
Distributed Mean Estimation with Limited Communication

A. Proof of Lemma 7
The equality follows from the symmetry in HD. To prove
the upper bound, observe that
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Let D(j) be the jth diagonal entry of D. To bound the
first term observe that Zmax

i is a function of d independent
random variables D(1), D(2), . . . D(d). Changing D(j)

changes the Zmax
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d

. Hence, applying
Efron-Stein variance bound (Efron & Stein, 1981) yields
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To bound the second term, observe that for every � > 0,
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Note that Zi(k) =
1p
d

Pd
j=1

D(j)H(k, j)Xi(j). Since the
D(j)’s are Radamacher random variables and |H(k, j)| =
1 for all k, j, the distributions of Zi(k) is same for all k.
Hence by Jensen’s inequality,
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Since Zi(1) =
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D(j)Xi(j),
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where (a) follows from the fact that the D(i)’s are indepen-
dent and (b) follows from the fact that ea + e�a  2ea

2/2

for any a. Hence,
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