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Abstract
We present an efficient algorithm for learning
mixed membership models when the number of
variables p is much larger than the number of
hidden components k. This algorithm reduces
the computational complexity of state-of-the-art
tensor methods, which require decomposing an
O
(
p3
)

tensor, to factorizingO (p/k) sub-tensors
each of size O

(
k3
)
. In addition, we address the

issue of negative entries in the empirical method
of moments based estimators. We provide suf-
ficient conditions under which our approach has
provable guarantees. Our approach obtains com-
petitive empirical results on both simulated and
real data.

1. Introduction
Mixed membership models (Woodbury et al., 1978;
Pritchard et al., 2000a;b; Blei et al., 2003; Erosheva, 2005)
have been used extensively across applications ranging
from modeling population structure in genetics (Pritchard
et al., 2000a;b) to topic modeling of documents (Wood-
bury et al., 1978; Blei et al., 2003; Erosheva, 2005). Mixed
membership models use Dirichlet latent variables to define
cluster membership where samples can partially belong to
each of k latent components. Parameter estimation for such
latent variables models (LVMs) using maximum likelihood
methods such as expectation maximization is computation-
ally intensive for large data, for example, if number of sam-
ples n is large.

Parameter estimation using the method of moments for
LVMs is an attractive scalable alternative that has been
shown to have certain theoretical and computational ad-
vantages over maximum likelihood methods in the set-
ting when n is large. For LVMs, method of moments ap-
proaches reduce to tensor methods—the moments of the
model parameters are expressed as a function of statistics
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of the observations in a tensor form. Inference in this set-
ting becomes a problem of tensor factorization. Compu-
tational advantages of using tensor methods have been ob-
served for many popular models, including latent Dirichlet
allocation (Anandkumar et al., 2012), spherical Gaussian
mixture models (Hsu & Kakade, 2013), hidden Markov
models (Anandkumar et al., 2012), independent component
analysis (Comon & Jutten, 2010), and multi-view models
(Anandkumar et al., 2014). An appealing property of tensor
methods is the guarantee of a unique decomposition under
mild conditions (cf. Kruskal, 1977; Leurgans et al., 1993).

There are two complications to using standard tensor de-
composition methods (Anandkumar et al., 2016; 2014; Gu
et al., 2014; Kuleshov et al., 2015; Nicolò Colombo and
Nikos Vlassis; Kim et al., 2014; Chi & Kolda, 2012) for
LVMs. The first problem is computation and space com-
plexity. Given p variables in the LVM, parameter inference
requires factorizing typically a non-orthogonal estimator
tensor of size O

(
p3
)

(Anandkumar et al., 2014; Kuleshov
et al., 2015; Nicolò Colombo and Nikos Vlassis), which
is prohibitive for large p. When the estimator is orthogo-
nal and symmetric, this can be done in O

(
p2 log p

)
(Wang

et al., 2015). Online tensor decomposition (Huang et al.,
2013) uses dimension reduction to instead factorize a re-
duced k-by-k-by-k tensor. However, the dimension reduc-
tion can be slower than decomposing the estimator directly
for large sample sizes, as well as suffer from high variance
(Wang et al., 2015). We introduce a simple factorization
with improved complexity for the general case where the
parameters are not required to be orthogonal.

The second problem arises from negative entries in the
empirical moments tensor. LVMs for count data are con-
strained to have nonnegative parameters. However, the em-
pirical moments tensor computed from the data may con-
tain negative elements due to sampling variation and noise.
Indeed, for small sample sizes or data with many small
or zero counts, there will be many negative entries in the
empirical moments tensor. General tensor decomposition
algorithms (Kuleshov et al., 2015; Nicolò Colombo and
Nikos Vlassis), including the tensor power method (TPM)
(Anandkumar et al., 2014), do not guarantee the nonneg-
ativity of model parameters. Approaches such as posi-
tive/nonnegative tensor factorization (Chi & Kolda, 2012;
Shashua & Hazan, 2005; Welling & Weber, 2001) also do
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not address this situation as they require all the elements of
the tensor to be factorized to be nonnegative. With robust
tensor methods (Anandkumar et al., 2016; Gu et al., 2014),
sparse negative entries may potentially be treated as cor-
rupted elements; however, these methods are not applicable
in this setting since there can be many negative elements.

