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1 Introduction

No theorem is provided.

2 Related Works

No theorem is provided.

3 Problem Definition

No theorem is provided.

4 The Analytical Formula

Here we list all detailed proof for all the theorems.
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Figure 1: (a)-(b) Two cases in Thm. 1.
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4.1 One ReLU Case

Theorem 1 Suppose F (e,w) = XᵀD(e)D(w)Xw where e is a unit vector and X = [x1,x2, · · · ,xN ]ᵀ is
N -by-d sample matrix. If xi ∼ N(0, I), then:

E [F (e,w)] =
N

2π
((π − θ)w + ‖w‖ sin θe) (1)

where θ ∈ [0, π] is the angle between e and w.

Proof Note that F can be written in the following form:

F (e,w) =
∑

i:xᵀ
i e≥0,xᵀ

i w≥0

xix
ᵀ
iw (2)

where xi are samples so that X = [x1,x2, · · · ,xn]ᵀ. We set up the axes related to e and w as in
Fig. 1, while the rest of the axis are prependicular to the plane. In this coordinate system, any vector

x = [r sinφ, r cosφ, x3, . . . , xd]. We have an orthonomal set of bases: e, e⊥ = −w/‖w‖−e cos θ
sin θ (and any set

of bases that span the rest of the space). Under the basis, the representation for e and w is [1,0d−1] and
[‖w‖ cos θ,−‖w‖ sin θ,0d−2]. Note that here θ ∈ (−π, π]. The angle θ is positive when e “chases after” w,
and is otherwise negative.

Now we consider the quality R(φ0) = E
[

1
N

∑
i:φi∈[0,φ0] xix

ᵀ
i

]
. If we take the expectation and use polar

coordinate only in the first two dimensions, we have:

R(φ0) = E

 1

N

∑
i:φi∈[0,φ0]

xix
ᵀ
i

 = E [xix
ᵀ
i |φi ∈ [0, φ0]]P [φi ∈ [0, φ0]]

=

∫ +∞

0

∫∫ +∞

−∞

∫ φ0

0


r sinφ
r cosφ
. . .
xd

 [r sinφ r cosφ . . . xd
]
p(r)p(θ)

d∏
k=3

p(xk)rdrdφdx3 . . . dxd

where p(r) = e−r
2/2 and p(θ) = 1/2π. Note that R(φ0) is a d-by-d matrix. The first 2-by-2 block can be

computed in close form (note that
∫ +∞

0
r2p(r)rdr = 2). Any off-diagonal element except for the first 2-by-2

block is zero due to symmetric property of spherical Gaussian variables. Any diagonal element outside the
first 2-by-2 block will be P [φi ∈ [0, φ0]] = φ0/2π. Finally, we have:

R(φ0) = E

 1

N

∑
i:φi∈[0,φ0]

xix
ᵀ
i

 =
1

4π

2φ0 − sin 2φ0 1− cos 2φ0 0
1− cos 2φ0 2φ0 + sin 2φ0 0

0 0 2φ0Id−2

 (3)

=
φ0

2π
Id +

1

4π

 − sin 2φ0 1− cos 2φ0 0
1− cos 2φ0 sin 2φ0 0

0 0 0

 (4)

With this equation, we could then compute E [F (e,w)]. When θ ≥ 0, the condition {i : xᵀ
i e ≥ 0,xᵀ

iw ≥ 0}
is equivalent to {i : φi ∈ [θ, π]} (Fig. 1(a)). Using w = [‖w‖ cos θ,−‖w‖ sin θ,0d−2] and we have:

E [F (e,w)] = N (R(π)−R(θ))w (5)

=
N

4π

2(π − θ)w − ‖w‖

 − sin 2θ 1− cos 2θ 0
1− cos 2θ sin 2θ 0

0 0 0

 cos θ
− sin θ

0

 (6)

=
N

2π

(
(π − θ)w + ‖w‖

[
sin θ
0

])
(7)

=
N

2π
((π − θ)w + ‖w‖ sin θe) (8)

For θ < 0, the condition {i : xᵀ
i e ≥ 0,xᵀ

iw ≥ 0} is equivalent to {i : φi ∈ [0, π+ θ]} (Fig. 1(b)), and similarly
we get

E [F (e,w)] = N (R(π + θ)−R(0))w =
N

2π
((π + θ)w − ‖w‖ sin θe) (9)

Notice that by abuse of notation, the θ appears in Eqn. 1 is the absolute value and Eqn. 1 follows.
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5 Critical Point Analysis

Remember that we have: suppose F (e,w) = XᵀD(e)D(w)Xw where e is a unit vector andX = [x1,x2, · · · ,xN ]ᵀ

is N -by-d sample matrix. If xi ∼ N(0, I), then:

E [F (e,w)] =
N

2π
((π − θ)w + ‖w‖ sin θe) (10)

where θ ∈ [0, π] is the angle between e and w. And the expected gradient for g(x) =
∑K
j=1 σ(wᵀ

j x) with
respect to wj is the following:

− E
[
∇wjJ

]
=

K∑
j′=1

E
[
F (ej ,w

∗
j′)
]
− E [F (ej ,wj′)] (11)

where ej = wj/‖wj‖. By solving Eqn. 64 (E
[
∇wj

J
]

= 0 j = 1, . . . ,K), it is possible to identify all critical
points of g(x). In general Eqn. 64 is highly nonlinear and cannot be solved efficiently, however, we show that
in our particular case, it is possible since Eqn. 64 has interesting properties.

