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Abstract

In this paper, we explore theoretical prop-

erties of training a two-layered ReLU net-

work g(x;w) =
∑K

j=1 σ(w
⊺

j x) with cen-

tered d-dimensional spherical Gaussian input x

(σ=ReLU). We train our network with gradient

descent on w to mimic the output of a teacher

network with the same architecture and fixed pa-

rameters w
∗. We show that its population gra-

dient has an analytical formula, leading to inter-

esting theoretical analysis of critical points and

convergence behaviors. First, we prove that criti-

cal points outside the hyperplane spanned by the

teacher parameters (“out-of-plane“) are not iso-

lated and form manifolds, and characterize in-

plane critical-point-free regions for two ReLU

case. On the other hand, convergence to w
∗ for

one ReLU node is guaranteed with at least (1 −
ǫ)/2 probability, if weights are initialized ran-

domly with standard deviation upper-bounded by

O(ǫ/
√
d), consistent with empirical practice. For

network with many ReLU nodes, we prove that

an infinitesimal perturbation of weight initializa-

tion results in convergence towards w
∗ (or its

permutation), a phenomenon known as sponta-

neous symmetric-breaking (SSB) in physics. We

assume no independence of ReLU activations.

Simulation verifies our findings.

1. Introduction

Despite empirical success of deep learning (e.g., Computer

Vision (He et al., 2016; Simonyan & Zisserman, 2015;

Szegedy et al., 2015; Krizhevsky et al., 2012), Natural

Language Processing (Sutskever et al., 2014) and Speech

Recognition (Hinton et al., 2012)), it remains elusive how
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and why simple methods like gradient descent can solve

the complicated non-convex optimization during training.

In this paper, we focus on a two-layered ReLU network:

g(x;w) =

K
∑

j=1

σ(w⊺

j x), (1)

Here σ(x) = max(x, 0) is the ReLU nonlinearity. We con-

sider the setting that a student network is optimized to min-

imize the l2 distance between its prediction and the super-

vision provided by a teacher network of the same archi-

tecture with fixed parameters w
∗. Note that although the

network prediction (Eqn. 1) is convex, when coupled with

loss (e.g., l2 loss Eqn. 2), the optimization becomes highly

non-convex and has exponential number of critical points.

To analyze it, we introduce a simple analytic formula for

population gradient in the case of l2 loss, when inputs x are

sampled from zero-mean spherical Gaussian. Using this

formula, critical point and convergence analysis follow.

For critical points, we show that critical points outside the

principal hyperplane (the subspace spanned by w
∗) form

manifolds. We also characterize the region in the principal

hyperplane that has no critical points, in two ReLU case.

We also analyze the convergence behavior under the pop-

ulation gradient. Using Lyapunov method (LaSalle & Lef-

schetz, 1961), for single ReLU case we prove that gra-

dient descent converges to w
∗ with at least (1 − ǫ)/2

probability, if initialized randomly with standard deviation

upper-bounded by O(ǫ/
√
d), verifying common initializa-

tion techniques (Bottou, 1988; Glorot & Bengio, 2010; He

et al., 2015; LeCun et al., 2012). For multiple ReLU case,

when the teacher parameters {wj}Kj=1 form an orthonor-

mal basis, we prove that (1) a symmetric weight initial-

ization gets stuck at a saddle point and (2) a particular

infinitesimal perturbation of (1) leads to convergence to-

wards w∗ or its permutation. The behavior that the popula-

tion gradient field is invariant under certain symmetry but

the solution breaks it, is known as spontaneous symmetry

breaking in physics. Although such behaviors are known

practically, to our knowledge, we first formally character-

ize them in 2-layered ReLU network. Codes are available 1.

1github.com/yuandong-tian/ICML17_ReLU
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Figure 1. (a) We consider the student and teacher network as non-

linear neural networks with ReLU nonlinearity. The student net-

work updates its weight w from the output of the teacher with

fixed weights w
∗. (b) The 2-layered ReLU network structure

(Eqn. 1) discussed in this paper. The first layer contains fixed

weights of value 1, while the second layers has K ReLU nodes.

Each node j has a d-dimensional weight wj to be optimized.

Teacher network has the same architecture as the student.

2. Related Works

For multilayer linear network, many works ana-

lyze its critical points and convergence behaviors.