In this paper, we introduce a novel parameter inference
algorithm called partitioned tensor parallel quadratic pro-
gramming (PTPQP) that is efficient in the setting where
the number of variables p is much larger than the number
of latent components k. The algorithm is also robust to
negative entries in the empirical moments tensor. There
are two key innovations in the PTPQP algorithm. The first
innovation is a partitioning technique which recovers the
parameters through factorizing O (p/k) much smaller sub-
tensors each of sizeO

(
k3
)
. The second innovation is a par-

allel quadratic programming (Brand & Chen, 2011) based
algorithm to factor tensors with negative entries under the
constraint that the factors are all nonnegative. To the best
of our knowledge, this is the first algorithm designed to ad-
dress the problem of negative entries in empirical estima-
tor tensors. We show that the proposed factorization algo-
rithm converges linearly with respect to each factor matrix.
We also provide sufficient conditions under which the par-
titioned factorization scheme is consistent, the parameter
estimates converge to the true parameters.

2. Preliminaries
Notations. We use bold lowercase letters to represent vec-
tors and bold capital letters for matrices. Tensors are de-
noted by calligraphic capital letters. The subscript notation
Aj refers to j-th column of matrix A. We denote the j-
th column of the identity matrix as ej and 1 is a vector
of ones. We further write diag (x) for a diagonal matrix
whose diagonal entries are x, and diag (A) to mean a vec-
tor of the diagonal entries ofA.

Element-wise matrix operators include� and�, e.g.,A �
0 means that A has nonnegative entries. (·)+ refers to
element-wise max (·, 0). ∗ and � respectively represent
element-wise multiplication and division. Moreover, ×
refers to the outer product and � denotes the Khatri-Rao
product. ‖·‖F and ‖·‖2 represent the Frobenius norm and
spectral norm, respectively.

Tensor basics. This paper uses similar tensor notations
as (Kolda & Bader, 2009). In particular, we are primarily
concerned with Kruskal tensors in Rd1×d2×d3 , which can
be expressed in the form of

T =

r∑
j=1

Aj ×Bj ×Cj , (1)

whereA,B, and C are respectively d1-by-r, d2-by-r, and

d3-by-r factor matrices. The rank of T is defined as the
smallest r that admits such a decomposition. The decom-
position is known as the CP (CANDECOMP/PARAFAC)
decomposition. The j-mode unfolding of T , denoted by
T(j), for j = 1, 2, 3 is a dj-by-

(∏
t 6=j dt

)
matrix whose

rows are serializations of the tensor fixing the index of the
j-th dimension. The unfoldings have the following well-
known compact expressions:

T(1) = A (C �B)
>
, T(2) = B (C �A)

>

T(3) = C (B �A)
>
.

(2)

3. Learning through Method of Moments
3.1. Generalized Dirichlet latent variable models

A generalized Dirichlet latent variable model (GDLM) was
proposed in (Zhao et al., 2016) for the joint distribution of
n observations y1,y2, · · · ,yn. Each observation yi con-
sists of p variables yi = (yi1, yi2, · · · , yip)>. GDLM
assumes a generative process involving k hidden compo-
nents. For each observation, sample a random Dirichlet
vector xi = (xi1, xi2, · · · , xik)

> ∈ ∆k−1 with concen-
tration parameter α = (α1, α2, · · · , αk)

>. The elements
of xi are the membership probabilities for yi to belong to
each of the k components. Specifically,

yij ∼
k∑
h=1

xihgj (θjh) ,

where gj (θjh) is the density of the j-th variable specific
to component h with parameter θj = (θj1,θj2, · · · ,θjk).
One advantage of GLDM is that yij can take categorical
values. Let dj denote the number of categories for the j-th
variable (set dj = 1 for scalar variables), θj becomes a dj-
by-k probability matrix where the c-th row corresponds to
category c. We aim to accurately recover θj from indepen-
dent copies of yi involving variables of mixed data types,
either categorical or non-categorical.

3.2. Moment-based estimators

The moment estimators of latent variable models typically
take the form of a tensor (Anandkumar et al., 2014). Con-
sider the estimators of GDLM (Zhao et al., 2016) for ex-
ample. Let bij = eyij if variable j is categorical; bij = yij
otherwise. The second- and third- order parameter estima-
tors for variable j, s, and t are written

Mjs = E [bij × bis]− c1E [bij ]E [bis]
>

Mjst = E [bij × bis × bit] + c2E [bij ]× E [bis]× E [bit]

− c3 (E [E [bij ]× bis × bit] + E [bij × E [bis]× bit]
+E [bij × bis × E [bit]]) .
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Alternatively, Mjs and Mjst have the following CP de-
composition into parameters θj :

Mjs =
∑
h≥1

ηhθjh × θsh, θuv ∈ Rdi (3)

Mjst =
∑
h≥1

λhθjh × θsh × θth, θuv ∈ Rdi . (4)

Here, c1, c2, c3, ηh, and λh depend on only α0 =
∑
j≥1 αj .

