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Abstract

The likelihood-ratio method is often used to es-
timate gradients of stochastic computations, for
which baselines are required to reduce the esti-
mation variance. Many types of baselines have
been proposed, although their degree of optimal-
ity is not well understood. In this study, we es-
tablish a novel framework of gradient estima-
tion that includes most of the common gradi-
ent estimators as special cases. The framework
gives a natural derivation of the optimal estima-
tor that can be interpreted as a special case of
the likelihood-ratio method so that we can eval-
uate the optimal degree of practical techniques
with it. It bridges the likelihood-ratio method
and the reparameterization trick while still sup-
porting discrete variables. It is derived from the
exchange property of the differentiation and in-
tegration. To be more specific, it is derived by
the reparameterization trick and local marginal-
ization analogous to the local expectation gradi-
ent. We evaluate various baselines and the opti-
mal estimator for variational learning and show
that the performance of the modern estimators is
close to the optimal estimator.

1. Introduction

The success of deep learning owes much to efficient gradi-
ent computation using backpropagation (Rumelhart et al.,
1986). When the model of interest includes internal
stochasticities, the objective function is often written as a
stochastic computational graph (Schulman et al., 2015). In
this case, the exact gradient computation is intractable in
general, and an approximate estimation is required. The
variance introduced by the approximation often degrades
the optimization performance for deep models, and there-
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fore variance reduction is crucial for practical learning.
However, few things are known about its theoretical as-
pects, and we often struggle with model-specific heuristics
whose degree of optimality is difficult to know.

The likelihood-ratio method (Glynn, 1990; Williams, 1992)
and the reparameterization trick (Williams, 1992; Kingma
& Welling, 2014; Rezende et al., 2014; Titsias & Lzaro-
gredilla, 2014) are widely used for the gradient estima-
tion. The likelihood-ratio method only requires the compu-
tation of density functions and their derivatives, and there-
fore it is applicable to a wide range of models including
those with discrete variables. It requires variance reduction
techniques in practice. The most common technique is the
use of a baseline value (Paisley et al., 2012; Bengio et al.,
2013; Ranganath et al., 2014; Mnih & Gregor, 2014; Gu
et al., 2016a) which is subtracted from a sampled objective
value. The optimal baseline is difficult to compute in gen-
eral, and we often use alternatives that are efficiently com-
puted, some of which are based on model-specific heuris-
tics. The reparameterization trick, on the other hand, has a
small estimation variance in practice and is only applicable
to models with certain continuous variables. Various mod-
els with continuous variables have been proposed using it,
whereas less progress on the research of deep discrete vari-
able models has been made because of the inapplicability
of this method.

In this paper, we give a novel framework to formulate gra-
dient estimators. It is derived by the reparameterization
and the local marginalization analogous to the local ex-
pectation gradient (Titsias & Léazaro-Gredilla, 2015). The
likelihood-ratio method and the reparameterization trick
can be formalized under this framework, and therefore it
bridges these two families of estimators. We can derive the
optimal estimator, which gives a lower bound of the vari-
ance of all estimators covered by the framework. Since the
estimator is derived by applying local marginalization to
the reparameterized gradient, we named it the reparame-
terization and marginalization (RAM) estimator. This esti-
mator is an instance of the likelihood-ratio estimator with
the optimal baseline, and therefore it can be used to evalu-
ate the variance of existing baseline techniques.

When the variable of interest follows a Bernoulli distribu-
tion, we can derive a tighter connection of a wider range of
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estimators to the framework. For example, the local expec-
tation gradient (Titsias & Lazaro-Gredilla, 2015) becomes
covered by our framework, and the straight-through estima-
tor (Hinton, 2012; Bengio et al., 2013; Raiko et al., 2015)
approximates the optimal estimator where the finite differ-
ence of the objective function is replaced by the infinites-
imal first-order approximation. Furthermore, the optimal
estimator is reduced to a likelihood-ratio estimator with
an input-dependent baseline, which implies that a practical
baseline technique might achieve a near-optimal variance.

The rest of this paper is organized as follows. We overview
the related work in Sec.2 and formulate the gradient esti-
mation problem in Sec.3. We introduce our framework in
Sec.4 and derive important estimators with it in Sec.5. We
also introduce a wider range of estimators for Bernoulli
variables in Sec.6. We then show experimental results in
Sec.7 and give a conclusion in Sec.8.

