use Fisher infor-
mation matrix together with the IL gradient derived in the
previous section (Eq. 53) to compute the natural gradient
as I(✓n)�1r✓`n(✓)|✓=✓n , which yields a natural gradient
update: ✓n+1

= ✓n � µnI(✓n)�1r✓`n(✓)|✓=✓n .

Interesting, as we mentioned before, when the given MDP
is discrete and the policy class is in a tabular representation,
AggreVaTe with Weighted Majority (Littlestone & War-
muth, 1994) yields an extremely similar update procedure
as AggreVaTeD with natural gradient. Due to space limi-
tation, we defer the detailed similarity between AggreVaTe
with Weighted Majority and AggreVaTeD with natural gra-
dient to Appendix A. As Weighted Majority can speed
up online learning (i.e., almost dimension free (Bubeck
et al., 2015)) and AggreVaTe with Weighted Majority en-
joys strong theoretical guarantees on the performance of
the learned policy (Ross & Bagnell, 2014), this similarity
provides an intuitive explanation why we can expect Ag-
greVaTeD with natural gradient to speed up IL and learn a
high quality policy.

4. Sample-Based Practical Algorithms
In the previous section, we derived a regular gradient up-
date procedure and a natural gradient update procedure for
IL. Note that all of the computations of gradients and Fisher
information matrices assumed it was possible to exactly
compute expectations including Es⇠d⇡ and Ea⇠⇡(a|s). In
this section, we provide practical algorithms where we ap-
proximate the gradients and Fisher information matrices
using finite samples collected during policy execution.

4.1. Gradient Estimation and Variance Reduction

We consider an episodic framework where given a policy
⇡n at episode n, we roll out ⇡n K times to collect K tra-
jectories {⌧ni }, for i 2 [K], ⌧ni = {si,n

1

, ai,n
1

, ...}. For gra-
dient r✓`n(✓)|✓=✓n we can compute an unbiased estimate
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using {⌧ni }i2[K]

:

˜r✓n =

1

HK

KX

i=1

HX

t=1

X

a

r✓n⇡✓n(a|s
i,n
t )Q⇤

t (s
i,n
t , a),

(7)

˜r✓n =

1

HK

KX

i=1

HX

t=1

r✓n ln(⇡✓n(a
i,n
t |si,nt ))Q⇤

t (s
i,n
t , ai,nt ).

(8)

for discrete and continuous setting respectively.

When we can compute V ⇤
t (s), we can replace Q⇤

t (s
i,n
t , a)

by the state-action advantage function A⇤
t (s

i,n
t , a) =

Q⇤
t (s

i,n
t , a) � V ⇤

t (s
i,n
t ), which leads to the following un-

biased and variance-reduced gradient estimation for con-
tinuous action setting (Greensmith et al., 2004):

˜r✓n =

1

HK

KX

i=1

HX

t=1

r✓n ln(⇡✓n(a
i,n
t |si,nt ))A⇤

t (s
i,n
t , ai,nt ),

(9)

In fact, we can use any baselines to reduce the variance by
replacing Q⇤

t (st, at) by Q⇤
t (st, at) � b(st), where b

(

st) :

S ! R is a action-independent function. Ideally b(st)
should be some function approximator that approximates
V ⇤

(st). In our experiments, we test linear function ap-
proximator b(s) = wT s, which is online learned using ⇡⇤’s
roll-out data.

The Fisher information matrix (Eq. 19) is approximated as:

˜I(✓n) =
1

H2K

KX

i=1

r✓n log(⇢⇡✓n
(⌧i))r✓n log(⇢⇡✓n

(⌧i))
T

= SnS
T
n , (10)

where, for notation simplicity, we denote Sn as a d⇥K ma-
trix where the i’s th column is r✓n log(⇢⇡✓n

(⌧i))/(H
p
K).