For the special case of latent Dirichlet allocation,Mjs and
Mjst are scalar joint probabilities.

The parameters θj are typically obtained by factorizing the
block tensor M2 whose (j, s)-th element is the empirical
M̂js and/orM3 whose (j, s, t)-th element is the empirical
M̂jst (Anandkumar et al., 2016; 2014; Zhao et al., 2016).
Note that θj are generally non-orthogonal, and thus pre-
processing steps are needed for orthogonal decomposition
methods (Wang et al., 2015; Song et al., 2016; Anandku-
mar et al., 2014). The preprocessing can be expensive and
often leads to suboptimal performance (Souloumiac, 2009;
Nicolò Colombo and Nikos Vlassis). Here, we highlight a
few relevant observations:

• Mjs alone does not yield unique parameters θj due
to the well-known rotation problem. This is true even
when enforcing nonnegativity constraints on parame-
ters (Donoho & Stodden, 2004).

• Mjst is sufficient to uniquely recover the parameters
under certain mild conditions (Kruskal, 1977); for ex-
ample, when any two of θj , θs, and θt have linearly
independent columns and the columns of the third are
pair-wise linearly independent (Leurgans et al., 1993).

• The empirical estimator M̂jst generally contains neg-
ative entries due to variance and noise. The fraction of
negative entries can approach 50%, as we shall see in
experiments. We address this issue in § 4.4.

• While the decomposition (4) can be unique up to per-
mutation and rescaling, the correspondence between
each column of the factor matrix and each hidden
component may not be consistent across multiple de-
compositions. Techniques for achieving consistency
are developed in § 4.2.

3.3. Computational complexity

Tensor methods such as TPM typically decompose the
O
(
p3d3max

)
full estimator tensor that includes all vari-

ables. More efficient algorithms have been developed for
the case that parameters are orthogonal (Wang et al., 2015;
Song et al., 2016), and when the sample size is small
(Huang et al., 2013). However, these methods do not

apply in the general case where the parameters are non-
orthogonal and the sample size can be potentially large. A
key insight underlying our approach is that it is sufficient to
recover the parameters by factorizing only O (p/k) much
smaller sub-tensors each of size O

(
k3
)
. This technique

can also be combined with the aforementioned methods to
further improve the complexity in certain cases.

4. An efficient algorithm
In this section, we develop partitioned tensor parallel
quadratic programming (PTPQP) an efficient approximate
algorithm for learning mixed membership models. We first
introduce a novel partitioning-and-matching scheme that
reduces parameter estimation to factorizing a sequence of
sub-tensors. Then, we develop a nonnegative factoriza-
tion algorithm that can handle negative entries in the sub-
tensors.

4.1. Partitioned factorization

Factorizing the full tensor formed by allMjst is expensive
while a three-variable tensorMjst in (4) alone may not be
sufficient to determine θj when k is large. In this section,
we consider factorizing the sub-tensors corresponding to a
cover of the set of variables [p] such that each sub-tensor
admits an identifiable CP decomposition (1), i.e. unique
up to permutation and rescaling of columns. This gives
the parameters for all variables. Suppose that p > k and
the maximum number of categories dmax is a constant, the
aggregated size of the sub-tensors can be much smaller, i.e.,
O
(
pk2
)
, than the size O

(
p3
)

of the full estimator.

Let πj , πs, and πt denote ordered subsets ⊆ [p], with car-
dinality |πj | = pj , |πs| = ps, and |πt| = pt, respectively.
Consider the pj-by-ps-by-pt block tensor Mπjπsπt

whose
(u, v, w)-th element is the tensor Mπjπsπt

uvw = Mπj
uπ

s
vπ

t
w .

From (4) the tensorMπjπsπt

is

k∑
h=1

λh


θπj

1h

θπj
2h

...
θπj

pj
h

×

θπs

1h

θπs
2h

...
θπs

ps
h

×

θπt

1h

θπt
2h

...
θπt

pt
h

 . (5)

Clearly, the block tensor is identifiable if it has an identi-
fiable sub-tensor. Suppose that a sub-tensor Mπuπvπw

is
identifiable, then one can construct an identifiable tensor
Mπj′πs′πt′

fromMπjπsπt

by setting

πj′ = πj ∪ πu, πs′ = πs ∪ πv, πt′ = πt ∪ πw. (6)

We further remark that a sub-tensor can be identifiable un-
der mild conditions, for example, if the sum of the Kruskal
rank of the three factor matrices is at least than 2k + 2
(Kruskal, 1977).
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Given an identifiable sub-tensorMπuπvπw

of anchor vari-
ables indexed by πu, πv , and πw, the partitioning produces
a set of sub-tensors (partitions) constructed through (6),
that includes all variables. Thus, Mπuπvπw

is a common
sub-tensor shared across all partitions. We choose anchor
variables whose parameter matrices are of full column rank
to obtain an identifiableMπuπvπw

. Finally, one can divide
the rest of variables evenly and randomly into the parti-
tions.