First of all, the system of equations

E
[
∇wj

J
]

= 0 , j = 1, . . . ,K (12)

or
K∑
j′=1

E [F (ej ,wj′ ] =

K∑
j′=1

E
[
F (ej ,w

∗
j′
]

, j = 1, . . . ,K (13)

is a linear combination of wj and w∗j but with varying coefficients. We could rewrite the system as follows:

diagaEᵀ +Bdiagw̄Eᵀ = diaga∗Eᵀ +B∗W ∗ᵀ (14)

where E, W , W ∗, a, B, a∗ and B∗ are all K-by-K matrices:

a = sin Θᵀw̄ , a∗ = sin Θ∗ᵀw̄∗ (15)

B = π11ᵀ −Θᵀ , B∗ = π11ᵀ −Θ∗ᵀ (16)

E = [e1, e2, . . . , eK ] (17)

W = [w1,w2, . . . ,wK ] , W ∗ = [w∗1,w
∗
2, . . . ,w

∗
K ] (18)

where θ∗j
′

j ≡ ∠(wj ,w
∗
j′) and θjj′ = θj

′

j ≡ ∠(wj ,wj′), Θ = [θij ] (the element at i-th row, j-th column of Θ is

θij) and Θ∗ = [θ∗ij ], w̄ = [‖w1‖, ‖w2‖, . . . , ‖wK‖] and w̄∗ = [‖w∗1‖, ‖w∗2‖, . . . , ‖w∗K‖].
Eqn. 14 already has interesting properties. The first thing we consider is whether the critical point will

fall outside the Principle Hyperplane Π∗, which is the plane spanned by the ground truth weight vectors W ∗.
The following theorem shows that the critical points outside Π∗ must lie in a manifold:

Lemma 1 If {wj} is a critical point satisfying Eqn. 14, then for any orthogonal mapping R with R|Π∗ = Id,
{Rwj} is also a critical point.

Proof First of all, since R is an orthogonal transformation, it keeps all angles and magnitudes and a, a∗,
B, w̄ and w̄∗ are invariant. For simplicity we write Y = diaga + Bdiagw̄ − diaga∗ and Y is also invariant
under R. Since R|Π∗ = Id, we have RW ∗ = W ∗ and

YRE
ᵀ
R −B

∗
RW

∗ᵀ = Y EᵀRᵀ −B∗W ∗ᵀRᵀ = (Y Eᵀ −B∗W ∗ᵀ)Rᵀ = 0 (19)

Note that for d ≥ K + 2, there always exists R 6= Id and satisfy such a condition, which yield continuous
critical points. Further, such a transformation forms a Lie group. Therefore we have:

Theorem 2 If d ≥ K+2, then any critical point satisfying Eqn. 14 and is outside Π∗ must lie in a manifold.

The intuition is simple. For any out-of-plane critical point, pick a matrix that satisfies the condition of the
theorem, and tranforms it to a different yet infinitely close critical points. Such a matrix always exists, since
for the d−K subspace, if it is odd, then we can always pick a rotation whose fixed axis is not aligned with
all K weights; if it is even, then there is a rotation matrix without a fixed point.
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5.1 Characteristics within the Principle Plane

We could right-multiple E and turn the normal equation to a linear function with respect to the magnitude
of weights ‖w‖. Note that we have:

EᵀE = cos Θ, W ᵀE = diagw̄ cos Θ, (W ∗)ᵀE = diagw̄∗Θ∗ (20)

Therefore, Eqn. 14 becomes:

diaga cos Θ +Bdiagw̄ cos Θ = diaga∗ cos Θ +B∗diagw̄∗ cos Θ∗ (21)

which is a homogenous linear equation with respect to the magnitude of the weights (note that a and a∗ is
linear to the magnitudes). In particular, the (i, j) entry of the LHS and RHS of this equality are:

LHSij = cos θij

(
K∑
k=1

sin θki ‖wk‖

)
+

K∑
k=1

(π − θki )‖wk‖ cos θkj (22)

RHSij = cos θij

(
K∑
k=1

sin θ∗ki ‖w∗k‖

)
+

K∑
k=1

(π − θ∗ki )‖w∗k‖ cos θ∗kj (23)

Therefore, the following equation holds:

Mw̄ = M∗w̄∗ (24)

where M and M∗ are K2-by-K matrices. Each entry mij,k that correponds to the coefficient of k-th weight
vector at (i, j) entry of Eqn. 14 is defined as:

mij,k = (π − θki ) cos θkj + sin θki cos θij (25)

m∗ij,k = (π − θ∗ki ) cos θ∗kj + sin θ∗ki cos θij (26)

Special case on the diagonal. For diagonal element (i, i), cos θii = 1 and mii,k = h(θki ), m∗ii,k = h(θ∗ki ),
where

h(θ) = (π − θ) cos θ + sin θ. (27)

Therefore, with only diagonal element, we arrive at the following subset of the constraints to be satisfied for
any critical points:

Mrw̄ = M∗r w̄
∗ (28)

where Mr = h(Θᵀ) and M∗r = h(Θ∗ᵀ) are both K-by-K matrices. Note that if Mr is full-rank, then we could
solve w̄ from Eqn. 28 and plug it back in Eqn. 24 to check whether it is indeed a critical point.