Namely the Fisher information matrix is represented by a
sum of K rank-one matrices. For large policies represented
by neural networks, K ⌧ d, and hence ˜I(✓n) a low rank
matrix. One can find the descent direction �✓n by solving
the linear system SnST

n �✓n =

˜r✓n for �✓n using Conjugate
Gradient (CG) with a fixed number of iterations, which is
equivalent to solving the above linear systems using Partial
Least Squares (Phatak & de Hoog, 2002). This approach
is used in TRPO (Schulman et al., 2015). The difference is
that our representation of the Fisher matrix is in the form
of SnST

n and in CG we never need to explicitly compute or
store SnST

n which requires d2 space and time. Instead, we
only compute and store Sn (O(Kd)) and the total compu-
tational time is still O(K2d). The learning-rate for natural

gradient descent can be chosen as ⌘n =

q
�KL/( ˜rT

✓n
�✓n),

such that KL(⇢⇡✓n+1
(⌧)k⇢⇡✓n (⌧)) ⇡ �KL 2 R+

Algorithm 1 AggreVaTeD (Differentiable AggreVaTe)
1: Input: The given MDP and expert ⇡⇤. Learning rate

{⌘n}. Schedule rate {↵i}, ↵n ! 0, n ! 1.
2: Initialize policy ⇡✓1 (either random or supervised

learning).
3: for n = 1 to N do
4: Mixing policies: ⇡̂n = ↵n⇡⇤

+ (1� ↵n)⇡✓n .
5: Starting from ⇢

0

, roll out by executing ⇡̂n on the
given MDP to generate K trajectories {⌧ni }.

6: Using Q⇤ and {⌧ni }i, compute the descent direction
�✓n (Eq. 7, Eq. 8, Eq. 9, or CG).

7: Update: ✓n+1

= ✓n � ⌘n�✓n .
8: end for
9: Return: the best hypothesis ⇡̂ 2 {⇡n}n on validation.

Figure 1. The binary tree structure MDP M̃.

4.2. Differentiable Imitation Learning: AggreVaTeD

Summarizing the above discussion, we present the differen-
tiable imitation learning framework AggreVaTeD, in Alg. 1.
At every iteration n, the roll out policy ⇡̂n is a mix of the
expert policy ⇡⇤ and the current policy ⇡✓n , with mixing
rate ↵ (↵n ! 0, n ! 1): at every step, with probability
↵ ⇡̂n picks ⇡⇤ and picks ⇡✓n otherwise. This mixing strat-
egy with the decay rate was first introduced in (Ross et al.,
2011) for IL, and later on was used in sequence prediction
(Bengio et al., 2015). In Line 6, one can either choose Eq. 8
or the corresponding variance reduced estimation Eq. 9 to
perform regular gradient descent, and choose CG to per-
form natural gradient descent. AggreVaTeD is extremely
simple: we do not need to perform any data aggregation
(i.e., we do not need to store all {⌧i}i from all previous it-
erations); the computational complexity of each policy up-
date scales in O(d).

When we use non-linear function approximators to repre-
sent the polices, the analysis of AggreVaTe from (Ross &
Bagnell, 2014) will not hold, since the loss function `n(✓)
is not convex with respect to parameters ✓. Nevertheless,
as we will show in experiments, in practice AggreVaTeD
is still able to learn a policy that is competitive with, and
sometimes superior to, the oracle’s performance.
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5. Quantify the Gap: An Analysis of IL vs RL
How much faster can IL learn a good policy than RL? In
this section we quantify the gap on discrete MDPs when IL
can (1) query for an optimal Q⇤ or (2) query for a noisy but
unbiased estimate of Q⇤. To measure the speed of learning,
we look at the cumulative regret of the entire learning pro-
cess, defined as RN =

PN
n=1

(µ(⇡n)� µ(⇡⇤
)). A smaller

regret rate indicates faster learning. Throughout this sec-
tion, we assume the expert ⇡⇤ is optimal. We consider
finite-horizon, episodic IL and RL algorithms.

5.1. Exponential Gap

We consider an MDP M shown in Fig. 1 which is a depth-
K binary tree-structure with S = 2

K � 1 states and two
actions al, ar: go-left and go-right. The transition is de-
terministic and the initial state s

0

(root) is fixed. The cost
for each non-leaf state is zero; the cost for each leaf is i.i.d
sampled from a given distribution (possibly different dis-
tributions per leaf). Below we show that for M, IL can be
exponentially more sample efficient than RL.