4.2. Matching parameters with hidden components

Since the factorization of a partition (5) can only be iden-
tifiable up to permutation and rescaling of the columns of
constituent θj , the correspondence between the columns of
θj and hidden components can differ across partitions. To
enforce consistency, we associate a permutation operator
ψj for each variable j such that

(
ψjθj

)
h

are the parame-
ters specific to hidden component h across all variables j.
Consider the following vector representation of ψ:

ψ = (ψ1, ψ2, · · · , ψk) , ψi ∈ [k]

ψA = [Aψ1 ,Aψ1 , · · · ,Aψk
] .

Observe that ψj = ψs = ψt within a factorization of
Mjst, and this also holds for the partitioned factoriza-
tion (5) of Mπjπsπt

as well, i.e., ψx = ψy, ∀x, y ∈
πj ∪ πs ∪ πt.

Consider the factorizations ofMπjπsπt

andMπuπvπw

and
suppose that ∃x ∈

(
πj ∪ πs ∪ πt

)
∩ (πu ∪ πv ∪ πw). The

permutation operator for one factorization is determined
given the other by column matching the parameters of vari-
able x in both factorizations. Thus, an inductive way to
achieve a consistent factorization is to start with one factor-
ization, and let its permutation be the identity (1, 2, · · · , k),
then perform the factorization over new sets of variables
with at least one variable in common with the initial factor-
ization. Permutations for the sequential factorizations are
determined via column matching parameter matrices of the
common variables.

Given two factorized parameter matrices θj and θ′j of vari-
able j, our goal is to find a consistent permutation ψ (of θj
with respect to θ′j) such that (ψθj)h and θ′jh correspond
to the same hidden component for all h ∈ [k]. We now
present an algorithm with provable guarantees to compute
a consistent permutation.

Smallest angle matching A simple matching algorithm is
to match the two columns of the two parameter matrices
that have the smallest angle between them. Consider the
factorizations ofMjst andMjuv which yield respectively
parameters θj and θ′j for the common variable j. Given the
permutation ψj forMjst, the permutation ψu forMjuv is

computed by:

ψus = arg max
t

(
θ̄′>j ψ

j θ̄j
)
ts
. (7)

Here, θ̄j and θ̄′j represent respectively the normalized θj
and θ′j with each column having unit Euclidean norm.

There are cases that ψu computed via Equation (7) is not
consistent: 1) ψu contains duplicate entries and hence is
ineligible; and 2) since θj and θ′j are the factorized pa-
rameter matrices which are generally perturbed from the
ground-truth, the resulting ψu may differ from the consis-
tent permutation. To cope with these cases, we establish in
§ 5 the sufficient conditions for ψu to be consistent.

Orthogonal Procrustes matching One issue with the
smallest angle matching is that each column is paired inde-
pendently. It is easy for multiple columns to be paired with
a common nearest neighbor. We describe a more robust al-
gorithm based on the orthogonal Procrustes problem, and
show improved guarantees. Since a consistent permutation
is orthogonal, a natural relaxation is to only require the op-
erator to be orthogonal. This is an orthogonal Procrustes
problem, formulated in the same settings as § 4.2

min
Ψ

∥∥θ̄′jΨ− ψj θ̄j∥∥2F , s.t. Ψ>Ψ = I. (8)

Let θ̄′>j ψ
j θ̄j = UΣV > be the singular value decompo-

sition (SVD), the solution Ψ∗ is given by the polar factor
(Schönemann, 1966)

Ψ∗ = UV >. (9)

Here, Ψ∗ is orthogonal and does not immediately imply
the desired permutation ψu. To compute ψu, one can ad-
ditionally restrict Ψ to be a permutation matrix, and solve
for ψu using linear programming (Gower & Dijksterhuis).
Aside from efficiency, one fundamental question is that un-
der what assumptions the objective (8) yields the consistent
permutation.

Given the solution Ψ∗ to the Procrustes problem, we pro-
pose the following simple algorithm for computing ψu:

ψus = arg max
t

Ψ∗ts. (10)

We first establish through Theorem 1 that if ψu obtained
using (10) is a valid permutation, i.e., no duplicate entries,
then it is optimal in terms of the objective (8).