Lemma 2 If w̄∗ 6= 0 (no trivial ground truth solutions), and for a given (Θ,Θ∗), there exists a row (e.g.
l-th row) of M and M∗, namely mᵀ

l and m∗l
ᵀ, satisfying

m∗l −M∗r
ᵀM−1

r ml > 0 or m∗l −M∗r
ᵀM−1

r ml < 0 (29)

Then (Θ,Θ∗) cannot be a critical point.

Proof Suppose given (Θ,Θ∗), we get Mr and M∗r and compute w̄ using Eqn. 28, then we have

(w̄∗)ᵀM∗r
ᵀM−1

r ml = (M∗r w̄
∗)ᵀM−1

r ml = w̄ᵀMᵀ
rM

−1
r ml = w̄ᵀml (30)

Therefore, from the condition m∗l −M∗r
ᵀM−1

r ml > 0 and w̄∗ ≥ 0 but w̄∗ 6= 0, we have

(w̄∗)ᵀ(m∗l −M∗r
ᵀM−1

r ml) = (w̄∗)ᵀm∗l − w̄ᵀml > 0 (31)

but this contradicts with the necessary condition for (Θ,Θ∗) to become a critical point (Eqn. 24). Similarly
we can prove the other side.

Separation property of Eqn. 29. Note that both the k-th element of m∗l and M∗r
ᵀM−1

r ml in Eqn. 29
are only dependent on the k-th true weight vector w∗k (and all {wj}).
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• For m∗l , this can be seen by Eqn. 26, in which the k-th element is only related to the angles θ∗k· between
w∗k and {wj}.

• For M∗r
ᵀM−1

r ml, notice that the k-th column of M∗r (the k-th row of M∗r
ᵀ) is only related to w∗k but

not other ground truth weight vectors. This separation property makes analysis much easier, as shown
in the case of K = 2.

Therefore, we could consider the following function regarding to one (rather than K) ground truth unit
weight vector e∗ and all estimated unit vectors {el}:

Lij(e
∗, {el}) = m∗ij − v∗ᵀM−1

r mij (32)

where v∗ᵀ = [h(θ∗1), h(θ∗2), . . . , h(θ∗K)], θ∗j = ∠(e∗,wj) and m∗ij = (π− θ∗i ) cos θ∗j + sin θ∗i cos θij (like Eqn. 26).

Proposition 1 Lij(e
∗, {el}) = 0 for any e∗ = el, 1 ≤ l ≤ K. In addition, Lii(e

∗, {el}) ≡ 0.

Proof When e∗ = el, then θ∗k = θlk and v∗ᵀ becomes the l-th row of Mr. Since MrM
−1
r = IK×K , v∗ᵀM−1

r

becomes a unit vector with only l-th element being 1. Therefore, again with θ∗k = θlk, we have:

Lij(e
∗, {el}) = m∗ij −mij,l = 0 (33)

For Lii, by definition mii is i-th column of Mr, so M−1
r mii is a unit vector with only i-th element being 1.

Therefore
(v∗)ᵀM−1

r mii = h(θ∗i ) = m∗ii (34)

Then the previous lemma can be written as the following:

Theorem 3 If w̄∗ 6= 0, and for a given parameter w, Ljj′({θ∗kl },Θ) > 0 or < 0 for all 1 ≤ k ≤ K, then w
cannot be a critical point.

5.2 ReLU network with two hidden nodes (K = 2)

For K = 2, we have 4-by-2 matrix (the row order is (1, 1), (1, 2), (2, 1), (2, 2)):

M =


(π − θ1

1) cos θ1
1 + sin θ1

1 cos θ1
1 (π − θ2

1) cos θ2
1 + sin θ2

1 cos θ1
1

(π − θ1
1) cos θ1

2 + sin θ1
1 cos θ1

2 (π − θ2
1) cos θ2

2 + sin θ2
1 cos θ1

2

(π − θ1
2) cos θ1

1 + sin θ1
2 cos θ2

1 (π − θ2
2) cos θ2

1 + sin θ2
2 cos θ2

1

(π − θ1
2) cos θ1

2 + sin θ1
2 cos θ2

2 (π − θ2
2) cos θ2

2 + sin θ2
2 cos θ2

2

 (35)

=


π (π − θ) cos θ + sin θ

π cos θ (π − θ) + sin θ cos θ
(π − θ) + sin θ cos θ π cos θ
(π − θ) cos θ + sin θ π

 (36)

since θ2
1 = θ1

2 = θ, θ1
1 = θ2

2 = 0. Similarly we could write M∗:

M∗ =


(π − θ∗11 ) cos θ∗11 + sin θ∗11 cos θ1

1 (π − θ∗21 ) cos θ∗21 + sin θ∗21 cos θ1
1

(π − θ∗11 ) cos θ∗12 + sin θ∗11 cos θ1
2 (π − θ∗21 ) cos θ∗22 + sin θ∗21 cos θ1

2

(π − θ∗12 ) cos θ∗11 + sin θ∗12 cos θ2
1 (π − θ∗22 ) cos θ∗21 + sin θ∗22 cos θ2

1

(π − θ∗12 ) cos θ∗12 + sin θ∗12 cos θ2
2 (π − θ∗22 ) cos θ∗22 + sin θ∗22 cos θ2

2

 (37)

In this case,

Mr =

[
h(θ1

1) h(θ2
1)

h(θ1
2) h(θ2

2)

]
, M∗r =

[
h(θ∗11 ) h(θ∗21 )
h(θ∗12 ) h(θ∗22 )

]
(38)

Therefore, if we know θ2
1 = θ1

2, θ∗11 , θ∗21 , θ∗12 and θ∗22 , then we could compute M and M∗ and solve a linear
equation to get the magnitude of w1 and w2, which collectly identify the critical points. Note that M is a
4-by-2 matrix, so critical point only happens if the matrix has singular structure.
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Global Optimum. One special case is when θ2
1 = θ1

2 = θ∗21 = θ∗12 = π/2 and θ∗11 = θ∗22 = 0, in this case,
we have:

M = M∗ =


π 1
0 π/2
π/2 0
1 π

 (39)

and thus ‖wj‖ = ‖w∗j‖ is the unique solution.
When K = 2, the following conjecture is empirically correct.