2. Related Work

The gradient estimation problem was being studied in the
field of simulation around 1990, which is well summa-
rized in L’Ecuyer (1991). The likelihood-ratio method
(Glynn, 1989) is a general approach for solving the prob-
lem, in which the parametric density g,4(z) is replaced by

ZZ’ ((3 qo(z) where qq := g, is fixed against ¢ on differentia-

tion. The ratio Zg’ ((j)) is called the likelihood ratio, hence the
name of this method. It can be seen as an importance sam-
pling method that uses a proposal ¢y (Jie & Abbeel, 2010),
with which there is a study on reducing the variance by us-
ing a proposal better than gg (Ruiz et al., 2016a). Another
approach is the finite-difference method, in which the use
of common random numbers, i.e., using the same random
numbers to run two perturbed simulations, is effective in
reducing the variance. The common random numbers nat-
urally appear in the formulation of the optimal estimator of
our framework.

The likelihood-ratio method has been combined with base-
lines and was introduced to the policy gradient methods for
reinforcement learning, which is called the REINFORCE
algorithm (Williams, 1992). The baseline technique is used
for reducing the variance. A simple estimation of the av-
erage reward is commonly used as the baseline, and the
optimal constant baseline that minimizes the variance is
also derived (Weaver & Tao, 2001). The likelihood-ratio
estimator has also been used for black-box variational in-
ference (Ranganath et al., 2014). The likelihood-ratio es-
timator is used to derive the gradient estimation without
depending on the specific form of the distributions. From
a statistical point of view, the baseline can be seen as a
special form of control variates, for which the optimal one
can be derived again. The baseline technique has been

further made sophisticated by involving the variable-wise
baselines and those depending on the varaible of interest
(Mnih & Gregor, 2014; Gu et al., 2016a). Some of them are
also exported to policy-gradient methods (Gu et al., 2016b).
Taking the local expectation of the likelihood-ratio estima-
tor (Titsias & Lazaro-Gredilla, 2015) is another approach
of variance reduction.

For variational inference of models with continuous vari-
ables, the reparameterization trick (Kingma & Welling,
2014; Rezende et al., 2014; Titsias & Lzaro-gredilla, 2014)
is widely used. It is easy to implement with modern frame-
works of automatic differentiation. It also has low variance
in practice, although the superiority to the likelihood-ratio
estimator is not guaranteed in general (Gal, 2017). This
method is also applied to the continuous relaxation of dis-
crete variables (Jang et al., 2016; Maddison et al., 2016).

On the one hand, the connection between the likelihood-
ratio method and the reparameterization trick is studied
in some literature, especially on continuous variables for
which a tractable reparameterization is not available (Ruiz
et al., 2016b). On the other hand, there are fewer studies for
discrete variables. This paper provides a bridge between
these estimators for discrete variables.

3. Problem Formulation

Our task is to optimize an expectation over a parame-
terized distribution. The objective function is given as
F(¢;2) = Ey, (212) f (7, 2), where f is a feasible function,
gs(zlz) = Hﬁl ¢4, (zi|pa;) is a directed graphical model
of M variables z = (21, ..., 2z ) conditioned on an input
to the system z, pa; are the parent nodes of z;, and ¢ are
the model parameters. Each conditional g4, (#;|pa;) is con-
tinuously differentiable w.r.t. ¢, and is typically a simple
distribution such as a Bernoulli or Gaussian whose param-
eters are computed by a neural network with weights ¢;.
For simplicity, we will assume that ¢; and ¢; for ¢ # ¢’
do not share any parameters; however, this assumption can
be easily removed. We want to optimize F' by stochastic
gradient methods, which require an unbiased estimation of
its gradient V, F'.

A motivating example is variational learning of a genera-
tive model pg(z, z) with an approximate posterior ¢, (z|z).
In this case, the objective function is the expectation of
f(z, z) = logpe(z, z) — log g4 (z|x), which gives a lower
bound of the log likelihood log pg(z). On the one hand,
the gradient w.r.t. the generative parameter 6 is easily es-
timated by a Monte Carlo simulation. On the other hand,
estimating the gradient w.r.t. ¢ is not trivial, which falls
into the above general setting. Note that we omit the gra-
dient incurred from the dependency of the second term
—log g4 (z|x) on ¢ from our discussions since this gradi-



Evaluating the Variance of Likelihood-Ratio Gradient Estimators

ent term is easy to estimate with low variance.