Theorem 5.1. For M, the regret RN of any finite-horizon,
episodic RL algorithm is at least:

E[RN ] � ⌦(

p
SN). (11)

The expectation is with respect to random generation of
cost and internal randomness of the algorithm. However,
for the same MDP M, with the access to Q⇤, we show IL
can learn exponentially faster:

Theorem 5.2. For the MDP M, AggreVaTe with FTL can
achieve the following regret bound:

RN  O(ln (S)). (12)

Fig. 1 illustrates the intuition behind the theorem. Assume
during the first episode, the initial policy ⇡

1

picks the right-
most trajectory (bold black) to explore. We query from
the cost-to-go oracle Q⇤ at s

0

for al and ar, and learn that
Q⇤

(s
0

, al) < Q⇤
(s

0

, ar). This immediately tells us that
the optimal policy will go left (black arrow) at s

0

. Hence
the algorithm does not have to explore the right sub-tree
(dotted circle).

Next we consider a more difficult setting where one can
only query for a noisy but unbiased estimate of Q⇤ (e.g., by
rolling out ⇡⇤ finite number of times). The above halving
argument will not apply since deterministically eliminating
nodes based on noisy estimates might permanently remove
good trajectories. However, IL can still achieve a poly-log
regret with respect to S, even in the noisy setting:

Theorem 5.3. With only access to unbiased estimate of Q⇤,
for the MDP M, AggreVaTeD with WM can achieve the

following regret with probability at least 1� �:

RN  O
⇣
ln(S)(

p
ln(S)N +

p
ln(2/�)N)

⌘
. (13)

The detailed proofs of the above three theorems can be
found in Appendix E,F,G respectively. In summary, for
MDP M, IL is is exponentially faster than RL.

5.2. Polynomial Gap and Near-Optimality

We next quantify the gap in general discrete MDPs and also
show that AggreVaTeD is near-optimal. We consider the
harder case where we can only access an unbiased estimate
of Q⇤

t , for any t and state-action pair. The policy ⇡ is rep-
resented as a set of probability vectors ⇡s,t 2 �(A), for all
s 2 S and t 2 [H]: ⇡ = {⇡s,t}s2S,t2[H]

.

Theorem 5.4. With access to unbiased estimates of Q⇤
t ,

AggreVaTeD with WM achieves the regret upper bound:

RN  O
�
HQe

max

p
S ln(A)N

�
. (14)

Here Qe
max

is the maximum cost-to-go of the expert. The
total regret shown in Eq. 14 allows us to compare IL algo-
rithms to RL algorithms. For example, the Upper Confi-
dence Bound (UCB) based, near-optimal optimistic RL al-
gorithms from (Jaksch et al., 2010), specifically designed
for efficient exploration, admit regret ˜O(HS

p
HAN),

leading to a gap of approximately
p
HAS compared to the

regret bound of imitation learning shown in Eq. 14.

We also provide a lower bound on RN for the H = 1 case
which shows the dependencies on N,A, S are tight:

Theorem 5.5. There exists an MDP (H=1) such that, with
only access to unbiased estimates of Q⇤, any finite-horizon
episodic imitation learning algorithm must have:

E[RN ] � ⌦(

p
S ln(A)N). (15)

The proofs of the above two theorems regarding general
MDPs can be found in Appendix H,I. In summary for dis-
crete MDPs, one can expect at least a polynomial gap and
a possible exponential gap between IL and RL.

6. Experiments
We evaluate our algorithms on robotics simulations from
OpenAI Gym (Brockman et al., 2016) and on Handwrit-
ten Algebra Dependency Parsing (Duyck & Gordon, 2015).
We report reward instead of cost, since OpenAI Gym by
default uses reward and dependency parsing aims to max-
imize UAS score. As our approach only promises there

Here we assume Qe
max

is a constant compared to H . If
Qe

max

= ⇥(H), then the expert is no better than a random policy
of which the cost-to-go is around ⇥(H).
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(a) Cartpole (b) Acrobot (c) Acrobot (POMDP) (d) Hopper (e) Walker

Figure 2. Performance (cumulative reward R on y-axis) versus number of episodes (n on x-axis) of AggreVaTeD (blue and green),
experts (red), and RL algorithms (dotted) on different robotics simulators.

exists a policy among all of the learned polices that can
perform as well as the expert, we report the performance
of the best policy so far: max{µ(⇡

1

), ..., µ(⇡i)}. For regu-
lar gradient descent, we use ADAM (Kingma & Ba, 2014)
which is a first-order no-regret algorithm, and for natural
gradient, we use CG to compute the descent direction. For
RL we use REINFORCE (Williams, 1992) and Truncated
Natural Policy Gradient (TNPG) (Duan et al., 2016).