Conjecture 1 If e∗ is in the interior of Cone(e1, e2), then L12(θ∗1 , θ
∗
2 , θ

1
2) > 0. If e∗ is in the exterior, then

L12 < 0. If e∗ is on the boundary then L12 = 0. Same for L21.

Remark Note that L1j can be written as the following:

L1j(e
∗, {e1, e2}) = m∗1j − [h(θ∗1), h(θ∗2)]M−1

r m1j (40)

= [(π − θ∗1)e∗ + sin θ∗1e1]
ᵀ
ej (41)

− [α(θ∗1 , θ
∗
2 , θ), β(θ∗1 , θ

∗
2 , θ)]

[
(π − θ1

1)eᵀ1 + sin θ1
1e

ᵀ
1

(π − θ2
1)eᵀ2 + sin θ2

1e
ᵀ
1

]
ej (42)

Here we have
[α, β] = [α(θ∗1 , θ

∗
2 , θ), β(θ∗1 , θ

∗
2 , θ)] ≡ [h(θ∗1), h(θ∗2)]M−1

r (43)

We know that L11 = 0 by Proposition 1. Therefore

u1j ≡ (π − θ∗1)e∗ + sin θ∗1e1 −
[
(π − θ1

1)e1 + sin θ1
1e1, (π − θ2

1)e2 + sin θ2
1e1

] [α(θ∗1 , θ
∗
2 , θ

1
2)

β(θ∗1 , θ
∗
2 , θ

1
2)

]
= (π − θ∗1)e∗ + sin θ∗1e1 − [πe1, (π − θ)e2 + sin θe1]

[
α(θ∗1 , θ

∗
2 , θ)

β(θ∗1 , θ
∗
2 , θ)

]
(44)

is perpendicular to e1. So if we compute the inner product between u12 and e⊥1 (the unit vector that is in
Π∗ and is orthogonal to e1), we get

uᵀ
12e
⊥
1 = (π − θ∗1) sin θ∗1 − [(π − θ) sin θ]β (45)

Since e2 = cos θe1 + sin θe⊥1 so we have:

L12(e∗, {e1, e2}) = uᵀ
12e2 = sin θ(uᵀ

12e
⊥
1 ) (46)

Note that Eqn. 45 is a function with 2-variables θ and θ∗1 (θ∗2 is determined by θ and θ∗1 , depending on whether
e∗ is inside or outside Cone(e1, e2)). And we could verify it numerically.

Theorem 4 If Conjecture 1 is correct, then for 2 ReLU network, (w1,w2) (w1 6= w2) is not a critical point,
if they both are in Cone(w∗1,w

∗
2), or both out of it.

Proof If both w∗1 and w∗2 are inside Cone(w1,w2), then from Conjecture 1, we have

L12(θk∗1 , θk∗2 , θ1
2) > 0 (47)

for k = 1, 2. Since K = 2 we could simply apply Thm. ?? to say (w1,w2) is not a critical point. Similary
we prove the case for both w∗1 and w∗2 outside Cone(w1,w2).

6 Convergence Analysis

6.1 Single ReLU case

In this subsection, we mainly deal with the following dynamics:

E [∇wJ ] =
N

2
(w −w∗) +

N

2π

(
θw∗ − ‖w

∗‖
‖w‖

sin θw

)
(48)
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Theorem 5 In the region ‖w0 − w∗‖ < ‖w∗‖, following the dynamics (Eqn. 48), the Lyapunov function
V (w) = 1

2‖w −w∗‖2 has V̇ < 0 and the system is asymptotically stable and thus wt → w∗ when t→ +∞.

Proof Denote that Ω = {w : ‖w0 −w∗‖ < ‖w∗‖}. Note that

V̇ = −(w −w∗)ᵀ∇wJ = −yᵀMy (49)

where y = [‖w∗‖, ‖w‖]ᵀ and M is the following 2-by-2 matrix:

M =
1

2

[
sin 2θ + 2π − 2θ −(2π − θ) cos θ − sin θ

−(2π − θ) cos θ − sin θ 2π

]
(50)

In the following we will show that M is positive definite when θ ∈ (0, π/2]. It suffices to show that M11 > 0,
M22 > 0 and det(M) > 0. The first two are trivial, while the last one is:

4det(M) = 2π(sin 2θ + 2π − 2θ)− [(2π − θ) cos θ + sin θ]
2

(51)

= 2π(sin 2θ + 2π − 2θ)−
[
(2π − θ)2 cos2 θ + (2π − θ) sin 2θ + sin2 θ

]
(52)

= (4π2 − 1) sin2 θ − 4πθ + 4πθ cos2 θ − θ2 cos2 θ + θ sin 2θ (53)

= (4π2 − 4πθ − 1) sin2 θ + θ cos θ(2 sin θ − θ cos θ) (54)

Note that 4π2 − 4πθ − 1 = 4π(π − θ) − 1 > 0 for θ ∈ [0, π/2], and g(θ) = sin θ − θ cos θ ≥ 0 for θ ∈ [0, π/2]
since g(0) = 0 and g′(θ) ≥ 0 in this region. Therefore, when θ ∈ (0, π/2], M is positive definite.