Theorem 1. The ψu obtained using (10) satisfies∥∥ψuθ̄′j − ψj θ̄j∥∥2F ≤ ∥∥ψθ̄′j − ψj θ̄j∥∥2F
for all permutations ψ.

In section § 5 we state sufficient conditions under which the
objective (8) yields a consistent permutation.
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4.3. Approximate nonnegative factorization

In previous sections, we reduced the inference problem to
factorizing partitioned sub-tensors. We now present a fac-
torization algorithm for the sub-tensors that contain nega-
tive entries. Our goal is to approximate a sub-tensorM by
a sub-tensor M̃ =

∑
jAj×Bj×Cj where the factorsA,

B, and C are nonnegative. The Frobenius norm is used to
quantify the approximation

min
A,B,C�0

∥∥∥M−M̃∥∥∥
F
. (11)

Note that we do not assume that M � 0 in (11) which
distinguishes our optimization problem from other approxi-
mate factorization algorithms (Welling & Weber, 2001; Chi
& Kolda, 2012; Kim et al., 2014; Shashua & Hazan, 2005).
In § 4.4, we provide some details as to why negative entries
are problematic for standard approximate factorization al-
gorithms. We can rewrite (11) using the 1-mode unfolding
as

min
A,B,C�0

∥∥∥M(1) −A (C �B)
>
∥∥∥
F
. (12)

Equivalent formulations with respect to the 2-mode and 3-
mode unfoldings can be readily obtained from (2).

We point out that another widely-used error measure — the
I-divergence (Finesso & Spreij, 2006; Chi & Kolda, 2012)
— may not be suitable for our learning problem. The opti-
mization using I-divergence is given by

min
A,B,C�0

∑
u,v,w

[
Muvw log

Muvw

M̃uvw

−Muvw + M̃uvw

]
.

This optimization is useful for nonnegativeM when each
entry follows a Poisson distribution. In this case, the objec-
tive is equivalent to the sum of Kullback-Leibler divergence
across all entries ofM:∑

u,v,w

DKL

(
Pois (x;Muvw)

∥∥ Pois
(
x;M̃uvw

))
.

However, the Poisson assumption does not generally hold
for the estimator tensor (4).

4.4. Handling negative entries in empirical estimators

We first illustrate that factorizing a tensor with negative en-
tries using either positive tensor factorization (Welling &
Weber, 2001) or nonnegative tensor factorization (Chi &
Kolda, 2012; Shashua & Hazan, 2005) will either result
in factors that violate the the nonnegativity constraint or
the result of the algorithm diverges. In addition, we show
that general tensor decompositions cannot enforce the fac-
tor nonnegativity even after rounding the negative entries
to zero.

We then present a simple method based on weighted non-
negative matrix factorization (WNMF) (Zhang et al., 1996)
that enforce the factor nonnegativity constraint. We further
generalize this method using parallel quadratic program-
ming (PQP) (Brand & Chen, 2011) to obtain a method with
a provable convergence rate.

Issue of negative entries If the tensor is strictly nonneg-
ative, the optimization specified in (11) can be reduced to
nonnegative matrix factorization (NMF). Solvers abound
for NMF including the celebrated Lee-Seung’s multiplica-
tive updates (Lee & Seung, 2001). The reduction is done by
viewing (12) as ‖Y −WH‖2F with Y =Mjst

(1) ,W = A,

andH = (C �B)
>, and alternating

Wst ←Wst

(
Y H>

)
st

(WHH>)st
, (13)

over each unfolding and factor matrix W . Obviously, the
updates may yield negative entries in W when the unfold-
ing contains negative entries. In addition, convergence re-
lies on the nonnegativity of the unfolding (cf. Lee & Se-
ung, 2001). This issue extends to their tensor factorization
variants (Welling & Weber, 2001; Chi & Kolda, 2012; Kim
et al., 2014) known as the positive tensor factorization and
nonnegative tensor factorization. For these approaches, a
naive resolution is to round negative entries of M̂jst to 0,
this however lacks theoretical guarantees.

It is important to note that the rounding does not help gen-
eral tensor decompositions like TPM. The following exam-
ple illustrates that the unique decomposition (up to permu-
tation and rescaling) of a positive tensor can contain nega-
tive entries. Consider a 2-by-2-by-2 positive tensor, whose
1-mode unfolding is given by[

1 3 2 2
2 2 2 2

]
,

where the vertical bar separates two frontal slices. It has
the following decomposition, written in the form of (1):

A = C =

[
1 1
1 0

]
, B =

[
2 −1
2 1

]
.