(Saxe et al., 2013) analyzes its dynamics of gradient de-

scent and (Kawaguchi, 2016) shows every local minimum

is global. On the other hand, very few theoretical works

have been done for nonlinear networks. (Mei et al., 2016)

shows the global convergence for a single nonlinear node

whose derivatives of activation σ′, σ′′, σ′′′ are bounded and

σ′ > 0. Similar to our approach, (Saad & Solla, 1996) also

uses the student-teacher setting and analyzes the student

dynamics when the teacher’s parameters w∗ are orthonor-

mal. However, their activation is Gaussian error function

erf(x), and only the local behaviors of the two critical

points (the initial saddle point near the origin and w
∗) are

analyzed. Recent paper (Zhang et al., 2017) analyzes a

similar teacher-student setting on 2-layered network when

the involved function is harmonic, but it is unclear how the

conclusion is generalized to ReLU case. To our knowl-

edge, our close-form formula for 2-layered ReLU network

is novel, as well as the critical point and convergence

analysis. Concurrent work (Brutzkus & Globerson, 2017)

proposes the same formula with a different approach,

and provides similar convergence analysis for one node.

For multiple nodes, they assume non-overlapping shared

weights, a special case of our assumption (Sec. 6.2) that

weights are cyclically symmetric and orthonormal.

Many previous works analyze nonlinear network based

on the assumption of independent activations: the activa-

tions of ReLU (or other nonlinear) nodes are independent

of the input and/or mutually independent. For example,

(Choromanska et al., 2015a;b) relates the nonlinear ReLU

network with spin-glass models when several assumptions

hold, including the assumption of independent activations

(A1p and A5u). (Kawaguchi, 2016) proves that every local

minimum in nonlinear network is global based on similar

assumptions. (Soudry & Carmon, 2016) shows the global

optimality of the local minimum in a two-layered ReLU

network, when independent multiplicative Bernoulli noise

is applied to the activations. In practice, activations that

share the input are highly dependent. Ignoring such depen-

dency misses important behaviors, and may lead to mis-

leading conclusions. In this paper, no assumption of inde-

pendent activations is made. Instead, we assume input to

follow spherical Gaussian distribution, which gives more

realistic and interdependent activations during training.

For sigmoid activation, (Fukumizu & Amari, 2000) gives

complicated conditions for a local minimum to be

global when adding a new node to a 2-layered network.

(Janzamin et al., 2015) gives guarantees for parameter re-

covery of a 2-layered network learnt with tensor decompo-

sition. In comparison, we analyze ReLU networks trained

with gradient descent, which is more popular in practice.

3. Problem Definition

Denote N as the number of samples and d as the input di-

mension. The N -by-d matrix X is the input data and w
∗

is the fixed parameter of the teacher network. Given the

current estimation w, we have the following l2 loss:

J(w) =
1

2
‖g(X;w∗)− g(X;w)‖2, (2)

Here we focus on population loss EX [J ], where the in-

put X is assumed to follow spherical Gaussian distri-

bution N (0, I). Its gradient is the population gradient

EX [∇Jw(w)] (abbrev. E [∇J ]). In this paper, we study

critical points E [∇J ] = 0 and vanilla gradient dynamics

w
t+1 = w

t − ηE [∇J(wt)], where η is the learning rate.

4. The Analytical Formula

Properties of ReLU. ReLU nonlinearity has useful prop-

erties. We define the gating function D(w) ≡ diag(Xw >
0) as an N -by-N binary diagonal matrix. Its l-th diagonal

element is a binary variable showing whether the neuron

is activated for sample l. Using this notation, σ(Xw) =
D(w)Xw which means D(w) selects the output of a lin-

ear neuron, based on their activations. Note that D(w) only

depends on the direction of w but not its magnitude.

D(w) is also “transparent” with respect to derivatives. For

example, at differentiable regions, Jacobianw[σ(Xw)] =
σ′(Xw)X = D(w)X . This gives a very concise rule for

gradient descent update in ReLU networks.

One ReLU node. Given the properties of ReLU, the pop-

ulation gradient E [∇J ] can be written as:

E [∇J ] = EX [X⊺D(w) (D(w)Xw −D(w∗)Xw
∗)]

(3)

Intuitively, this term vanishes when w → w
∗, and should
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be around N
2 (w − w

∗) if the data are evenly distributed,

since roughly half of the samples are blocked. However,

such an estimation fails to capture the nonlinear behavior.