4. Proposed Framework

Here we give a general formulation of our framework of
gradient estimation. The framework is based on the repa-
rameterization of variables, which we also review.

Suppose that each sample drawn from a conditional is repa-
rameterized as follows.

zi ~ qg;(2ilpa;) & 2i = go, (P2, €i), € ~ p(€;).

Here ¢; is a noise variable. We will give concrete examples
of reparameterization later, and here we only emphasize
that g4, might be a non-continuous function. We write the
whole reparameterization as z = gg(z, €).

Using this reparameterization, we derive the gen-
eral form of gradient estimation. Let ¢; =
{€1,...,€i—1,€i41,...,€r}. We partially exchange the
differentiation and integration as follows.

V¢7’,F(¢; LE) = vd?quef(xag(ﬁ(xv 6))
=B, Vg, Ee, f(7,94(z,€)). (1

Unlike the reparameterization trick, this equation holds
even if the function g4 is not continuous because the lo-
cal expectation E, f(z,gs(x,€)) is differentiable. The
technique of separating variables in leave-one-out man-
ner is similar to Eq. (8) of Titsias & Léazaro-Gredilla
(2015), whereas it is applied to reparameterized, mutually-
independent noise variables in our case.

Equation (1) gives our framework of gradient estima-
tion. Given a way to estimate the local gradient
V. Ee, f(x,94(z,€)), we can estimate Vg, F(¢;z) by
sampling €\ ; and estimating the local gradient. Many exist-
ing estimators are derived by specifying a method of local
gradient estimation, which we review in the next section.

Examples of Reparameterization: We introduce typi-
cal ways of reparameterizing popular distributions. When
4o, (2ilpa;) = N (zi|pi, 02) is a Gaussian distribution, 2;
can be reparameterized as z; = u; + €;04,¢; ~ N(€;;0,1)
(Kingma & Welling, 2014). In this case, the change-of-
variable formula gy, (pa;, €;) = pi(pay; d:) + €i0i(pay; ¢s)
is differentiable w.r.t. ¢;. We can derive a reparame-
terization for Bernoulli variables as well. Suppose z; €
{0,1} is a binary variable following a Bernoulli distribu-
tion g, (2i|pa;) = p* (1 — p;)' =% It can be reparameter-
ized using a uniform noise ¢; ~ U(0, 1) as z; = H(u;—¢;),
1 (xz>0)
0 (z<0)
tion. In this case, the change-of-variable formula z; =

where H(z) = is the Heaviside step func-

H (u;(pa;; ¢i) — €;) is not continuous in general. For cate-
gorical variables, we can use the Gumbel-Max trick (Gum-
bel, 1954; Jang et al., 2016; Maddison et al., 2016) for the
reparameterization in a similar way.

5. Derivation of Gradient Estimators

We derive existing estimators on the basis of our general
framework (1). We also derive the estimator that is optimal
in terms of the estimation variance.

5.1. Likelihood-Ratio Estimator

The likelihood-ratio estimator is derived by using the log-
derivative trick for the local gradient estimation. Let
bi(x,€) be a baseline for z;, and e; ~ p(e\;). We use
z = ge¢(x,€) and omit the dependency of z on €. The
likelihood-ratio estimator with baseline b; is a Monte Carlo
estimate of the following expectation.

v¢i]E€z‘f(x?g¢(m7€))
= Eei (f(.%', Z) - bi(xﬂ 6))V¢i IOg d¢; (Zi‘pai) + Ci(xv E\i)'
(2)

Here Ci(z,€\;) = Ee,bi(z,€)Vy, logqe, (2i|pa;), which
has to be analytically computed.

There are many baseline techniques for variance reduction.
We classify them into four categories as follows.

e Constant baseline is a constant of all variables {x, €}.
It is a common choice for the baseline. In this case, it
holds that C'; = 0. An exponential moving average of
the simulated function f is often used.

e [ndependent baseline is a baseline that is constant
against ¢;. It can depend on other variables, {x, €\, }.
In this case, it again holds that C; = 0. Two tech-
niques proposed by Mnih & Gregor (2014) can be
seen as examples of baselines in this class. One is the
input-dependent baseline, which is a neural network
that predicts the sampled objective value f(z, z) from
x and pa,. The other one is the use of local signals,
where the terms of f that are not descendants of z;
in the stochastic computational graphs are omitted. It
can be seen as a baseline that includes all these terms.

