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Abstract
Neural networks and rational functions effi-
ciently approximate each other. In more de-
tail, it is shown here that for any ReLU net-
work, there exists a rational function of de-
greeO(poly log(1/ε)) which is ε-close, and sim-
ilarly for any rational function there exists a
ReLU network of size O(poly log(1/ε)) which
is ε-close. By contrast, polynomials need de-
gree Ω(poly(1/ε)) to approximate even a single
ReLU. When converting a ReLU network to a
rational function as above, the hidden constants
depend exponentially on the number of layers,
which is shown to be tight; in other words, a com-
positional representation can be beneficial even
for rational functions.

1. Overview
Significant effort has been invested in characterizing the
functions that can be efficiently approximated by neural
networks. The goal of the present work is to characterize
neural networks more finely by finding a class of functions
which is not only well-approximated by neural networks,
but also well-approximates neural networks.

The function class investigated here is the class of rational
functions: functions represented as the ratio of two poly-
nomials, where the denominator is a strictly positive poly-
nomial. For simplicity, the neural networks are taken to
always use ReLU activation σr(x) := max{0, x}; for a re-
view of neural networks and their terminology, the reader
is directed to Section 1.4. For the sake of brevity, a network
with ReLU activations is simply called a ReLU network.

1.1. Main results

The main theorem here states that ReLU networks and ra-
tional functions approximate each other well in the sense
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Figure 1. Rational, polynomial, and ReLU network fit to “spike”,
a function which is 1/x along [1/4, 1] and 0 elsewhere.

that ε-approximating one class with the other requires a
representation whose size is polynomial in ln(1 / ε), rather
than being polynomial in 1/ε.
Theorem 1.1. 1. Let ε ∈ (0, 1] and nonnegative inte-

ger k be given. Let p : [0, 1]d → [−1,+1] and
q : [0, 1]d → [2−k, 1] be polynomials of degree ≤ r,
each with≤ smonomials. Then there exists a function
f : [0, 1]d → R, representable as a ReLU network of
size (number of nodes)

O
(
k7 ln(1 / ε)3

+ min
{
srk ln(sr / ε), sdk2 ln(dsr / ε)2

})
,

such that

sup
x∈[0,1]d

∣∣∣∣f(x)− p(x)

q(x)

∣∣∣∣ ≤ ε.
2. Let ε ∈ (0, 1] be given. Consider a ReLU network
f : [−1,+1]d → R with at most m nodes in each
of at most k layers, where each node computes z 7→
σr(a

>z + b) where the pair (a, b) (possibly distinct
across nodes) satisfies ‖a‖1 + |b| ≤ 1. Then there ex-
ists a rational function g : [−1,+1]d → R with degree
(maximum degree of numerator and denominator)

O
(

ln(k/ε)kmk
)

such that

sup
x∈[−1,+1]d

∣∣f(x)− g(x)
∣∣ ≤ ε.
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Perhaps the main wrinkle is the appearance of mk when
approximating neural networks by rational functions. The
following theorem shows that this dependence is tight.

Theorem 1.2. Let any integer k ≥ 3 be given. There ex-
ists a function f : R → R computed by a ReLU network
with 2k layers, each with ≤ 2 nodes, such that any ratio-
nal function g : R → R with ≤ 2k−2 total terms in the
numerator and denominator must satisfy∫

[0,1]

|f(x)− g(x)|dx ≥ 1

64
.

Note that this statement implies the desired difficulty of ap-
proximation, since a gap in the above integral (L1) distance
implies a gap in the earlier uniform distance (L∞), and
furthermore an r-degree rational function necessarily has
≤ 2r + 2 total terms in its numerator and denominator.

As a final piece of the story, note that the conversion be-
tween rational functions and ReLU networks is more seam-
less if instead one converts to rational networks, meaning
neural networks where each activation function is a rational
function.