When θ = 0, M(θ) = π[1,−1;−1, 1] and is semi-positive definite, with the null eigenvector being
√

2
2 [1, 1],

i.e., ‖w‖ = ‖w∗‖. However, along θ = 0, the only w that satisfies ‖w‖ = ‖w∗‖ is w = w∗. Therefore,
V̇ = −yᵀMy < 0 in Ω. Note that although this region could be expanded to the entire open half-space
H = {w : wᵀw∗ > 0}, it is not straightforward to prove the convergence in H, since the trajectory might go
outside H. On the other hand, Ω is the level set V < 1

2‖w
∗‖2 so the trajectory starting within Ω remains

inside.

(a)

O w⇤

Sample
region

Convergent region
kw�w⇤k < kw⇤k

Successful samples

(b)

O

�

✓
r

w⇤

� Vd(1� ✏)/2

Figure 2: (a) Sampling strategy to maximize the probability of convergence. (b) Relationship between
sampling range r and desired probability of success (1− ε)/2.

Theorem 6 When K = 1, the dynamics in Eqn. 64 converges to w∗ with probability at least (1 − ε)/2, if
the initial value w0 is sampled uniformly from Br = {w : ‖w‖ ≤ r} with:

r ≤ ε
√

2π

d+ 1
‖w∗‖ (55)

Proof Given a ball of radius r, we first compute the “gap” δ of sphere cap (Fig. 2(b)). First cos θ = r
2‖w∗‖ ,

so δ = r cos θ = r2

2‖w∗‖ . Then a sufficient condition for the probability argument to hold, is to ensure that

the volume Vshaded of the shaded area is greater than 1−ε
2 Vd(r), where Vd(r) is the volume of d-dimensional

ball of radius r. Since Vshaded ≥ 1
2Vd(r)− δVd−1, it suffices to have:

1

2
Vd(r)− δVd−1 ≥

1− ε
2

Vd(r) (56)
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which gives

δ ≤ ε

2

Vd
Vd−1

(57)

Using δ = r2

2‖w∗‖ and Vd(r) = Vd(1)rd, we thus have:

r ≤ ε Vd(1)

Vd−1(1)
‖w∗‖ (58)

where Vd(1) is the volume of the unit ball. Since the volume of d-dimensional unit ball is

Vd(1) =
πd/2

Γ(d/2 + 1)
(59)

where Γ(x) =
∫∞

0
tx−1e−tdt. So we have

Vd(1)

Vd−1(1)
=
√
π

Γ(d/2 + 1/2)

Γ(d/2 + 1)
(60)

From Gautschi’s Inequality

x1−s <
Γ(x+ 1)

Γ(x+ s)
< (x+ s)1−s x > 0, 0 < s < 1 (61)

with s = 1/2 and x = d/2 we have:(
d+ 1

2

)−1/2

<
Γ(d/2 + 1/2)

Γ(d/2 + 1)
<

(
d

2

)−1/2

(62)

Therefore, it suffices to have

r ≤ ε
√

2π

d+ 1
‖w∗‖ (63)

Note that this upper bound is tight when δ → 0 and d → +∞, since all inequality involved asymptotically
becomes equal.

6.2 Multiple ReLU case

Explanation of Eqn. 18. We first write down the dynamics to be studied:

− E
[
∇wj

J
]

=

K∑
j′=1

E
[
F (ej ,w

∗
j′)
]
− E [F (ej ,wj′)] (64)

We first define f(wj ,wj′ ,w
∗
j′) = F (wj/‖wj‖,w∗j′) − F (wj/‖wj‖,wj′). Therefore, the dynamics can be

written as:
− E

[
∇wj

J
]

=
∑
j′

E
[
f(wj ,wj′ ,w

∗
j′)
]

(65)

Suppose we have a finite group P = {Pj} which is a subgroup of orthognoal group O(d). P1 is the identity
element. If w and w∗ have the following symmetry: wj = Pjw and w∗j = Pjw

∗, then RHS of Eqn. 64 can
be simplified as follows:

−E
[
∇wj

J
]

=
∑
j′

E
[
f(wj ,wj′ ,w

∗
j′)
]

=
∑
j′

E [f(Pjw, Pj′w, Pj′w
∗)]

=
∑
j′′

E [f(Pjw, PjPj′′w, PjPj′′w
∗)] ({Pj}Kj=1 is a group)

= Pj
∑
j′′

E [f(w, Pj′′w, Pj′′w
∗)] (‖Pw1‖ = ‖w1‖, ∠(Pw1, Pw2) = ∠(w1,w2))

= −PjE [∇w1
J ] (66)
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which means that if all wj and w∗j are symmetric under the action of cyclic group, so does their expected
gradient. Therefore, the trajectory {wt} keeps such cyclic structure. Instead of solving a system of K
equations, we only need to solve one:

− E [∇wJ ] =

K∑
j=1

E [f(w, Pjw, Pjw
∗)] (67)

Theorem 7 For a bias-free two-layered ReLU network

g(x;w) =
∑
j

σ(wᵀ
j x) (68)

that takes spherical Gaussian inputs, if the teacher’s parameters {w∗j} form a set of orthnomal bases, then:

(1) When the student parameters is initialized to be [x0, y0, . . . , y0] under the basis of w∗, where (x0, y0) ∈
Ω = {x ∈ (0, 1], y ∈ [0, 1], x > y}, then the dynamics (Eqn. 64) converges to teacher’s parameters {w∗j}
(or (x, y) = (1, 0));

(2) when x0 = y0 ∈ (0, 1], then it converges to a saddle point x = y = 1
πK (
√
K − 1− arccos(1/

√
K) + π).