Since all factors are of full-rank, the decomposition
is unique up to permutation and rescaling of columns
(Kruskal, 1977). Thus, a general tensor decomposition
yields aB with negative entries regardless of rescaling.

4.5. Factorization via WNMF

Since the ground-truthMjst are nonnegative, we may “ig-
nore” the negative entries of M̂jst by treating them as
missing values. This idea leads to the following modified
objective:

min
W ,H�0

‖Ω ∗ (Y −WH)‖2F (14)
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where Y ,W ,H are chosen identically as (13), and define
the boolean Ωuv := Yuv ≥ 1. The optimization can be
carried out using WNMF. Here, we modify the original up-
dates by introducing a positive constant ε to ensure that the
updates are well-defined:

Wuv ←Wuv

[
(Ω ∗ Y )H>

]
uv

+ ε

[((WH) ∗Ω)H>]uv + ε
. (15)

It can be easily shown that the presence of ε does not af-
fect the solution accuracy. In addition, having ε in both
the numerator and denominator of (15) guarantees that the
objective (14) is non-increasing under the updates.

4.6. Parallel quadratic programming

We now generalize the WNMF approach using parallel
quadratic programming to obtain a convergence rate. Let
S++ denote the set of symmetric positive definite matrices,
we consider the following optimization problem

min
x

1

2
x>Qx+ z>x s.t. x ≥ 0, Q ∈ S++, (16)

which can be solved by iterating multiplicative updates
(Brand & Chen, 2011; Sha et al., 2003). We use the parallel
quadratic programming (PQP) algorithm (Brand & Chen,
2011; Brand et al., 2011) to solve (16), partly because it has
a provable linear convergence rate. The PQP multiplicative
update for (16) takes the following simple form:

x← x ∗
(
Q−x+ z−

)
�
(
Q+x+ z+

)
, (17)

with

Q+ = (Q)+ + diag (γ) , Q− = (−Q)+ + diag (γ)

z+ = (z)+ + φ, z− = (−z)+ + φ.

Here γ and φ are arguments to PQP, we will discuss these
arguments in section § 5.2. The update maintains nonnega-
tivity since all items are nonnegative. We make the follow-
ing observation.

Theorem 2. The multiplicative updates for Lee-Seung and
WNMF are special cases of PQP.

We can now solve the approximate nonnegative factoriza-
tion problem stated in (11) using (17). Theorem 3 states the
multiplicative updates. A more detailed discussion of Φ is
included in § 5.2. We present pseudo-code in Algorithm 1.

Theorem 3. For optimization (11), the following update
converges linearly to a local optimum

A← A ∗
[
(−Z)+ + Φ

]
�
[
AQ+ (Z)+ + Φ

]
(18)

Algorithm 1 Factorize (M, k,d)

M←M/maxuvw |Muvw| , ε← 10−10

% Initialize with random nonnegative matrices:
A← rand (dj , k),B ← rand (ds, k), C ← rand (dt, k)
% Create a set of alternating variable tuples:
F ←

{[
A,
(
C>C

)
∗
(
B>B

)
,−M(1) (C �B)

]}
F ← F∪

{[
B,
(
C>C

)
∗
(
A>A

)
,−M(2) (C �A)

]}
F ← F∪

{[
C,
(
B>B

)
∗
(
A>A

)
,−M(3) (B �A)

]}
repeat

for each [X,Q,Z] in F do
Φ← λ

−1/2
min (Q)

√
diag (ZQ−1Z>)diag (Q)

>

Φ← (Φ− |Z|)+ /2 + ε11>

X ←X ∗
[
(−Z)+ + Φ

]
�
[
XQ+ (Z)+ + Φ

]
end for

untilX ceased to change, or reached max #iterations
Normalize the columns ofA,B, C to sum to 1.
returnA,B, C

with

Q =
(
C>C

)
∗
(
B>B

)
, Z = −M(1) (C �B)

Φ � 1

2

(√
diag (ZQ−1Z>)

λmin (Q)
diag (Q)

> − |Z|

)
+

,

where λmin (·) is the smallest eigenvalue. Similar updates
forB and C are obtained using (2).

4.7. Proposed approach

To summarize, the proposed approach, referred to as PT-
PQP, consists of three steps. Given the indexes of anchor
variables πu ∪ πv ∪ πw, the variables [p] \ (πu ∪ πv ∪ πw)
are first evenly divided into r partitions, and the anchor
variables are added to each partition. The second step
consists of forming and factorizing the sub-tensor of each
partition using Algorithm 1, this step can be parallelized.
Third, normalize the anchor matrix

[
θπ

u>,θπ
v>,θπ

w>]>
formed by the anchor variable parameters to have unit col-
umn Euclidean norm, and then use either (7) or (10) to
match over the anchor matrix.