Lemma 1.3. Let a ReLU network f : [−1,+1]d → R
be given as in Theorem 1.1, meaning f has at most l layers
and each node computes z 7→ σr(a

>z+b) where where the
pair (a, b) (possibly distinct across nodes) satisfies ‖a‖1 +
|b| ≤ 1. Then there exists a rational function R of degree
O(ln(l/ε)2) so that replacing each σr in f with R yields a
function g : [−1,+1]d → R with

sup
x∈[−1,+1]d

|f(x)− g(x)| ≤ ε.

Combining Theorem 1.2 and Lemma 1.3 yields an intrigu-
ing corollary.

Corollary 1.4. For every k ≥ 3, there exists a function
f : R → R computed by a rational network with O(k)
layers andO(k) total nodes, each node invoking a rational
activation of degreeO(k), such that every rational function
g : R→ R with less than 2k−2 total terms in the numerator
and denominator satisfies∫

[0,1]

|f(x)− g(x)|dx ≥ 1

128
.

The hard-to-approximate function f is a rational network
which has a description of size O(k2). Despite this, at-
tempting to approximate it with a rational function of the
usual form requires a description of size Ω(2k). Said an-
other way: even for rational functions, there is a benefit to
a neural network representation!
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Figure 2. Polynomial and rational fit to the threshold function.

1.2. Auxiliary results

The first thing to stress is that Theorem 1.1 is impossible
with polynomials: namely, while it is true that ReLU net-
works can efficiently approximate polynomials (Yarotsky,
2016; Safran & Shamir, 2016; Liang & Srikant, 2017), on
the other hand polynomials require degree Ω(poly(1/ε)),
rather than O(poly(ln(1/ε))), to approximate a single
ReLU, or equivalently the absolute value function (Petru-
shev & Popov, 1987, Chapter 4, Page 73).

Another point of interest is the depth needed when convert-
ing a rational function to a ReLU network. Theorem 1.1
is impossible if the depth is o(ln(1/ε)): specifically, it is
impossible to approximate the degree 1 rational function
x 7→ 1/x with size O(ln(1/ε)) but depth o(ln(1/ε)).

Proposition 1.5. Set f(x) := 1/x, the reciprocal map. For
any ε > 0 and ReLU network g : R→ R with l layers and
m < (27648ε)−1/(2l)/2 nodes,∫

[1/2,3/4]

|f(x)− g(x)|dx > ε.

Lastly, the implementation of division in a ReLU network
requires a few steps, arguably the most interesting being
a “continuous switch statement”, which computes recipro-
cals differently based on the magnitude of the input. The
ability to compute switch statements appears to be a fairly
foundational operation available to neural networks and ra-
tional functions (Petrushev & Popov, 1987, Theorem 5.2),
but is not available to polynomials (since otherwise they
could approximate the ReLU).

1.3. Related work

The results of the present work follow a long line of work
on the representation power of neural networks and re-
lated functions. The ability of ReLU networks to fit con-
tinuous functions was no doubt proved many times, but
it appears the earliest reference is to Lebesgue (Newman,
1964, Page 1), though of course results of this type are usu-
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ally given much more contemporary attribution (Cybenko,
1989). More recently, it has been shown that certain func-
tion classes only admit succinct representations with many
layers (Telgarsky, 2015). This has been followed by proofs
showing the possibility for a depth 3 function to require ex-
ponentially many nodes when rewritten with 2 layers (El-
dan & Shamir, 2016). There are also a variety of other
result giving the ability of ReLU networks to approximate
various function classes (Cohen et al., 2016; Poggio et al.,
2017).

Most recently, a variety of works pointed out neural net-
works can approximate polynomials, and thus smooth
functions essentially by Taylor’s theorem (Yarotsky, 2016;
Safran & Shamir, 2016; Liang & Srikant, 2017). This
somewhat motivates this present work, since polynomials
can not in turn approximate neural networks with a depen-
dence O(poly log(1/ε)): they require degree Ω(1/ε) even
for a single ReLU.