If we define Population Gating (PG) function F (e,w) ≡
X⊺D(e)D(w)Xw, then E [∇J ] can be written as:

E [∇J ] = E [F (w/‖w‖,w)]− E [F (w/‖w‖,w∗)] . (4)

Interestingly, F (e,w) has an analytic formula if the data

X follow spherical Gaussian distribution:

Theorem 1 Denote F (e,w) = X⊺D(e)D(w)Xw where

e is a unit vector, X = [x1,x2, · · · ,xN ]⊺ is the N -by-d
data matrix and D(w) = diag(Xw > 0) is a binary diag-

onal matrix. If xi ∼ N (0, I) (and thus bias-free), then:

E [F (e,w)] =
N

2π
[(π − θ)w + ‖w‖ sin θe] (5)

where θ = ∠(e,w) ∈ [0, π] is the angle between e and w.

See the link2 for the proof of all theorems. Note that we

do not require X to be independent between samples. Intu-

itively, the first mass term N
2π (π−θ)w aligns with w and is

proportional to the amount of activated data whose ReLU

are on. When θ = 0, the gating function is fully on and half

of the data contribute to the term; when θ = π, the gating

function is completely switched off. The gate is controlled

by the angle between w and the control signal e. The sec-

ond asymmetric term is aligned with e, and is proportional

to the asymmetry of the activated data samples (Fig. 2).

Note that the expectation analysis smooths out ReLU and

leaves only one singularity at the origin, where E [∇J ] is

not continuous. That is, if approaching from different di-

rections towards w = 0, E [∇J ] is different.

With the close form of F , E [∇J ] also has a close form:

E [∇J ] =
N

2
(w−w

∗)+
N

2π

(

θw∗ − ‖w∗‖
‖w‖ sin θw

)

(6)

where θ = ∠(w,w∗) ∈ [0, π]. The first term is from linear

approximation, while the second term shows the nonlinear

behavior.

For linear case, D ≡ I (no gating) and thus ∇J ∝
X⊺X(w − w

∗). For spherical Gaussian input X ,

EX [X⊺X] = I and E [∇J ] ∝ w−w
∗. Therefore, the dy-

namics has only one critical point and global convergence

follows, which is consistent with its convex nature.

Extension to other distributions. From its definition,

E [F (e,w)] = E [X⊺D(e)D(w)Xw] is linear to ‖w‖,

regardless of the distribution of X . On the other hand,

isotropy in spherical Gaussian distribution leads to the fact

2http://yuandong-tian.com/ssb-supp.pdf
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Figure 2. Decomposition of Population Gating (PG) function

F (e,w) (Eqn. 5) into mass term and asymmetric term. F (e,w)
is computed from the portion of data with ReLU gate on. The

mass term is proportional to the amount of data, while the asym-

metric term is related to the data asymmetry with respect to e.

that E [F (e,w)] only depends on angles between vectors.

For other isotropic distributions, we could similarly derive:

E [F (e,w)] = A(θ)w + ‖w‖B(θ)e (7)

where A(0) = N/2 (gating fully on), A(π) = 0 (gating

fully off), and B(0) = B(π) = 0 (no asymmetry when w

and e are aligned). Although we focus on spherical Gaus-

sian case, many following analysis, in particular critical

point analysis, can also be applied to Eqn. 7.

Multiple ReLU node. For Eqn. 1 that contains K ReLU

node, we could similarly write down the population gradi-

ent with respect to wj (note that ej = wj/‖wj‖):

E
[

∇wj
J
]

=

K
∑

j′=1

E [F (ej ,wj′)]−
K
∑

j′=1

E
[

F (ej ,w
∗
j′)

]

(8)

5. Critical Point Analysis

By solving Eqn. 8 (the normal equation, E
[

∇wj
J
]

= 0),

we could identify all critical points of g(x). However, it is

highly nonlinear and cannot be solved easily. In this paper,

we provide conditions for critical points using the structure

of Eqn. 8. The case study for K = 2 gives examples for

saddle points and regions without critical points.

For convenience, we define Π∗ as the Principal Hyperplane

spanned by K ground truth weight vectors. Note that Π∗ is

at most K dimensional. {wj}Kj=1 is said to be in-plane, if

all wj ∈ Π∗. Otherwise it is out-of-plane.