Efficiency. Most of the computational cost is in the
factorization. Consider one partition, and let Mπjπsπt

be the corresponding sub-tensor, the sub-tensor size is∏
π∈{πj ,πs,πt}

∑
h∈π dh. The maximum number of cate-

gories for a variable is generally a constant for the GDLM.
Under smallest partitioning, this size is determined by the
sub-tensor of anchor variables, i.e., O

(
k3
)
, which corre-

sponds to (p/k) partitions. One benefit of PTPQP is that
the number of sub-tensor factorizations is linear in p due to
the partitioned factorization, this results in significant effi-
ciency gains when p � k. Furthermore, PTPQP is easy to



Partitioned Tensor Factorizations for Learning Mixed Membership Models

be parallelized across multiple CPUs and machines, since
the computation as well as data are not distributed across
partitions.

5. Provable Guarantees
In this section, we state the main theoretical results of the
proposed partitioned factorization and tensor PQP factor-
ization. The proofs can be found in the longer version of
this paper (Tan & Mukherjee, 2017).

5.1. Sufficient conditions for guaranteed matching

Theorem 4 and Theorem 5 state that when the anchor pa-
rameter matrices from two factorizations are “close”, the
proposed matching algorithms obtain a consistent permu-
tation.

Theorem 4. Suppose that θj is the ground-truth matrix
for variable j. Solving Equation (7) results in a consistent
permutation if for all factors θ̂j of variable j∥∥∥θjh − θ̂jh∥∥∥

2

‖θjh‖2
< 1−

√√√√1

2
+

√
1

8

(
1 + max

u<v

(
θ̄>j θ̄j

)
uv

)

for all h ∈ [k], where θ̄jh = θjh/ ‖θjh‖2.

Theorem 4 states that one obtains a consistent permutation
by solving Equation (7) in the columns of the ground-truth
parameter matrix are distinct from each other in angles and
the factorized parameter matrix is near the ground-truth in
Frobenius norm. Thus, a good anchor variable for the parti-
tioned factorization (5) is one whose parameter matrix has
distant columns in angles.

The bound in Theorem 4 can be made sharp for certain θj ,
and thus the smallest angle matching algorithm has general
guarantees only when the perturbation is small, i.e., the rel-
ative error ratio is less than 1−

√
2 +
√

2/2 ≈ 1/13.

Theorem 5. Suppose that θ and θ′ are two factorized pa-
rameter matrices for a variable. Solving (10) results in a
consistent permutation ψ, if ‖E‖2 < σk

(
θ>θ

)
and

−
‖E‖2
ρ

log
(

1− ρ

ν

)
<

2−
√

2

4

with

ρ = σ1 (E) + σ2 (E) , ν = σk
(
θ>θ

)
+ σk−1

(
θ>θ

)
where the error matrix is define as E = (ψθ)

>
(θ′ − ψθ),

and σj (·) denotes the j-th largest singular value.

The first condition in Theorem 5 requires that at least one
of θ and θ′ must have full column rank. We may exchange

θ and θ′ in Theorem 5 to first obtain the consistent permu-
tation of θ′ with respect to θ, ψ then follows immediately.

Theorem 5 states that solving (10) recovers a consistent
permutation whenever the error spectral norm is small as
compared to the smallest singular value of θ>θ. This is
especially useful for θ ∈ Rd×k with the number of rows
d much larger than the number of columns k. In par-
ticular, for θ with independent and identically distributed
subgaussian entries, σk

(
θ>θ

)
is at least of the order(√

d−
√
k − 1

)2
(Rudelson & Vershynin, 2009).

5.2. Convergence

The following theorem states a sufficient condition for PQP
to achieve linear convergence rate. The theorem statement
and proof is an adaptation of results stated in (Brand &
Chen, 2011)—the proof in (Brand & Chen, 2011) over-
looks a required condition on φ and the condition γ �
diag (Qjj) in the original proof is unnecessary.

Theorem 6. The PQP algorithm given by (17) monoton-
ically decreases the objective (16) and has linear conver-
gence, if γ � (−Q)+ 1 and

φ � 1

2

(√
z>Q−1z

λmin (Q)
diag (Q)− |z|

)
+

, (19)

where λmin (·) is the smallest eigenvalue.