e Linear baseline is a baseline that is a linear function of
zi, 1.e., by = z;'—ul(x, evi) iz, e) ! where u; and
v; are arbitrary functions. In this case, we can write

T
.Ci = (V@.,ui) ui(x, 6\1-), where /Li. = EQ(bi(zi'pai)Zi
is the mean of z;. The MuProp estimator (Gu et al.,
"When z; is a binary or continuous scalar, the transposition is

not needed. When z; is a categorical variable, we represent it by a
one-hot vector, for which z; u; is the innerproduct of two vectors.
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2016a) is an example of estimators with linear base-
lines, where the baseline is given as the first-order ap-
proximation of the mean-field network of f at y;.

o Fully-informed baseline is a baseline that depends on
all of = and ¢, possibly in a nonlinear way. This is the
most general class of baselines.

It is easily expected that the fully-informed baseline can
achieve the lowest variance. We will show that the optimal
estimator under the framework (1) falls into this category.

5.2. Reparameterization Trick Estimator

The reparameterization trick (Kingma & Welling, 2014;
Rezende et al., 2014; Titsias & Lzaro-gredilla, 2014) is a
common way to estimate the gradient for models with con-
tinuous variables. It is derived by exchanging the differ-
entiation and integration of the local gradient as follows.

V¢iE€if('r7g¢(‘T7 6)) = EE,Vd)if(xagti)(xv 6)) 3)

Note that this equation holds only if the function g, (z, €)
is differentiable, and therefore the reparameterization trick
is only applicable to continuous variables.

The reparameterization trick often gives a better estimation
of the gradient compared with the likelihood-ratio estima-
tor, although there is no theoretical guarantee. Indeed, we
can construct an example for which the likelihood-ratio es-
timator gives a better estimation (Gal, 2017).

5.3. Optimal Estimator

The optimal estimator is obtained by analytically comput-
ing the local gradient Vg4, E, f(z,g¢(x,€)). Let z; =
{z1,...,2i-1,%i11,..., 2 }. When we fix €,; and mod-
ify the value of z;, the descendant variables of z; might be
changed because they are functions of z; and noise vari-
ables. We denote the resulting values of 2\; by 2; =
he.,(x,zi,€\;). The function hy, ,(z,z;,€;) represents
the ancestral sampling procedure of z\; with given €,; and
clamped z;. Using the reparameterization again, we obtain
Ee, f(z,94(x,€)) = Eqg, (zpa,)f(z,2). The local gradi-
ent is then computed as follows.

Vol f(2,94(,€))
= f(2,2)V0,4s,(2ilpa;) )

= Z\i:h¢\i (z,24,€\4)

If z; is continuous, the summation is replaced by an in-
tegral, which is approximated numerically. The resulting
algorithm is shown in Alg. 1, which we name the repa-
rameterization and marginalization (RAM) estimator. It
requires M times evaluations of A, and therefore it scales

Algorithm 1 Algorithm for RAM estimator (4) for discrete
z;’s. If z; is continuous, the loop over all the configurations
of z; is replaced by a loop over integration points.

Require: a set of parameters ¢ and an input variable x.
1: Sample € ~ p(e).
2: for i=1,...,M do
3:  for all configurations of z; do
4 2\ = hg (5 205 €04).
5: fzo = f(@,2)V 40, (2]pay).
6: end for
7 Az = Zzi fz,i.
8: end for
9

: return (Aq, ..., Ayy) as an estimation of VF(¢; x).

worse than other estimators 2. However, these evaluations
are easily parallelized, and it runs fast enough for models
of moderate size.

The optimality of this estimator is stated in the following
theorem. Let ¢;; be the j-th element of the vector of pa-
rameters ¢;, and let 0;; = 0/0¢;; for notational simplicity.

Theorem 1. Suppose an unbiased estimator é;; of the local
derivative 0;;E., f(x, go(x, €)), i.e., ;5 is a random vari-
able whose expectation matches the local derivative. Let
Vij be the variance of the estimator 6;; and VZ’; be the vari-
ance of the RAM estimator. Then, it holds that VL‘; < Vi

Proof. This  follows from the standard Rao-
Blackwellization argument. O

We briefly review the relationships between the RAM esti-
mator and existing ones.