5.1. Normal Equation

The normal equation {E
[

∇wj
J
]

= 0}Kj=1 contain Kd
scalar equations and can be written as the following:

Y E⊺ = B∗W ∗⊺ (9)

where Y = diag(sinΘ⊺
w̄ − sinΘ∗⊺

w̄
∗) + (π11⊺ −

Θ⊺)diagw̄ and B∗ = π11⊺ − (Θ∗)⊺. Here θ∗j
′

j ≡
∠(wj ,w

∗
j′), θ

j′

j ≡ ∠(wj ,wj′), Θ = [θij ] (i-th row, j-th

column of Θ is θij) and Θ∗ = [θ∗ij ].
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Note that Y and B∗ are both K-by-K matrices that only

depend on angles and magnitudes, and hence rotational in-

variant. This leads to the following theorem characterizing

the structure of out-of-plane critical points:

Theorem 2 If d ≥ K+2, then out-of-plane critical points

(solutions of Eqn. 9) are non-isolated and lie in a manifold.

The intuition is to construct a rotational matrix that is not

identity matrix but keeps Π∗ invariant. Such matrices form

a Lie group L that transforms critical points to critical

points. Then for any out-of-plane critical point, there is

one matrix in L that changes at least one of its weights,

yielding a non-isolated different critical point.

Note that Thm. 2 also works for any general isotropic

distribution, in which E [F (e,w)] has the form of

Eqn. 7. This is due to the symmetry of the in-

put X , which in turn affects the geometry of critical

points. The theorem also explains why we have flat

minima (Hochreiter et al., 1995; Dauphin et al., 2014) of-

ten occuring in practice.

5.2. In-Plane Normal Equation

To analyze in-plane critical points, it suffices to study gra-

dient projections on Π∗. When {wj} is full-rank, the pro-

jections could be achieved by right-multiplying both sides

by {ej′}, which gives K2 equations:

M(Θ)w̄ = M∗(Θ,Θ∗)w̄∗ (10)

This again shows decomposition of angles and magnitudes,

and linearity with respect to the norms of weight vectors.

Here w̄ = [‖w1‖, ‖w2‖, . . . , ‖wK‖]⊺ and similarly for

w̄
∗. M and M∗ are K2-by-K matrices that only depend

on angles. Entries of M and M∗ are:

mjj′,k = (π − θkj ) cos θ
k
j′ + sin θkj cos θ

j
j′ (11)

m∗
jj′,k = (π − θ∗kj ) cos θ∗kj′ + sin θ∗kj cos θjj′ (12)

Here index j is the j-th column of Eqn. 9, j′ is from pro-

jection vector ej′ and k is the k-th weight magnitude.

Diagnoal constraints. For “diagonal” constraints (j, j) of

Eqn. 10, we have cos θjj = 1 and mjj,k = h(θkj ), m
∗
jj,k =

h(θ∗kj ), where h(θ) = (π− θ) cos θ+ sin θ. Therefore, we

arrive at the following subset of the constraints:

Mrw̄ = M∗
r w̄

∗ (13)

where Mr = h(Θ⊺) and M∗
r = h(Θ∗⊺) are both K-by-

K matrices. Note that if Mr is full-rank, then we could

solve w̄ from Eqn. 13 and plug it back in Eqn. 10 to check

whether it is indeed a critical point. This gives necessary

conditions for critical points that only depend on angles.
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w
∗

1

Critical(        )
w1

w2

w
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L
12
(        )

w1
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w
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L
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Figure 3. Separable property of critical points using Ljj′ function

(Eqn. 14). Checking the criticability of {w1,w2,w
∗

1 ,w
∗

2} can be

decomposed into two subproblems, one related to {w1,w2,w
∗

1}
and the other is related to {w1,w2,w

∗

2}.

Separable Property. Interestingly, the plugging back op-

eration leads to conditions that are separable with respect

to ground truth weight (Fig. 3). To see this, we first define

the following quantity Ljj′ which is a function between a

single (rather than K) ground truth unit weight vector e∗

and all current unit weights {el}Kl=1:

Ljj′({θ∗l },Θ) = m∗
jj′ − v

⊺M−1
r mjj′ (14)

where θ∗l = ∠(e∗, el) is the angle between e
∗ and el,

v = v({θ∗l }) = [h(θ∗1), . . . , h(θ
∗
K)]⊺, and m∗

jj′ =

(π − θ∗j ) cos θ
∗
j′ + sin θ∗j cos θ

j
j′ (like Eqn. 12). Note that

v({θ∗jl }) is the j-th column of M∗
r . Fig. 3 illustrates the

case when K = 2. Ljj′ has the following properties:

Proposition 1 Ljj′({θ∗l },Θ) = 0 when there exists l so

that e∗ = el. In addition, Ljj({θ∗l },Θ) = 0 always.