6. Results on real and simulated data
We compare the proposed algorithm ptpqp with state-of-
the-art approaches including: 1) the tensor power method
tpm (Anandkumar et al., 2014) and matrix simultane-
ous diagonalization, nojd0 and nojd1 (Kuleshov et al.,
2015)—two general tensor decomposition methods; 2)
nonnegative tensor factorization hals (Kim et al., 2014);
and 3) generalized method of moments meld (Zhao et al.,
2016). We use the online code provided by the correspond-
ing authors. The code to reproduce the experiments is
available at: https://goo.gl/3DBXIo.

6.1. Learning GDLMs on simulated data

We adapt a simulation study from (Zhao et al., 2016) to
compare runtime and accuracy of parameter estimation.
We consider a GDLM where each variable takes categor-
ical values {0, 1, 2, 3} and the parameters of the Dirich-
let mixing distribution are {αj = 0.1}kj=1. We initially
consider 25 variables. The true parameters for each hid-
den component h are drawn from the Dirichlet distribu-
tion Dir (0.5, 0.5, 0.5, 0.5). The resulting moment estima-
tor is a 100-by-100-by-100 tensor. We vary the number
of components k and add noise by replacing a fraction δ

https://goo.gl/3DBXIo
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Figure 1. RMSE between inferred and true parameters.

of the observations with draws from a discrete uniform
distribution. We also vary the number of samples n =
100, 500, 1000, 5000, number of clusters k = 3, 5, 10, 20,
and contamination δ = 0, 0.05, 0.1. Across these settings
we found that the empirical third-order estimator typically
exhibits between 20% and 50% negative entries.

Accuracy of inference: Accuracy is measured by root-
mean-square error (RMSE) which we compare across algo-
rithms as a function of the number of components for vari-
ous sample sizes and levels of contamination, see Figure 1.
Both hals and ptpqp are consistently among the top esti-
mators, and ptpqp outperforms hals as n grows. For small
sample sizes and many hidden components meld achieves
the smallest RMSE. The RMSE of tpm is relatively large,
probably due to the whitening technique used to approx-
imately transform the nonorthogonal factorization into an
orthogonal one, see (Souloumiac, 2009; Nicolò Colombo
and Nikos Vlassis). The most relevant observation is that
ptpqp outperforms other methods for large, noisy data.

Computational cost: We examined how runtime scales as
a function of the number of partitions. For the same model
we set p = 1000 variables and n = 1000 samples. The
tensor is now 4000-by-4000-by-4000. We evaluated the
runtime of ptpqp (without parallelization) with the num-
ber of partitions set to {30, 40, 50, 100, 200}. On a laptop
with Intel i7-4702HQ@2.20GHz CPU and 8GB memory,
ptpqp with 100 partitions completes within 3.5 min, 4 min,
and 5 min for k = 4, 8, 12, respectively. In addition, the
runtime monotonically decreases with the number of par-
titions. Further speedups can be obtained by parallelizing
the factorization of partitions across multiple CPUs or ma-
chines.

6.2. Predicting crowdsourced labels

In (Zhang et al., 2014), a combination of EM and tensor
decompositions was used to predict crowdsourcing anno-
tations. The task is to predict the true label given incom-

plete and noisy observations from a set of workers, this is
a mixed membership problem (Dawid & Skene, 1979). In
(Zhang et al., 2014) a third-order tensor estimator was pro-
posed to obtain an initial estimate for the EM algorithm.
We compare the predictive performance on five data sets of
several tensor decomposition methods as well as the EM
algorithm initialized with majority voting by the workers
(MV+EM). The fraction of incorrect predictions and the
size of each dataset are in the table below. Note that pt-
pqp matches or outperforms the other tensor methods on
all but one dataset, and even outperforms MV+EM on two
datasets.

Table 1. Incorrectly predicted labels (%)

DATASET BIRDS RTE TREC DOGS WEB
PTPQP 11.11 7.75 30.81 15.37 14.44
HALS 12.96 7.75 31.47 20.57 26.84
TPM 11.11 7.62 31.87 15.49 14.70

NOJD0 12.04 8.00 32.97 15.49 18.39
NOJD1 12.04 8.00 35.91 15.86 25.97

MV+EM 11.11 7.12 30.20 15.86 15.91
SIZE 108 800 19033 807 2665

7. Conclusions
We proposed an efficient algorithm for learning mixed mix-
ture models based on the idea of partitioned factorizations.
The key challenge is to consistently match the partitioned
parameters with the hidden components. We provided suf-
ficient conditions to ensure consistency. In addition, we
have also developed a nonnegative approximation to handle
the negative entries in the empirical method of moments es-
timators, a problem not addressed by several recent tensor
methods. Results on synthetic and real data corroborate
that the proposed approach achieves improved inference
accuracy as well as computational efficiency than state-of-
the-art methods.
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