This theorem is quite complicated. We will start with a few lemmas and gradually come to the conclusion.
First, if w0 = [x, y, y, . . . , y] under the bases {w∗j}Kj=1, then from simple computation we know that wt

also follows this pattern. Therefore, we only need to study the following 2D dynamics related to x and y:

−2π

N
E
[
∇xJ
∇yJ

]
= −

{
[(π − φ)(x− 1 + (K − 1)y)]

[
1
1

]
+

[
θ

φ∗ − φ

]
+ φ

[
x− 1
y

]}
+ [(K − 1)(α sinφ∗ − sinφ) + α sin θ]

[
x
y

]
(69)

Here the symmetrical factor (α ≡ ‖w∗j′‖/‖wj‖, θ ≡ θ∗jj , φ ≡ θ
j′

j , φ
∗ ≡ θ∗j

′

j ) are defined as follows:

α = (x2 + (K − 1)y2)−1/2, cos θ = αx, cosφ∗ = αy, cosφ = α2(2xy + (K − 2)y2) (70)

Now we start a sequence of lemmas.

Lemma 3 For φ∗, θ and φ defined in Eqn. 70:

α ≡ (x2 + (K − 1)y2)−1/2 (71)

cos θ ≡ αx (72)

cosφ∗ ≡ αy (73)

cosφ ≡ α2(2xy + (K − 2)y2) (74)

we have the following relations in the triangular region Ωε0 = {(x, y) : x ≥ 0, y ≥ 0, x ≥ y + ε0} (Fig. 1(c)):

(1) φ, φ∗ ∈ [0, π/2] and θ ∈ [0, θ0) where θ0 = arccos 1√
K

.

(2) cosφ = 1− α2(x− y)2 and sinφ = α(x− y)
√

2− α2(x− y)2.

(3) φ∗ ≥ φ (equality holds only when y = 0) and φ∗ > θ.

Proof Propositions (1) and (2) are computed by direct calculations. In particular, note that since cos θ =
αx = 1/

√
1 + (K − 1)(y/x)2 and x > y ≥ 0, we have cos θ ∈ (1/

√
K, 1] and θ ∈ [0, θ0). For Preposition (3),

φ∗ = arccosαy > θ = arccosαx because x > y. Finally, for x > y > 0, we have

cosφ

cosφ∗
=
α2(2xy + (K − 2)y2)

αy
= α(2x+ (K − 2)y) > α(x+ (K − 1)y) > 1 (75)

The final inequality is because K ≥ 2, x, y > 0 and thus (x+(K−1)y)2 > x2 +(K−1)2y2 > x2 +(K−1)y2 =
α−2. Therefore φ∗ > φ. If y = 0 then φ∗ = φ.
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(0, 1)

x=y+✏

(✏, 0)

(x⇤, x⇤)
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parameters

Saddle point

⌦✏

Figure 3: The region Ωε considered in the analysis of Eqn. 69.

Lemma 4 For the dynamics defined in Eqn. 69, there exists ε0 > 0 so that the trianglar region Ωε0 =
{(x, y) : x ≥ 0, y ≥ 0, x ≥ y + ε0} (Fig. 3) is a convergent region. That is, the flow goes inwards for all three
edges and any trajectory starting in Ωε0 stays.

Proof We discuss the three boundaries as follows:
Case 1: y = 0, 0 ≤ x ≤ 1, horizontal line. In this case, θ = 0, φ = π/2 and φ∗ = π/2. The y

component of the dynamics in this line is:

f1 ≡ −
2π

N
∇yJ = −π

2
(x− 1) ≥ 0 (76)

So −∇yJ points to the interior of Ω.
Case 2: x = 1, 0 ≤ y ≤ 1, vertical line. In this case, α ≤ 1 and the x component of the dynamics is:

f2 ≡ −
2π

N
∇xJ = −(π − φ)(K − 1)y − θ + (K − 1)(α sinφ∗ − sinφ) + α sin θ (77)

= −(K − 1) [(π − φ)y − (α sinφ∗ − sinφ)] + (α sin θ − θ) (78)

Note that since α ≤ 1, α sin θ ≤ sin θ ≤ θ, so the second term is non-positive. For the first term, we only
need to check whether (π − φ)y − (α sinφ∗ − sinφ) is nonnegative. Note that

(π − φ)y − (α sinφ∗ − sinφ) (79)

= (π − φ)y + α(x− y)
√

2− α2(x− y)2 − α
√

1− α2y2 (80)

= y
[
π − φ− α

√
2− α2(x− y)2

]
+ α

[
x
√

2− α2(x− y)2 −
√

1− α2y2
]

(81)

In Ω we have (x− y)2 ≤ 1, combined with α ≤ 1, we have 1 ≤
√

2− α2(x− y)2 ≤
√

2 and
√

1− α2y2 ≤ 1.
Since x = 1, the second term is nonnegative. For the first term, since α ≤ 1,