Intuitively, Ljj′ characterizes the relative geometric rela-

tionship among e
∗ and {el}. It is like determinant of a ma-

trix whose columns are {el} and e
∗. With Ljj′ , we have

the following necessary conditions for critical points:

Theorem 3 If w̄
∗ 6= 0, and for a given parameter w,

Ljj′({θ∗kl },Θ) > 0 (or < 0) for all 1 ≤ k ≤ K, then

w cannot be a critical point.

5.3. Case study: K = 2 network

In this case, Mr and M∗
r are 2-by-2 matrices. Here we

discuss the case that both w1 and w2 are in Π∗.

Saddle points. When θ12 = 0 (w1 and w2 are collinear),

Mr = π11⊺ is singular since e1 and e2 are identical.

From Eqn. 9, if θ∗11 = θ∗21 , i.e., they are both aligned

with the bisector angle of w
∗
1 and w

∗
2 , and πw̄⊺

1 =
h
(

θ∗1∗2/2
)

(w̄∗)⊺1, then the current solution is a saddle

point. Note that this gives one constraint for two weight

magnitudes, and thus there exist infinite solutions.

Region without critical points. We rely on the follow-

ing conjecture that is verified empirically in an exhaustive

manner (Sec. 7.2). It characterizes zero-crossings of a 2D

function on a closed region [0, 2π]× [0, π]. In comparison,

in-plane 2 ReLU network has 6 parameters and is more dif-

ficult to handle: 8 for w1, w2, w∗
1 and w

∗
2 , minus the rota-

tional and scaling symmetries.
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Figure 4. Critical point analysis for K = 2. (a) L12 changes sign

when w
∗ is in/out of the cone spanned by weights w1 and w2.

(b) Two cases that (w1,w2) cannot be critical points.

Conjecture 1 If e∗ is in the interior of Cone(e1, e2), then

L12(θ
∗
1 , θ

∗
2 , θ

1
2) > 0. If e∗ is in the exterior, then L12 < 0.

This is also empirically true for L21. Combined with

Thm. 3, we know that (Fig. 4):

Theorem 4 If Conjecture 1 is correct, then for 2 ReLU net-

work, (w1,w2) (w1 6= w2) is not a critical point, if they

both are in Cone(w∗
1,w

∗
2), or both out of it.

When exact one w
∗ is inside Cone(w1,w2), whether

(w1,w2) is a critical point remains open.

6. Convergence Analysis

Application of Eqn. 5 also yields interesting convergence

analysis. We focus on infinitesimal analysis, i.e., when

learning rate η → 0 and the gradient update becomes a

first-order differential equation:

dw/dt = −EX [∇wJ(w)] (15)

Then the populated objective EX [J ] does not increase:

dE [J ] /dt = −E [∇J ]
⊺
dw/dt = −E [∇J ]

⊺
E [∇J ] ≤ 0

(16)

The goal of convergence analysis is to determine specific

weight initializations w
0 that leads to convergence to w

∗

following the gradient descent dynamics (Eqn. 15).

6.1. Single ReLU case

Using Lyapunov method (LaSalle & Lefschetz, 1961), we

show that the gradient dynamics (Eqn. 15) converges to w
∗

when w
0 ∈ Ω = {w : ‖w −w

∗‖ < ‖w∗‖}:

Theorem 5 When w
0 ∈ Ω = {w : ‖w −w

∗‖ < ‖w∗‖},

following the dynamics of Eqn. 15, the Lyapunov function

V (w) = 1
2‖w − w

∗‖2 has dV/dt < 0 and the system is

asymptotically stable and thus wt → w
∗ when t → +∞.

The intuition is to represent dV/dt as a 2-by-2 bilinear

form of vector [‖w‖, ‖w∗‖], and the bilinear coefficient

matrix, as a function of angles, is negative definite (except

for w = w
∗). Note that similar approaches do not apply to

regions including the origin because at the origin, the pop-

ulation gradient is discontinuous. Ω does not include the

(a)

O w
∗

Sample
region

Convergent region

kw−w
∗k < kw∗k

Successful samples

(b)

O

δ

θ

r

w
∗

≥ Vd(1− ✏)/2

Figure 5. (a) Sampling strategy to maximize the probability of

convergence. (b) Relationship between sampling range r and de-

sired probability of success (1− ǫ)/2.

origin and for any initialization w
0 ∈ Ω, we could always

find a slightly smaller subset Ω′
δ = {w : ‖w − w

∗‖ ≤
‖w∗‖−δ} with δ > 0 that covers w0, and apply Lyapunov

method within. Note that the global convergence claim

in (Mei et al., 2016) for l2 loss does not apply to ReLU,

since it requires σ′(x) > 0.