Rational functions are extensively studied in the classical
approximation theory literature (Lorentz et al., 1996; Petru-
shev & Popov, 1987). This literature draws close con-
nections between rational functions and splines (piecewise
polynomial functions), a connection which has been used
in the machine learning literature to draw further connec-
tions to neural networks (Williamson & Bartlett, 1991). It
is in this approximation theory literature that one can find
the following astonishing fact: not only is it possible to ap-
proximate the absolute value function (and thus the ReLU)
over [−1,+1] to accuracy ε > 0 with a rational function of
degreeO(ln(1/ε)2) (Newman, 1964), but moreover the op-
timal rate is known (Petrushev & Popov, 1987; Zolotarev,
1877)! These results form the basis of those results here
which show that rational functions can approximate ReLU
networks. (Approximation theory results also provide other
functions (and types of neural networks) which rational
functions can approximate well, but the present work will
stick to the ReLU for simplicity.)

An ICML reviewer revealed prior work which was embar-
rassingly overlooked by the author: it has been known,
since decades ago (Beame et al., 1986), that neural net-
works using threshold nonlinearities (i.e., the map x 7→
1[x ≥ 0]) can approximate division, and moreover the
proof is similar to the proof of part 1 of Theorem 1.1!
Moreover, other work on threshold networks invoked
Newman polynomials to prove lower bound about linear
threshold networks (Paturi & Saks, 1994). Together this
suggests that not only the connections between rational
functions and neural networks are tight (and somewhat
known/unsurprising), but also that threshold networks and
ReLU networks have perhaps more similarities than what is
suggested by the differing VC dimension bounds, approxi-
mation results, and algorithmic results (Goel et al., 2017).
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Figure 3. Newman polynomials of degree 5, 9, 13.

1.4. Further notation

Here is a brief description of the sorts of neural networks
used in this work. Neural networks represent computation
as a directed graph, where nodes consume the outputs of
their parents, apply a computation to them, and pass the
resulting value onward. In the present work, nodes take
their parents’ outputs z and compute σr(a

>z + b), where
a is a vector, b is a scalar, and σr(x) := max{0, x}; an-
other popular choice of nonlineary is the sigmoid x 7→
(1 + exp(−x))−1. The graphs in the present work are
acyclic and connected with a single node lacking children
designated as the univariate output, but the literature con-
tains many variations on all of these choices.

As stated previously, a rational function f : Rd → R is
ratio of two polynomials. Following conventions in the ap-
proximation theory literature (Lorentz et al., 1996), the de-
nominator polynomial will always be strictly positive. The
degree of a rational function is the maximum of the degrees
of its numerator and denominator.

2. Approximating ReLU networks with
rational functions

This section will develop the proofs of part 2 of Theo-
rem 1.1, Theorem 1.2, Lemma 1.3, and Corollary 1.4.

2.1. Newman polynomials

The starting point is a seminal result in the theory of ra-
tional functions (Zolotarev, 1877; Newman, 1964): there
exists a rational function of degree O(ln(1/ε)2) which can
approximate the absolute value function along [−1,+1] to
accuracy ε > 0. This in turn gives a way to approximate
the ReLU, since

σr(x) = max{0, x} =
x+ |x|

2
. (2.1)

The construction here uses the Newman polynomials (New-
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man, 1964): given an integer r, define

Nr(x) :=

r−1∏
i=1

(x+ exp(−i/
√
r)).

The Newman polynomials N5, N9, and N13 are depicted
in Figure 3. Typical polynomials in approximation theory,
for instance the Chebyshev polynomials, have very active
oscillations; in comparison, the Newman polynomials look
a little funny, lying close to 0 over [−1, 0], and quickly in-
creasing monotonically over [0, 1]. The seminal result of
Newman (1964) is that

sup
|x|≤1

∣∣∣∣∣|x| − x
(
Nr(x)−Nr(−x)

Nr(x) +Nr(−x)

)∣∣∣∣∣ ≤ 3 exp(−
√
r)/2.

Thanks to this bound and eq. (2.1), it follows that the ReLU
can be approximated to accuracy ε > 0 by rational func-
tions of degree O(ln(1/ε)2).

(Some basics on Newman polynomials, as needed in the
present work, can be found in Appendix A.1.)

2.2. Proof of Lemma 1.3

Now that a single ReLU can be easily converted to a ra-
tional function, the next task is to replace every ReLU in
a ReLU network with a rational function, and compute
the approximation error. This is precisely the statement of
Lemma 1.3.