6.1. Robotics Simulations

We consider CartPole Balancing, Acrobot Swing-up, Hop-
per and Walker. For generating an expert, similar to previ-
ous work (Ho & Ermon, 2016), we used a Deep Q-Network
(DQN) to generate Q⇤ for CartPole and Acrobot (e.g., to
simulate the settings where Q⇤ is available), while using
the publicly available TRPO implementation to generate
⇡⇤ for Hopper and Walker to simulate the settings where
one has to estimate Q⇤ by Monte-Carlo roll outs ⇡⇤.

Discrete Action Setting We use a one-layer (16 hid-
den units) neural network with ReLu activation functions
to represent the policy ⇡ for the Cart-pole and Acrobot
benchmarks. The value function Q⇤ is obtained from the
DQN (Mnih et al., 2015) and represented by a multi-layer
fully connected neural network. The policy ⇡✓1 is initial-
ized with common ReLu neural network initialization tech-
niques. For the scheduling rate {↵i}, we set all ↵i = 0:
namely we did not roll-in using the expert’s actions dur-
ing training. We set the number of roll outs K = 50 and
horizon H = 500 for CartPole and H = 200 for Acrobot.

Fig. 2a and 2b shows the performance averaged over 10
random trials of AggreVaTeD with regular gradient de-
scent and natural gradient descent. Note that AggreVaTeD
outperforms the experts’ performance significantly: Natu-
ral gradient surpasses the expert by 5.8% in Acrobot and
25% in Cart-pole. Also, for Acrobot swing-up, at hori-
zon H = 200, with high probability a randomly initialized
neural network policy won’t be able to collect any reward
signals. Hence the improvement rates of REINFORCE and
TNPG are slow. In fact, we observed that for a short hori-
zon such as H = 200, REINFORCE and Truncated Natural
Gradient often even fail to improve the policy at all (failed

6 times among 10 trials). On the contrary, AggreVaTeD
does not suffer from the delayed reward signal issue, since
the expert will collect reward signals much faster than a
randomly initialized policy.

Fig. 2c shows the performance of AggreVaTeD with an
LSTM policy (32 hidden states) in a partially observed
setting where the expert has access to full states but the
learner has access to partial observations (link positions).
RL algorithms did not achieve any improvement while Ag-
greVaTeD still achieved 92% of the expert’s performance.
In Appendix K, we provide extra experiments on partial
observable CartPole with GRU-based policies, where we
demonstrate that even in partial observable setting, Aggre-
VaTeD can learn RNN polices that outperform experts.

Continuous Action Setting We test our approaches on
two robotics simulators with continuous actions: (1) the
2-d Walker and (2) the Hopper from the MuJoCo physics
simulator. Following the neural network settings described
in Schulman et al. (2015), the expert policy ⇡⇤ is obtained
from TRPO with one hidden layer (64 hidden states), which
is the same structure that we use to represent our policies
⇡✓. We set K = 50 and H = 100. We initialize ⇡✓1 by
collecting K expert demonstrations and then maximize the
likelihood of these demonstrations (i.e., supervised learn-
ing). We use a linear baseline b(s) = wT s for RL and IL.

Fig. 2e and 2d show the performance averaged over 5 ran-
dom trials. Note that AggreVaTeD outperforms the expert
in the Walker by 13.7% while achieving 97% of the expert’s
performance in the Hopper problem. After 100 iterations,
we see that by leveraging the help from experts, Aggre-
VaTeD can achieve much faster improvement rate than the
corresponding RL algorithms (though eventually we can
expect RL to catch up). In Walker, we also tested Aggre-
VaTeD without linear baseline, which still outperforms the
expert but performed slightly worse than AggreVaTeD with
baseline as expected.

