Distributed Mean Estimation with Limited Communication

A. Proof of Lemma 7

The equality follows from the symmetry in HD. To prove
the upper bound, observe that

E [(Z]")?] = Var (Z]") + (E[Z]"])” .

Let D(j) be the j® diagonal entry of D. To bound the
first term observe that Z;"** is a function of d independent
random variables D(1), D(2),...D(d). Changing D(j)
changes the Z"® by at most )f;éj 2X:0), Hence, applying
Efron-Stein variance bound (Efron & Stein, 1981) yields
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To bound the second term, observe that for every 3 > 0,
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Note that Z; (k) = ﬁ > 5—1 D(G)H (k, j)Xi(j). Since the
D(j)’s are Radamacher random variables and |H (k, j)| =
1 for all k, j, the distributions of Z;(k) is same for all .
Hence by Jensen’s inequality,
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Since Z;(1) = ﬁ Z?Zl D(5)X:(5),
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where (a) follows from the fact that the D(4)’s are indepen-

dent and (b) follows from the fact that e* + e~ < 2e0”/2
for any a. Hence,
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