Relationship to the Likelihood-Ratio Estimator: The
RAM estimator can be seen as an example of the
likelihood-ratio estimators with fully-informed baselines.
Letb;(x,€) = f(z,gs(x,€)). Then, the log-derivative term
of Eq. (2) is canceled, and only the residual C;(z,€\;) =
V. Ee, f(x,94(2, €)) remains. The analytically-computed
residual is equivalent to the RAM estimator. Since this es-
timator gives the minimum variance, our likelihood-ratio
formulation (2) contains the optimal estimator.

While the fully-informed baseline is too general in practice
to be efficiently computed, much more restrictive indepen-
dent baselines can achieve the optimal estimator when z;
follows a Bernoulli distribution. Let V.5 (b;) be the vari-
ance of the likelihood-ratio estimator with baseline b;.

Theorem 2. Suppose that q4,(2;|pa;) is a Bernoulli distri-
bution. Then, there is one and only one baseline b} such

2 The difference in computational cost against the local expec-
tation gradient (Titsias & Ldzaro-Gredilla, 2015) comes from the
inapplicability of pivot samples.
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that b} is constant against ¢; and Vs = VZE‘R(b:)

The proof is given in Sec.6. This result implies that, for
Bernoulli variables, the optimal variance might be obtained
by a practical class of baseline techniques. Note that the
optimal baseline b7 might depend on the noise variables
corresponding to the descendants of z;, which are not used
by existing baseline techniques.

Relationship to the Reparameterization Trick: Theo-
rem 1 also states that the RAM estimator gives a variance
not larger than that of the reparameterization trick. In-
deed, the RAM estimator is based on an analytical com-
putation of the integral (3), and therefore gives the lower
or equal variance. In practice, it is infeasible to compute
the local gradient analytically, and numerical approxima-
tion is required. We can approximate the integral with high
precision in practice, because z; is usually a scalar vari-
able and therefore we only need to evaluate the function
f(z, go(x, €)) at a few integration points of z;.

Relationship to the Local Expectation Gradient: The
local expectation gradient (Titsias & Lazaro-Gredilla,
2015) is an application of local marginalization to the
likelihood-ratio estimator. Let mb; be the Markov blanket
of z;. This estimator is then derived as follows.

v¢iF(¢; JJ)
=Eq, z10)f (7, 2) Vg, log qp, (2i]pa;)
= Eq¢(z\i|x)Eq¢(zi|mbi)f(xv Z)v¢1 log q¢, (Zl|pa7,)

wf(l’, Z)V¢7C]¢7 (Zl|paz) (5)

=E
— 4. (2i[pay)

qe(2\ilT)

For the Monte Carlo simulation of 2\is 2 is first sampled
from g, (z|z), and then z; is discarded. It corresponds
to sampling € and computing z\; by using it in the repa-
rameterized notation. If the latent variables z1,..., 2
are mutually independent given x, the density ratio factor
¢4 (z:lmb;) /g4, (z:|pa;) equals 1, and therefore this estima-
tor is equivalent to the RAM estimator (4). Otherwise, the
density ratio factor remains, and these estimators do not
match in general. The inference distribution gy (z;|mb;)
can be computed as

q¢(zi,mbi \ pa;|pa;)
;lmb;) = .
o(zilmbi) Zz q¢(2i, mb; \ pa;|pa;)

Therefore, the density ratio is proportional to g, (z;, mb; \
pa;|pa;). It tends to concentrate on z; used in the sampling
of mb; \ pa;, in which case the estimator degenerates to
the plain likelihood-ratio estimator. Therefore, it cannot be
guaranteed to have a lower variance than the likelihood-
ratio estimator with baselines in general.

The RAM estimator can be seen as an application of the
same technique to the reparameterized expectation (3).
Thanks to the reparameterization, there is no need to solve
the inference problem gy (z;|mb;), and therefore the prob-
lematic density ratio factor does not appear. The evaluation
of f(x,z) with fixed z\; does not reflect the full influence
of the choice of z;, whereas the reparameterized counter-
part f(z, Z)|Z\i:h¢\i(rc,zl'.,6\i) does reflect it.