6.2. Dependency Parsing on Handwritten Algebra

We consider a sequential prediction problem: transition-
based dependency parsing for handwritten algebra with raw
image data (Duyck & Gordon, 2015). The parsing task
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Arc-Eager AggreVaTeD (LSTMs) AggreVaTeD (NN) SL-RL (LSTMs) SL-RL(NN) RL (LSTMs) RL (NN) DAgger SL (LSTMs) SL (NN) Random

Regular 0.924±0.10 0.851±0.10 0.826± 0.09 0.386±0.1 0.256±0.07 0.227±0.06 0.832±0.02 0.813±0.1 0.325±0.2 ⇠0.150Natural 0.915±0.10 0.800±0.10 0.824±0.10 0.345±0.1 0.237±0.07 0.241±0.07

Table 1. Performance (UAS) of different approaches on handwritten algebra dependency parsing. SL stands for supervised learning using
expert’s samples: maximizing the likelihood of expert’s actions under the sequences generated by expert itself. SL-RL means RL with
initialization using SL. Random stands for the initial performances of random policies (LSTMs and NN). The performance of DAgger
with Kernel SVM is from (Duyck & Gordon, 2015).

for algebra is similar to the classic dependency parsing
for natural language (Chang et al., 2015a) where the prob-
lem is modelled in the IL setting and the state-of-the-art is
achieved by AggreVaTe with FTRL (using Data Aggrega-
tion). The additional challenge here is that the inputs are
handwritten algebra symbols in raw images. We directly
learn to predict parse trees from low level image features
(Histogram of Gradient features (HoG)). During training,
the expert is constructed using the ground-truth dependen-
cies in training data. The full state s during parsing con-
sists of three data structures: Stack, Buffer and Arcs, which
store raw images of the algebraic symbols. Since the sizes
of stack, buffer and arcs change during parsing, a com-
mon approach is to featurize the state s by taking the fea-
tures of the latest three symbols from stack, buffer and arcs
(e.g., (Chang et al., 2015a)). Hence the problem falls into
the partially observable setting, where the feature o is ex-
tracted from state s and only contains partial information
about s. The dataset consists of 400 sets of handwritten
algebra equations. We use 80% for training, 10% for val-
idation, and 10% for testing. We include an example of
handwritten algebra equations and its dependency tree in
Appendix J. Note that different from robotics simulators
where at every episode one can get fresh data from the sim-
ulators, the dataset is fixed and sample efficiency is critical.

The RNN policy follows the design from (Sutskever et al.,
2014). It consists of two LSTMs. Given a sequence of al-
gebra symbols ⌧ , the first LSTM processes one symbol at
a time and at the end outputs its hidden states and mem-
ory (i.e., a summary of ⌧ ). The second LSTM initializes its
own hidden states and memory using the outputs of the first
LSTM. At every parsing step t, the second LSTM takes the
current partial observation ot (ot consists of features of the
most recent item from stack, buffer and arcs) as input, and
uses its internal hidden state and memory to compute the
action distribution ⇡(·|o

1

, ..., ot, ⌧) conditioned on history.
We also tested reactive policies constructed as fully con-
nected ReLu neural networks (NN) (one-layer with 1000
hidden states) that directly maps from observation ot to ac-
tion a, where ot uses the most three recent items. We use
variance reduced gradient estimations, which give better
performance in practice. The performance is summarised
in Table 1. Due to the partial observability of the prob-
lem, AggreVaTeD with a LSTM policy achieves signifi-
cantly better UAS scores compared to the NN reactive pol-

(a) Validation (b) Test

Figure 3. UAS (y-axis) versus number of iterations (n on x-axis)
of AggreVaTeD with LSTM policy (blue and green), experts (red)
on validation set and test set for Arc-Eager Parsing.

icy and DAgger with a Kernelized SVM (Duyck & Gordon,
2015). Also AggreVaTeD with a LSTM policy achieves
97% of optimal expert’s performance. Fig. 3 shows the im-
provement rate of regular gradient and natural gradient on
both validation set and test set. Overall we observe that
both methods have similar performance. Natural gradient
achieves a better UAS score in validation and converges
slightly faster on the test set but also achieves a lower UAS
score on test set.

7. Conclusion
We introduced AggreVaTeD, a differentiable imitation
learning algorithm which trains neural network policies for
sequential prediction tasks such as continuous robot control
and dependency parsing on raw image data. We showed
that in theory and in practice IL can learn much faster
than RL with access to optimal cost-to-go oracles. The IL
learned policies were able to achieve expert and sometimes
super-expert levels of performance in both fully observable
and partially observable settings. The theoretical and ex-
perimental results suggest that IL is significantly more ef-
fective than RL for sequential prediction with near optimal
cost-to-go oracles.
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