π − φ− α
√

2− α2(x− y)2 ≥ π − π

2
−
√

2 > 0 (82)

So (π − φ)y − (α sinφ∗ − sinφ) ≥ 0 and −∇xJ ≤ 0, pointing inwards.
Case 3: x = y + ε, 0 ≤ y ≤ 1, diagonal line. We compute the inner product between (−∇xJ,−∇yJ)

and (1,−1), the inward normal of Ω at the line. Using φ ≤ π
2 sinφ for φ ∈ [0, π/2] and φ∗ − θ = arccosαy −

arccosαx ≥ 0 when x ≥ y, we have:

f3(y, ε) ≡ −2π

N

[
∇xJ
∇yJ

]ᵀ [
1
−1

]
= φ∗ − θ − εφ+ [(K − 1)(α sinφ∗ − sinφ) + α sin θ] ε (83)

≥ ε(K − 1)

[
α sinφ∗ −

(
1 +

π

2(K − 1)

)
sinφ

]
= εα(K − 1)

[√
1− α2y2 − ε

(
1 +

π

2(K − 1)

)√
2− α2ε2

]
Note that for y > 0:

αy =
1√

(x/y)2 + (K − 1)
=

1√
(1 + ε/y)2 + (K − 1)

≤ 1√
K

(84)
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For y = 0, αy = 0 <
√

1/K. So we have
√

1− α2y2 ≥
√

1− 1/K. And
√

2− α2ε2 ≤
√

2. Therefore

f3 ≥ εα(K − 1)(C1 − εC2) with C1 ≡
√

1− 1/K > 0 and C2 ≡
√

2(1 + π/2(K − 1)) > 0. With ε = ε0 > 0
sufficiently small, f3 > 0.

Lemma 5 (Reparametrization) Denote ε = x − y > 0. The terms αx, αy and αε involved in the trigo-
metric functions in Eqn. 69 has the following parameterization:

α

yx
ε

 =
1

K

 β − β2

β + (K − 1)β2

Kβ2

 (85)

where β2 =
√

(K − β2)/(K − 1). The reverse transformation is given by β =
√
K − (K − 1)α2ε2. Here

β ∈ [1,
√
K) and β2 ∈ (0, 1]. In particular, the critical point (x, y) = (1, 0) corresponds to (β, ε) = (1, 1). As

a result, all trigometric functions in Eqn. 69 only depend on the single variable β. In particular, the following
relationship is useful:

β = cos θ +
√
K − 1 sin θ (86)

Proof This transformation can be checked by simple algebraic manipulation. For example:

1

αK
(β − β2) =

1

K

(√
K

α2
− (K − 1)ε2 − ε

)
=

1

K

(√
(Ky + ε)2 − ε

)
= y (87)

To prove Eqn. 86, first we notice that K cos θ = Kαx = β + (K − 1)β2. Therefore, we have (K cos θ− β)2 −
(K− 1)2β2

2 = 0, which gives β2− 2β cos θ+ 1−K sin2 θ = 0. Solving this quadratic equation and notice that
β ≥ 1, θ ∈ [0, π/2] and we get:

β = cos θ +
√

cos2 θ +K sin2 θ − 1 = cos θ +
√
K − 1 sin θ (88)

Lemma 6 After reparametrization (Eqn. 85), f3(β, ε) ≥ 0 for ε ∈ (0, β2/β]. Furthermore, the equality is
true only if (β, ε) = (1, 1) or (y, ε) = (0, 1).

Proof Applying the parametrization (Eqn. 85) to Eqn. 83 and notice that αε = β2 = β2(β), we could write

f3 = h1(β)− (φ+ (K − 1) sinφ)ε (89)

When β is fixed, f3 now is a monotonously decreasing function with respect to ε > 0. Therefore, f3(β, ε) ≥
f3(β, ε′) for 0 < ε ≤ ε′ ≡ β2/β. If we could prove f3(β, ε′) ≥ 0 and only attain zero at known critical point
(β, ε) = (1, 1), the proof is complete.

Denote f3(β, ε′) = f31 + f32 where

f31(β, ε′) = φ∗ − θ − ε′φ+ ε′α sin θ (90)

f32(β, ε′) = (K − 1)(α sinφ∗ − sinφ)ε′ (91)

For f32 it suffices to prove that ε′(α sinφ∗ − sinφ) = β2 sinφ∗ − β2

β sinφ ≥ 0, which is equivalent to sinφ∗ −
sinφ/β ≥ 0. But this is trivially true since φ∗ ≥ φ and β ≥ 1. Therefore, f32 ≥ 0. Note that the equality
only holds when φ∗ = φ and β = 1, which corresponds to the horizontal line x ∈ (0, 1], y = 0.

For f31, since φ∗ ≥ φ, φ∗ > θ and ε′ ∈ (0, 1], we have the following:

f31 = ε′(φ∗ − φ) + (1− ε′)(φ∗ − θ)− ε′θ + β2 sin θ ≥ −ε′θ + β2 sin θ ≥ β2

(
sin θ − θ

β

)
(92)

And it reduces to showing whether β sin θ − θ is nonnegative. Using Eqn. 86, we have:

f33(θ) = β sin θ − θ =
1

2
sin 2θ +

√
K − 1 sin2 θ − θ (93)

Note that f ′33 = cos 2θ +
√
K − 1 sin 2θ − 1 =

√
K cos(2θ − θ0)− 1, where θ0 = arccos 1√

K
. By Prepositions

1 in Lemma 3, θ ∈ [0, θ0). Therefore, f ′33 ≥ 0 and since f33(0) = 0, f33 ≥ 0. Again the equity holds when
θ = 0, φ∗ = φ and ε′ = 1, which is the critical point (β, ε) = (1, 1) or (y, ε) = (0, 1).
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Lemma 7 For the dynamics defined in Eqn. 69, the only critical point (∇xJ = 0 and ∇yJ = 0) within Ωε
is (y, ε) = (0, 1).