Random Initialization. How to sample w
0 ∈ Ω without

knowing w
∗? Uniform sampling around origin with ra-

dius r ≥ γ‖w∗‖ for any γ > 1 results in exponentially

small success rate (r/‖w∗‖)d ≤ γ−d in high-dimensional

space. A better idea is to sample around the origin with

very small radius (but not at w = 0), so that Ω looks like

a hyperplane near the origin, and thus almost half samples

are useful (Fig. 5(a)), as shown in the following theorem:

Theorem 6 The dynamics in Eqn. 6 converges to w
∗ with

probability at least (1 − ǫ)/2, if the initial value w
0 is

sampled uniformly from Br = {w : ‖w‖ ≤ r} with

r ≤ ǫ
√

2π
d+1‖w∗‖.

The idea is to lower-bound the probability of the shaded

area (Fig. 5(b)). Thm. 6 gives an explanation for common

initialization techniques (Glorot & Bengio, 2010; He et al.,

2015; LeCun et al., 2012; Bottou, 1988) that uses random

variables with O(1/
√
d) standard deviation.

6.2. Multiple ReLU case

For multiple ReLUs, Lyapunov method on Eqn. 8 yields

no decisive conclusion. Here we focus on the symmet-

ric property of Eqn. 8 and discuss a special case, that

the teacher parameters {w∗
j}Kj=1 and the initial weights

{w0
j}Kj=1 respect the following symmetry: wj = Pjw and

w
∗
j = Pjw

∗, where Pj is an orthogonal matrix whose col-

lection P ≡ {Pj}Kj=1 forms a group. Without loss of gen-

erality, we set P1 as the identity. Then from Eqn. 8 the

population gradient becomes:

E
[

∇wj
J
]

= PjE [∇w1
J ] (17)

This means that if all wj and w
∗
j are symmetric under

group actions, so does their population gradients. There-
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Figure 6. Spontaneous Symmetric-Breaking (SSB): Objective /

gradient field is symmetric but the solution is not. (a) Reflection

keeps the gradient field invariant, but transforms 1 to 2 and vice

versa. (b) The Mexican hat example. Rotation keeps the objective

invariant, but transforms any local minimum to a different one.

fore, the trajectory {wt} also respects the symmetry (i.e.,

Pjw
t
1 = w

t
j) and we only need to solve one equation for

E [∇wJ ] instead of K (here e = w/‖w‖):

E [∇wJ ] =

K
∑

j′=1

E [F (e, Pj′w)]− E [F (e, Pj′w
∗)] (18)

Eqn. 18 has interesting properties, known as Spontaneous

Symmetric-Breaking (SSB) in physics (Brading & Castel-

lani, 2003), in which the equations of motion respect a cer-

tain symmetry but its solution breaks it (Fig. 6). In our lan-

guage, despite that the population gradient field E [∇wJ ]
and the objective E [J ] are invariant to the group transfor-

mation P , i.e., for w∗ → Pjw
∗, E [J ] and E [∇wJ ] remain

the same, its solution is not (Pjw 6= w). Furthermore,

since P is finite, as we will see, the final solution converges

to different permutations of w∗ due to infinitesimal pertur-

bations of initialization.

To illustrate such behaviors, consider the following exam-

ple in which {w∗
j}Kj=1 forms an orthonormal basis and un-

der this basis, P is a cyclic group in which Pj circularly

shifts dimension by j − 1 (e.g., P2[1, 2, 3]
⊺ = [3, 1, 2]⊺).