6. Analyzing Estimators for Binary Variables

A Bernoulli variable is the most fundamental example of a
discrete variable, and some estimators are dedicated for it.
It is beneficial to study the applications of any estimators
to Bernoulli variables because they facilitate understanding
and still contain most of the essential characteristics of dis-
crete distributions. In some cases, an estimator has a con-
nection to other estimators only when applied to Bernoulli
variables. Here we focus on Bernoulli variables and intro-
duce how each estimator can be formalized and related to
others. The derivations are given in the supplementary ma-
terial 3

Suppose that g4, (z;|pa,) is a Bernoulli distribution of the
mean parameter p; = p;(pa,, ¢;). Let fr = f(z,2; =
k,2\i = he, (2, 2i,€;)) for k € {0,1}, i.e., fj is the repa-
rameterized objective value for z; = k. All estimators we
introduce here can be written as an estimation of the gra-
dient w.r.t. p; multiplied by Vg, 11;, and therefore we only
focus on the gradient w.r.t. ;1; denoted by A;.

6.1. Likelihood-Ratio Estimator

The likelihood-ratio estimator for a Bernoulli variable with
an independent baseline b; is written as follows.

W.p. Hi,

AR _ { (f1 = b0) ©
- w.p. 1 — p;.

(fo—0i)/(1 — p;)

It can be interpreted as an importance sampling estimation
of the sum of f; —b; and —(fo—b;). Indeed, the likelihood-
ratio estimator for the general class of distributions can be
seen as an importance sampling estimation of the expecta-
tion. When the distribution has low entropy (i.e., y; is close
to 0 or 1), the variance of A%R becomes large. However,
it does not always mean that the variance of the gradient
w.rt. ¢; becomes huge, because in this case the sigmoid
activation that outputs y; is in a flat regime so that its small
derivative somehow alleviates the large variance. Neither
does it mean that the variance is always small enough to
optimize complex models.

3The supplementary material is attached to the arXiv version
of this paper.
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6.2. Optimal Estimator

The RAM estimator of the gradient w.r.t. y; is simply writ-
ten as the difference of the f value at z; = 1 and z; = 0.

AL = fi— fo. )

Using this formulation, we can prove Theorem 2.

Proof of Theorem 2. Let b; = (1 — ;) f1+ i fo. Then, the
likelihood-ratio estimator (6) with baseline b; is equivalent
to the RAM estimator (7). In this case, both cases of (6)
are equal to A}. This baseline does not depend on ¢;, and
therefore we conclude the proof by letting b7 = b;. O

Interestingly, the optimal baseline is an expectation of f
with the mean of k being 1 — p instead of p. This is differ-
ent from the mean objective value f = j1; f1 + (1 — ;) fo,
which a constant mean baseline approximates. The differ-
ence becomes large when y; is close to 0 or 1.

The optimal estimator still has a positive variance since
the noise variables ¢\; are not integrated out. In Eq. (7),
f1 and fy are evaluated with the same configurations of
these noise variables. The likelihood-ratio estimator can
also be seen as an estimator that separately samples f;
and f, at different iterations in which they use the sep-
arate samples of €\;. When the number of variables is
large, the influence of one variable z; on the objective
value f(z,z) is small, and we can expect that f; and fo
have a positive covariance. In general, the estimation vari-
ance of the difference of two random variables X, Y is re-
duced by estimating them with a positive covariance since
VIX —Y] = VX + VY — 2Cov(X,Y), and therefore
our estimator effectively reduces the variance by using the
same configuration of the noise variables. This technique
is known as common random numbers, which is also used
to reduce the variance of the gradient estimations with the
finite difference method for stochastic systems (L’Ecuyer,
1991).

6.3. Local Expectation Gradient

The local expectation gradient (5) has a special view as a
likelihood-ratio estimator when z; is a Bernoulli variable.
Let m; = qy(2; = 1lmb;). Let f, = f(z,2z; = k,2; =
he (w,2i = 1 = k,e)), i.e, fi_, is the objective value
with fixed z\; and flipped z;. Note that f; can be different
from fr when some variables in 2\ depend on z;. Then,
the local expectation gradient is written as follows.

T4 177Ti
ALEG _ Efl T I fo
! w.p. 1 — ;.

- i 1—m;
mfy - d=m

It is further rewritten as follows.
Fr= 1 (A= pa) frtpa £5)
Y W.p. i,
fo—%((l—lu)f{+mfo)
- T w.p. 1 — ;.
Thus, it can be seen as a likelihood-ratio estimator with
baseline

LEG _
ALFG —

_ 1— q¢(zi|mbi)b/.