The proof of Lemma 1.3 is an induction on layers, with
full details relegated to the appendix. The key computa-
tion, however, is as follows. Let R(x) denote a rational
approximation to σr. Fix a layer i + 1, and let H(x) de-
note the multi-valued mapping computed by layer i, and
let HR(x) denote the mapping obtained by replacing each
σr in H with R. Fix any node in layer i + 1, and let
x 7→ σr(a

>H(x) + b) denote its output as a function of
the input. Then∣∣∣σr(a

>H(x) + b)−R(a>HR(x) + b)
∣∣∣

≤
∣∣∣σr(a

>H(x) + b)− σr(a
>HR(x) + b)

∣∣∣︸ ︷︷ ︸
♥

+
∣∣∣σr(a

>HR(x) + b)−R(a>HR(x) + b)
∣∣∣︸ ︷︷ ︸

♣

.

For the first term ♥, note since σr is 1-Lipschitz and by
Hölder’s inequality that

♥ ≤
∣∣∣a>(H(x)−HR(x))

∣∣∣ ≤ ‖a‖1‖H(x)−HR(x)‖∞,

meaning this term has been reduced to the inductive hy-
pothesis since ‖a‖1 ≤ 1. For the second term ♣, if
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Figure 4. Polynomial and rational fit to ∆.

a>HR(x) + b can be shown to lie in [−1,+1] (which is
another easy induction), then ♣ is just the error between R
and σr on the same input.

2.3. Proof of part 2 of Theorem 1.1

It is now easy to find a rational function that approximates
a neural network, and to then bound its size. The first step,
via Lemma 1.3, is to replace each σr with a rational func-
tionR of low degree (this last bit using Newman polynomi-
als). The second step is to inductively collapse the network
into a single rational function. The reason for the depen-
dence on the number of nodes m is that, unlike polyno-
mials, summing rational functions involves an increase in
degree:

p1(x)

q1(x)
+
p1(x)

q2(x)
=
p1(x)q2(x) + p2(x)q1(x)

q1(x)q2(x)
.

2.4. Proof of Theorem 1.2

The final interesting bit is to show that the dependence on
ml in part 2 of Theorem 1.1 (where m is the number of
nodes and l is the number of layers) is tight.

Recall the “triangle function”

∆(x) :=


2x x ∈ [0, 1/2],

2(1− x) x ∈ (1/2, 1],

0 otherwise.

The k-fold composition ∆k is a piecewise affine function
with 2k−1 regularly spaced peaks (Telgarsky, 2015). This
function was demonstrated to be inapproximable by shal-
low networks of subexponential size, and now it can be
shown to be a hard case for rational approximation as well.

Consider the horizontal line through y = 1/2. The func-
tion ∆k will cross this line 2k times. Now consider a ra-
tional function f(x) = p(x)/q(x). The set of points where
f(x) = 1/2 corresponds to points where 2p(x)−q(x) = 0.
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A poor estimate for the number of zeros is simply the de-
gree of 2p−q, however, since f is univariate, a stronger tool
becomes available: by Descartes’ rule of signs, the number
of zeros in f − 1/2 is upper bounded by the number of
terms in 2p− q.

3. Approximating rational functions with
ReLU networks

This section will develop the proof of part 1 of Theo-
rem 1.1, as well as the tightness result in Proposition 1.5

3.1. Proving part 1 of Theorem 1.1

To establish part 1 of Theorem 1.1, the first step is to ap-
proximate polynomials with ReLU networks, and the sec-
ond is to then approximate the division operation.

The representation of polynomials will be based upon con-
structions due to Yarotsky (2016). The starting point is the
following approximation of the squaring function.
Lemma 3.1 ((Yarotsky, 2016)). Let any ε > 0 be given.
There exists f : x → [0, 1], represented as a ReLU
network with O(ln(1/ε)) nodes and layers, such that
supx∈[0,1] |f(x)− x2| ≤ ε and f(0) = 0.