In this case, if we start with w
0 = x0

w
∗ +

∑

j 6=1 Pjw
∗
j =

[x0, y0, . . . , y0] under the basis of w∗, then Eqn. 18 is fur-

ther reduced to a convergent 2D nonlinear dynamics and

Thm. 7 holds (Please check Supplementary Materials for

the associated close-form of the 2D dynamics):

Theorem 7 For a bias-free two-layered ReLU network

g(x;w) =
∑

j σ(w
⊺

j x) that takes spherical Gaussian in-

puts, if the teacher’s parameters {w∗
j} form orthnomal

bases, then (1) when the student parameters is initialized to

be [x0, y0, . . . , y0] under the basis of w∗, where (x0, y0) ∈
Ω = {x ∈ (0, 1], y ∈ [0, 1], x > y}, then Eqn. 8 con-

verges to teacher’s parameters {w∗
j} (or (x, y) = (1, 0));

(2) when x0 = y0 ∈ (0, 1], then it converges to a saddle

point x = y = 1
πK

(
√
K − 1− arccos(1/

√
K) + π).

Thm. 7 suggests that when w
0 = [y0, x0, . . . , y0], the sys-

tem converges to P2w
∗, etc. Since |x0 − y0| can be arbi-

trarily small, a slightest perturbation around x0 = y0 leads

to a different fixed point Pjw
∗ for some j. Unlike single

ReLU case, the initialization in Thm. 7 is w
∗-dependent,

and serves as an example for the branching behavior.

Thm. 7 also suggests that for convergence, x0 and y0 can

be arbitrarily small, regardless of the magnitude of w
∗,

showing a global convergence behavior. In comparison,

(Saad & Solla, 1996) uses Gaussian error function (σ =
erf) as the activation, and only analyzes local behaviors

near the two fixed points (origin and w
∗).

In practice, even with noisy initialization, Eqn. 18 and the

original dynamics (Eqn. 8) still converge to w
∗ (and its

transformations). We leave it as a conjecture, whose proof

may lead to an initialization technique for 2-layered ReLU

that is w∗-independent.

Conjecture 2 If the initialization w
0 = x0

w
∗ +

y0
∑

j 6=1 Pjw
∗ + ǫ, where ǫ is noise and (x0, y0) ∈ Ω,

then Eqn. 8 also converges to w
∗ with high probability.

7. Simulations

7.1. The analytical solution to F (e,w)

We verify E [F (e,w)] = E [X⊺D(e)D(w)Xw] (Eqn. 5)

with simulation. We randomly pick e and w so that their

angle ∠(e,w) is uniformly distributed in [0, π]. The an-

alytical formula E [F (e,w)] is compared with F (e,w),
which is computed via sampling on the input X that

follows spherical Gaussian distribution. We use relative

RMS error: err = ‖E [F (e,w)] − F (e,w)‖/‖F (e,w)‖.

Fig. 7(a) shows the error distribution with respect to angles.

For small θ, the gating function D(w) and D(e) mostly

overlap and give a reliable estimation. When θ → π, D(w)
and D(e)overlap less and the variance grows. Note that our

convergence analysis operate on θ ∈ [0, π/2] and is not af-

fected. In the following, we sample angles from [0, π/2].

Fig. 7(a) shows that the formula is more accurate with more

samples. We also examine other zero-mean distributions of

X , e.g., U [−1/2, 1/2]. As shown in Fig. 7(d), the formula

still works for large d. Note that the error is computed up to

a global scale, due to different normalization constants in

probability distributions. Whether Eqn. 5 applies for more

general distributions remains open.

7.2. Empirical Results in critical point analysis K = 2

Conjecture 1 can be reduced to enumerate a complicated

but 2D function via exhaustive sampling. In comparison, a

full optimization of 2-ReLU network constrained on prin-

cipal hyperplane Π∗ involves 6 parameters (8 parameters

minus 2 degrees of symmetry) and is more difficult to han-

dle. Fig. 10 shows that empirically L12 has no extra zero-

crossing other than e
∗ = e1 or e2. As shown in Fig. 10(c),

we have densely enumerated θ12 ∈ [0, π] and e
∗ on a
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0 = (10−3, 0). Even w

0 is aligned with w
∗, gradient descent takes

detours. (d) Training curve. Interestingly, when K is larger the convergence is faster.

104 × 104 grid without finding any counterexamples.

7.3. Convergence analysis for multiple ReLU nodes

Fig. 8(a) and (b) shows the 2D vector field in Thm 7.

Fig. 8(c) shows the 2D trajectory towards convergence to

the teacher’s parameters w
∗. Interestingly, even when

we initialize the weights as [10−3, 0]⊺, whose direction is

aligned with w
∗ at [1, 0]⊺, the gradient descent still takes

detours to reach the destination. This is because at the be-

ginning of optimization, all ReLU nodes explain the train-

ing error in the same way (both x and y increases); when

the “obvious” component is explained, the error pushes

some nodes to explain other components. Hence, special-

ization follows (x increases but y decreases).