1 — gy, (zilpa;) "
where b, = (1~ gy, (z0/pa;)) fi + 4, (24lpa;) f{_- The
unweighted value ), has a similar form as the optimal
baseline b}, where fi_j is replaced by f]_,. The final
baseline b*FC is given by multiplying b/, by the density
ratio. We have seen that it tends to be close to 0, in which
case the baseline is also close to 0 so that the estimator de-
generates to the plain likelihood-ratio estimator. Even if
the weight does not vanish, Theorem 2 shows that the lo-
cal expectation gradient estimator for Bernoulli variables
has higher variance than the optimal one unless all latent
variables are mutually independent given z.

LEG
b;

6.4. Straight-Through Estimator

We give one example of an estimator dedicated for
Bernoulli variables, the straight-through estimator (Hinton,
2012; Bengio et al., 2013; Raiko et al., 2015). It is a bi-
ased estimator that leverages the gradient of f so that we
can obtain the high-dimensional information of the direc-
tion towards which the objective would be decreasing. The
estimator is written as follows.

lé]
AST . ai Wp I’Li7 8
B2, _ w.p. L — l;.

Observing that Eq. (7) gives the finite difference of f be-
tween z; = 1 and z; = 0, we can see that the straight-
through estimator is its infinitesimal counterpart at the sam-
pled z;. Thus, this estimator is equivalent to our estima-
tor (and is therefore unbiased) when f is a linear function
of z;. The difference between these estimators becomes
large when the nonlinearity of f increases. If we consider
a general class of the evaluation function f, we can con-
struct an adversarial function f such that the derivative at
z; € {0, 1} has the opposite sign against the finite differ-
ence (7). For example, when f(z,z) = ), 2;, this estima-
tor is equivalent to the optimal one. However, if we modify
itto f(x,2) =3, zi—sin (21 Y, 2;), the straight-through
estimator always gives a gradient opposite to the steepest
direction of the expectation, which does not change as a
result of the modification, i.e., Ef(z, z) = Ef(x, 2).

7. Experiments

We conduct experiments to empirically verify Theorem 1
and to demonstrate a procedure to analyze the optimal de-
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gree of a given estimator covered by our framework. All
the methods are implemented with Chainer (Tokui et al.,
2015).

7.1. Experimental Settings

The task is variational learning of sigmoid belief networks
(SBN) (Neal, 1992), which is a directed graphical model
with layers of Bernoulli variables. Let z € {0,1}¢ be a
binary vector of input data and Z, = (2¢1,...,20,n,) €
{0, 1} be a binary vector of the latent variables at the /-
th layer. Denote the input layer as Zy; = x for notational
simplicity. Let L be the number of latent layers. The gen-
erative model is specified by a conditional of each layer
po(Z¢|Ze41) and the prior of the deepest layer pg(Zr).
In our experiments, the prior of each variable z;,; € Zy,
is independently parameterized by its logit. The condi-
tional pg(Z¢|Zs+1) is modeled by an affine transformation
of Z,1 that outputs the logit of Z,. The parameters of the
affine transformation are optimized through the learning.
We use two models with L = 2 and L = 4, respectively.
Each layer consists of N, = 200 Bernoulli variables.

We model the approximate posterior g4(z|x) by a reverse-
directional SBN. In this case, the prior ¢(z) is not modeled,
and each conditional q4(Z.41|Z,) is specified by its logit
as an affine transformation of Z,.

Both the generative parameter 6 and the variational param-
eter ¢ are optimized simultaneously to maximize the fol-
lowing variational lower bound.

po(z,2)
lo ) =1logE, (s|p)——=
g po(x) € Lgy (2| )q¢(z\x)
po(z,2)

>E, (s12) 1 =L
Z Lgy(z|2) 108 q¢(z|$)

The second line follows Jensen’s inequality with the con-
cavity of log. The gradient w.r.t. 8 is estimated by a Monte
Carlo simulation of VoL = E, (.|o) Ve logps(z, 2z). We
use gradient estimators for approximating the gradient
W.L.L. ¢.

The plain likelihood-ratio estimator is denoted by LR,
whereas the constant baseline using the moving average
of f(z,2) = logpe(z,z) — logqe(z|z) and the input-
dependent baseline of Mnih & Gregor (2014) are expressed
by the postfixes +C and +IDB, respectively. We also run
experiments for MuProp and the Local Expectation Gradi-
ent (LEG). Algorithm 1 is used to obtain the results for the
optimal estimator.