Yarotsky’s proof is beautiful and deserves mention. The
approximation of x2 is the function fk, defined as

fk(x) := x−
k∑
i=1

∆i(x)

4i
,

where ∆ is the triangle map from Section 2. For every
k, fk is a convex, piecewise-affine interpolation between
points along the graph of x2; going from k to k + 1 does
not adjust any of these interpolation points, but adds a new
set of O(2k) interpolation points.

Once squaring is in place, multiplication comes via the po-
larization identity xy = ((x+ y)2 − x2 − y2)/2.
Lemma 3.2 ((Yarotsky, 2016)). Let any ε > 0 and B ≥ 1
be given. There exists g(x, y) : [0, B]2 → [0, B2], rep-
resented by a ReLU network with O(ln(B/ε) nodes and
layers, with

sup
x,y∈[0,1]

|g(x, y)− xy| ≤ ε

and g(x, y) = 0 if x = 0 or y = 0.

Next, it follows that ReLU networks can efficiently approx-
imate exponentiation thanks to repeated squaring.
Lemma 3.3. Let ε ∈ (0, 1] and positive integer y be given.
There exists h : [0, 1] → [0, 1], represented by a ReLU
network with O(ln(y/ε)2) nodes and layers, with

sup
x,y∈[0,1]

∣∣h(x)− xy
∣∣ ≤ ε
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Figure 5. Polynomial and rational fit to σr.

With multiplication and exponentiation, a representation
result for polynomials follows.

Lemma 3.4. Let ε ∈ (0, 1] be given. Let p :
[0, 1]d → [−1,+1] denote a polynomial with ≤ s
monomials, each with degree ≤ r and scalar coef-
ficient within [−1,+1]. Then there exists a function
q : [0, 1]d → [−1,+1] computed by a network of
size O

(
min{sr ln(sr/ε), sd ln(dsr/ε)2}

)
, which satisfies

supx∈[0,1]d |p(x)− q(x)| ≤ ε.

The remainder of the proof now focuses on the division op-
eration. Since multiplication has been handled, it suffices
to compute a single reciprocal.

Lemma 3.5. Let ε ∈ (0, 1] and nonnegative integer k be
given. There exists a ReLU network q : [2−k, 1] → [1, 2k],
of sizeO(k2 ln(1/ε)2) and depthO(k4 ln(1/ε)3) such that

sup
x∈[2−k,1]

∣∣∣∣q(x)− 1

x

∣∣∣∣ ≤ ε.
This proof relies on two tricks. The first is to observe, for
x ∈ (0, 1], that

1

x
=

1

1− (1− x)
=
∑
i≥0

(1− x)i.

Thanks to the earlier development of exponentiation, trun-
cating this summation gives an expression easily approxi-
mate by a neural network as follows.

Lemma 3.6. Let 0 < a ≤ b and ε > 0 be given. Then there
exists a ReLU network q : R → R with O(ln(1/(aε))2)
layers and O((b/a) ln(1/(aε))3) nodes satisfying

sup
x∈[a,b]

∣∣∣∣q(x)− 1

x

∣∣∣∣ ≤ 2ε.

Unfortunately, Lemma 3.6 differs from the desired state-
ment Lemma 3.6: inverting inputs lying within [2−k, 1] re-
quires O(2k ln(1/ε)2) nodes rather than O(k4 ln(1/ε)3)!
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To obtain a good estimate with only O(ln(1/ε)) terms of
the summation, it is necessary for the input to be x bounded
below by a positive constant (not depending on k). This
leads to the second trick (which was also used by Beame
et al. (1986)!).

Consider, for positive constant c > 0, the expression

1

x
=

c

1− (1− cx)
= c

∑
i≥0

(1− cx)i.