Fig. 9 shows empirical convergence for K ≥ 2, when

the initialization deviates from initialization [x, y, . . . , y]
in Thm. 7. Unless the deviation is large, w converges to

w
∗. For more general network g2(x) =

∑K
j=1 ajσ(w

⊺

j x),
when aj > 0 convergence follows. When some aj is neg-

ative, the network fails to converge to w
∗, even when the

student is initialized with the true values {a∗j}Kj=1.

8. Extension to multilayer ReLU network

A natural question is whether the proposed method can be

extended to multilayer ReLU network. In this case, there is

similar subtraction structure for gradient as Eqn. 3:

Proposition 2 Denote [c] as all nodes in layer c. Denote

u
∗
j and uj as the output of node j at layer c of the teacher

and student network, then the gradient of the parameters

wj immediate under node j ∈ [c] is:

∇wj
J = X⊺

c DjQj

∑

j′∈[c]

(Qj′uj′ −Q∗
j′u

∗
j′) (19)

where Xc is the data fed into node j, Qj and Q∗
j are N -

by-N diagonal matrices. For any node k ∈ [c + 1], Qk =
∑

j∈[c] wjkDjQj and similarly for Q∗
k.

The 2-layered network in this paper is a special case with

Qj = Q∗
j = I . Despite the difficulty that Qj is now de-

pends on the weights of upper layers, and the input Xc is

not necessarily Gaussian distributed, Proposition 2 gives a

mathematical framework to explore the structure of gradi-

ent. For example, a similar definition of Population Gradi-
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Figure 9. Top row: Convergence when weights are initialized with noise: w0 = 10−3
w

∗ + ǫ, where ǫ ∼ N(0, 10−3 ∗ noise). The

2-layered network converges to w
∗ until huge noise. Both teacher and student networks use g(x) =

∑K

j=1
σ(w⊺

jx). Each experiment

has 8 runs. Bottom row: Convergence for g2(x) =
∑K

j=1
ajσ(w

⊺

jx). Here we fix top weights aj at different numbers (rather than 1).

Large positive aj corresponds to fast convergence. When {aj} contains mixture signs, convergence to w
∗ is not achieved.
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Figure 10. Quantity L12(θ
∗

1 , θ
∗

2 , θ
1

2) and L21(θ
∗

1 , θ
∗

2 , θ
1

2) in 2
ReLU network. We fix θ12 = ∠(e1, e2) and vary e

∗ =
[cosφ, sinφ]⊺. In this case, θ∗1 and θ∗2 are both dependent vari-

ables with respect to φ. When e
∗ ∈ Cone(e1, e2), L12 and

L21 > 0, otherwise negative. There are no extra zero-crossings.

(a)-(b) Examples: θ12 = 3π/8 and θ12 = 7π/8. (c) Empirical

evaluation on (θ12, φ) ∈ [0, π]× [0, 2π] with grid size 104 × 104.

ent function is possible.

9. Conclusion and Future Work

In this paper, we study the gradient descent dynamics of a

2-layered bias-free ReLU network. The network is trained

using gradient descent to reproduce the output of a teacher

network with fixed parameters w∗ in the sense of l2 norm.

We propose a novel analytic formula for population gradi-

ent when the input follows zero-mean spherical Gaussian

distribution. This formula leads to interesting critical point

and convergence analysis. Specifically, we show that crit-

ical points out of the hyperplane spanned by w
∗ are not

isolated and form manifolds. For two ReLU case, we char-

acterize regions that contain no critical points. For con-

vergence analysis, we show guaranteed convergence for a

single ReLU case with random initialization whose stan-

dard deviation is on the order of O(1/
√
d). For multiple

ReLU case, we show that an infinitesimal change of weight

initialization leads to convergence to different optima.

Our work opens many future directions. First, Thm. 2 char-

acterizes the non-isolating nature of critical points in the

case of isotropic input distribution, which explains why of-

ten practical solutions of NN are degenerated. What if the

input distribution has different symmetries? Will such sym-

metries determine the geometry of critical points? Second,

empirically we see convergence cases that are not covered

by the theorems, suggesting the conditions imposed by the

theorems can be weaker. Finally, how to apply similar anal-

ysis to broader distributions and how to generalize the anal-

ysis to multiple layers are also open problems.
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