We use MNIST (Lecun et al., 1998) and Omniglot (Lake
et al., 2015) for our experiments. These are sets of 28x28
pixel gray-scale images of hand-written digits and hand-
written characters from various languages. We binarize
each pixel by sampling from a Bernoulli distribution with

the mean equal to the pixel intensity (Salakhutdinov &
Murray, 2008). The binarization is done in an online man-
ner, i.e., we sample binarized vectors at each iteration. For
the MNIST dataset, we use the standard split of 60,000
training images and 10,000 test images. The training im-
ages are further split into 50,000 images and 10,000 im-
ages, the latter of which are used for validation. For the
Omniglot dataset, we use the standard split of 24,345 train-
ing images and 8,070 test images used in the official im-
plementation of Burda et al. (2015) #. The training images
are further split into 20,288 images and 4,057 images, the
latter of which are used for validation.

We used RMSprop (Tieleman & Hinton, 2012) with a mini-
batch size of 100 to optimize the variational lower bound.
We apply a weight decay of the coefficient 0.001 for all pa-
rameters. All the weights are initialized with the method of
Glorot & Bengio (2010). The learning rate is chosen from
{3 x 1074,1073,3 x 1073}. We evaluate the model on
the validation set during training, and choose the learning
rate with which the best validation performance with early-
stopping beats the others. After each evaluation, we also
measure the variance of the gradient estimations of varia-
tional parameters for the training set with the same mini-
batch size.

Each experiment is done on an Intel(R) Xeon(R) CPU E5-
2623 v3 at 3.00 GHz and an NVIDIA GeForce Titan X.
Thanks to the parallel computation using the GPU, the
computational time of the RAM estimator is only two times
larger than the plain likelihood-ratio estimator.

7.2. Results

The results for the two-layer SBN and four-layer SBN are
shown in Fig. 1 and Fig. 2, respectively. The results for
these models have almost the same trends. As is predicted
by Theorem 1, the optimal estimator gives the lower bound
of the estimation variance. The plots imply that the modern
baseline techniques effectively reduce the estimation vari-
ance, which is approaching the optimal value. However, the
gap between these practical methods and the optimal one
is not negligible, and there is still room for improvements.
The local expectation gradient actually does not degenerate
to the plain likelihood-ratio estimator, whereas the variance
reduction effect is limited so that its variance stays at a sim-
ilar level to that of the likelihood-ratio estimator with a con-
stant baseline. The validation score almost agrees with the
variance level, although there are some exceptions caused
by the differences in selected learning rates.

Note that we do not align the computational cost by sam-
pling multiple values in the experiments because the pur-
pose of these experiments is evaluating the optimal degree

*https://github.com/yburda/iwae
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Figure 1. Results of two-layer SBN. Left: results using MNIST dataset. Right: results using Omniglot dataset. The mean of the gradient
variances of the variational parameters are plotted in the top figures. The validation performance is plotted in the bottom figures.
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Figure 2. Results of four-layer SBN. Left: results using MNIST dataset. Right: results using Omniglot dataset.

of each method. We can infer the performance with aligned
computational budget by comparing the variance and the
computational cost.

8. Conclusion

We introduced a novel framework of gradient estimation
for stochastic computations using reparameterization. The
framework serves as a bridge between the likelihood-ratio
method and the reparameterization trick. The optimal esti-
mator is naturally derived under the framework. It provides
the minimum variance attainable by the likelihood-ratio es-
timators with the general class of baselines, and therefore
can be used to evaluate the optimal degree of each practi-
cal baseline technique. We actually evaluated the common
baseline techniques against the optimal estimator for varia-
tional learning of sigmoid belief networks and showed that
the modern techniques achieve a variance level close to the
lower bound.

Comparison between continuous variable models and dis-
crete variable models is needed for the further development
of deep probabilistic modeling, which should consider the
adequacy of the use of these variables in each task and the
efficiency of gradient estimators available for these mod-
els. While this study does not provide a way to compare
such models in general, it bridges the gradient estimators
of them through the optimal case, and therefore provides
some insights on their relationships. Observing the exper-
imental results, the modern estimators for Bernoulli vari-
ables achieve variance close to the optimal one, and there-
fore we can expect that the modern estimators for Bernoulli
variables are maturing and could be applied to much larger
models capturing discrete phenomena.
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