If x is small, choosing a larger c will cause this summation
to converge more quickly. Thus, to compute 1/x accurately
over a wide range of inputs, the solution here is to multi-
plex approximations of the truncated sum for many choices
of c. In order to only rely on the value of one of them, it
is possible to encode a large “switch” style statement in a
neural network. Notably, rational functions can also repre-
sentat switch statements (Petrushev & Popov, 1987, The-
orem 5.2), however polynomials can not (otherwise they
could approximate the ReLU more efficiently, seeing as it
is a switch statement of 0 (a degree 0 polynomial) and x (a
degree 1 polynomial).
Lemma 3.7. Let ε > 0, B ≥ 1, reals a0 ≤ a1 ≤ · · · ≤
an ≤ an+1 and a function f : [a0, an+1] → R be given.
Moreover, suppose for i ∈ {1, . . . , n}, there exists a ReLU
network gi : R → R of size ≤ mi and depth ≤ ki with
gi ∈ [0, B] along [ai−1, ai+1] and

sup
x∈[ai−1,ai+1]

|gi(x)− f | ≤ ε.

Then there exists a function g : R → R computed by a
ReLU network of size O

(
n ln(B/ε) +

∑
imi

)
and depth

O
(
ln(B/ε) + maxi ki

)
satisfying

sup
x∈[a1,an]

|g(x)− f(x)| ≤ 3ε.

3.2. Proof of Proposition 1.5

It remains to show that shallow networks have a hard time
approximating the reciprocal map x 7→ 1/x.

This proof uses the same scheme as various proofs in (Tel-
garsky, 2016), which was also followed in more recent
works (Yarotsky, 2016; Safran & Shamir, 2016): the idea
is to first upper bound the number of affine pieces in ReLU
networks of a certain size, and then to point out that each
linear segment must make substantial error on a curved
function, namely 1/x.

The proof is fairly brute force, and thus relegated to the
appendices.

4. Summary of figures
Throughout this work, a number of figures were presented
to show not only the astonishing approximation properties
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Figure 6. Polynomial and rational fit to ∆3.

of rational functions, but also the higher fidelity approxi-
mation achieved by both ReLU networks and rational func-
tions as compared with polynomials. Of course, this is only
a qualitative demonstration, but still lends some intuition.

In all these demonstrations, rational functions and polyno-
mials have degree 9 unless otherwise marked. ReLU net-
works have two hidden layers each with 3 nodes. This is
not exactly apples to apples (e.g., the rational function has
twice as many parameters as the polynomial), but still rea-
sonable as most of the approximation literature fixes poly-
nomial and rational degrees in comparisons.

Figure 1 shows the ability of all three classes to approx-
imate a truncated reciprocal. Both rational functions and
ReLU networks have the ability to form “switch state-
ments” that let them approximate different functions on dif-
ferent intervals with low complexity (Petrushev & Popov,
1987, Theorem 5.2). Polynomials lack this ability; they can
not even approximate the ReLU well, despite it being low
degree polynomials on two separate intervals.

Figure 2 shows that rational functions can fit the threshold
function errily well; the particular rational function used
here is based on using Newman polynomials to approxi-
mate (1 + |x|/x)/2 (Newman, 1964).

Figure 3 shows Newman polynomialsN5,N9,N13. As dis-
cussed in the text, they are unlike orthogonal polynomials,
and are used in all rational function approximations except
Figure 1, which used a least squares fit.

Figure 4 shows that rational functions (via the Newman
polynomials) fit ∆ very well, whereas polynomials have
trouble. These errors degrade sharply after recursing,
namely when approximating ∆3 as in Figure 6.

Figure 5 shows how polynomials and rational functions fit
the ReLU, where the ReLU representation, based on New-
man polynomials, is the one used in the proofs here. De-
spite the apparent slow convergence of polynomials in this
regime, the polynomial fit is still quite respectable.
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5. Open problems
There are many next steps for this and related results.

1. Can rational functions, or some other approximating
class, be used to more tightly bound the generaliza-
tion properties of neural networks? Notably, the VC
dimension of sigmoid networks uses a conversion to
polynomials (Anthony & Bartlett, 1999).

2. Can rational functions, or some other approximating
class, be used to design algorithms for training neural
networks? It does not seem easy to design reasonable
algorithms for minimization over rational functions;
if this is fundamental and moreover in contrast with
neural networks, it suggests an algorithmic benefit of
neural networks.

3. Can rational functions, or some other approximating
class, give a sufficiently refined complexity estimate
of neural networks which can then be turned into a
regularization scheme for neural networks?
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