Proof We prove by contradiction. Suppose (β, ε) is a critical point other than w∗. A necessary condition
for this to hold is f3 = 0 (Eqn. 83). By Lemma 7, ε > ε′ = β2/β > 0 and

ε− 1 +Ky =
1

α
(β2 − α+ β − β2) =

β − α
α

=
β − β2/ε

α
>
β − β2/ε

′

α
= 0 (94)

So ε− 1 +Ky is strictly greater than zero. On the other hand, the condition f3 = 0 implies that

((K − 1)(α sinφ∗ − sinφ) + α sin θ) = −1

ε
(φ∗ − θ) + φ (95)

Using φ ∈ [0, π/2], φ∗ ≥ φ and φ∗ > θ, we have:

−2π

N
∇yJ = −(π − φ)(ε− 1 +Ky)− (φ∗ − φ)− φy + ((K − 1)(α sinφ∗ − sinφ) + α sin θ) y

= −(π − φ)(ε− 1 +Ky)− (φ∗ − φ)− 1

ε
(φ∗ − θ)y < 0 (96)

So the current point (β, ε) cannot be a critical point.

Lemma 8 Any trajectory in Ωε0 converges to (y, ε) = (1, 0), following the dynamics defined in Eqn. 69.

Proof We have Lyaponov function V = E [E] so that V̇ = −E [∇wJ
ᵀ∇wJ ] ≤ −E [∇wJ ]

ᵀ E [∇wJ ] ≤ 0. By
Lemma 7, other than the optimal solution w∗, there is no other symmetric critical point, ∇wJ 6= 0 and thus
V̇ < 0. On the other hand, by Lemma 4, the triangular region Ωε0 is convergent, in which the 2D dynamics
is C∞ differentiable. Therefore, any 2D solution curve ξ(t) will stay within. By PoincareBendixson theorem,
when there is a unique critical point, the curve either converges to a limit circle or the critical point. However,
limit cycle is not possible since V is strictly monotonous decreasing along the curve. Therefore, ξ(t) will
converge to the unique critical point, which is (y, ε) = (1, 0) and so does the symmetric system (Eqn. 64).

Lemma 9 When x = y ∈ (0, 1], the 2D dynamics (Eqn. 69) reduces to the following 1D case:

− 2π

N
∇xJ = −πK(x− x∗) (97)

where x∗ = 1
πK (
√
K − 1− arccos(1/

√
K) + π). Furthermore, x∗ is a convergent critical point.

Proof The 1D system can be computed with simple algebraic manipulations (note that when x = y, φ = 0
and θ = φ∗ = arccos(1/

√
K)). Note that the 1D system is linear and its close form solution is xt =

x0 + Ce−K/2Nt and thus convergent.

Combining Lemma 8 and Lemma 9 yields Thm. 7.

7 Simulations

No theorems is provided.

8 Extension to multilayer ReLU network

Proposition 2 For neural network with ReLU nonlinearity and using l2 loss to match with a teacher network
of the same size, the gradient inflow gj for node j at layer c has the following form:

gj = Qj
∑
j′

(Qj′uj′ −Q∗j′u∗j′) (98)

where Qj and Q∗j are N -by-N diagonal matrices. For any k ∈ [c + 1], Qk =
∑
j∈[c] wjkDjQj and similarly

for Q∗k. The gradient with respect to wj (the parameters immediately under node j), is computed as:

∇wj
J = XT

c D
ᵀ
j gj (99)
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Proof We prove by induction on layer. For the first layer, there is only one node with g = u− v, therefore
Qj = Qj′ = I. Suppose the condition holds for all node j ∈ [c]. Then for node k ∈ [c+ 1], we have:

gk =
∑
j

wjkDjgj =
∑
j

wjkDjQj

∑
j′

Qj′uj′ −
∑
j′

Q∗j′u
∗
j′


=

∑
j

wjkDjQj

∑
j′

Qj′
∑
k′

Dj′wjk′uk′ −
∑
j′

Q∗j′
∑
k′

D∗j′w
∗
jk′u

∗
k′


=

∑
j

wjkDjQj
∑
j′

Qj′Dj′

∑
k′

wjk′uk′ −
∑
j

wjkDjQj
∑
j′

Q∗j′D
∗
j′

∑
k′

w∗jk′u
∗
k′

=
∑
k′

∑
j

wjkDjQj

∑
j′

Qj′Dj′wjk′

uk′ −
∑
k′

∑
j

wjkDjQj

∑
j′

Q∗j′D
∗
j′w
∗
jk′

u∗k′

Setting Qk =
∑
j wjkDjQj and Q∗k =

∑
j w
∗
jkD

∗
jQ
∗
j (both are diagonal matrices), we thus have:

gk =
∑
k′

QkQk′uk′ −QkQ∗k′u∗k′ = Qk
∑
k′

Qk′uk′ −Q∗k′u∗k′ (100)
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