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Abstract
To date, the tightest upper and lower-bounds for
the active learning of general concept classes
have been in terms of a parameter of the learn-
ing problem called the splitting index. We pro-
vide, for the first time, an efficient algorithm that
is able to realize this upper bound, and we empir-
ically demonstrate its good performance.

1. Introduction
In many situations where a classifier is to be learned, it is
easy to collect unlabeled data but costly to obtain labels.
This has motivated the pool-based active learning model,
in which a learner has access to a collection of unlabeled
data points and is allowed to ask for individual labels in an
adaptive manner. The hope is that choosing these queries
intelligently will rapidly yield a low-error classifier, much
more quickly than with random querying. A central focus
of active learning is developing efficient querying strategies
and understanding their label complexity.

Over the past decade or two, there has been substan-
tial progress in developing such rigorously-justified active
learning schemes for general concept classes. For the most
part, these schemes can be described as mellow: rather than
focusing upon maximally informative points, they query
any point whose label cannot reasonably be inferred from
the information received so far. It is of interest to develop
more aggressive strategies with better label complexity.

An exception to this general trend is the aggressive strategy
of (Dasgupta, 2005), whose label complexity is known to
be optimal in its dependence on a key parameter called the
splitting index. However, this strategy has been primarily
of theoretical interest because it is difficult to implement
algorithmically. In this paper, we introduce a variant of the
methodology that yields efficient algorithms. We show that
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it admits roughly the same label complexity bounds as well
as having promising experimental performance.

As with the original splitting index result, we operate in
the realizable setting, where data can be perfectly classi-
fied by some function h⇤ in the hypothesis class H. At any
given time during the active learning process, the remain-
ing candidates—that is, the elements of H consistent with
the data so far—are called the version space. The goal of
aggressive active learners is typically to pick queries that
are likely to shrink this version space rapidly. But what is
the right notion of size? Dasgupta (2005) pointed out that
the diameter of the version space is what matters, where the
distance between two classifiers is taken to be the fraction
of points on which they make different predictions. Unfor-
tunately, the diameter is a difficult measure to work with
because it cannot, in general, be decreased at a steady rate.
Thus the earlier work used a procedure that has quantifiable
label complexity but is not conducive to implementation.

We take a fresh perspective on this earlier result. We start
by suggesting an alternative, but closely related, notion of
the size of a version space: the average pairwise distance
between hypotheses in the version space, with respect to
some underlying probability distribution ⇡ on H. This dis-
tribution ⇡ can be arbitrary—that is, there is no require-
ment that the target h⇤ is chosen from it—but should be
chosen so that it is easy to sample from. When H consists
of linear separators, for instance, a good choice would be a
log-concave density, such as a Gaussian.

At any given time, the next query x is chosen roughly as
follows:

• Sample a collection of classifiers h
1

, h
2

, . . . , h
m

from
⇡ restricted to the current version space V .

• Compute the distances between them; this can be done
using just the unlabeled points.

• Any candidate query x partitions the classifiers {h
i

}
into two groups: those that assign it a + label (call
these V +

x

) and those that assign it a � label (call these
V �
x

). Estimate the average-diameter after labeling
x by the sum of the distances between classifiers h

i

within V +

x

, or those within V �
x

, whichever is larger.

• Out of the pool of unlabeled data, pick the x for which
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this diameter-estimate is smallest.

This is repeated until the version space has small enough
average diameter that a random sample from it is very
likely to have error less than a user-specified threshold ✏.
We show how all these steps can be achieved efficiently, as
long as there is a sampler for ⇡.

Dasgupta (2005) pointed out that the label complexity of
active learning depends on the underlying distribution, the
amount of unlabeled data (since more data means greater
potential for highly-informative points), and also the target
classifier h⇤. That paper identifies a parameter called the
splitting index ⇢ that captures the relevant geometry, and
gives upper bounds on label complexity that are propor-
tional to 1/⇢, as well as showing that this dependence is
inevitable. For our modified notion of diameter, a different
averaged splitting index is needed. However, we show that
it can be bounded by the original splitting index, with an
extra multiplicative factor of log(1/✏); thus all previously-
obtained label complexity results translate immediately for
our new algorithm.

2. Related Work
The theory of active learning has developed along several
fronts.

One of these is nonparametric active learning, where the
learner starts with a pool of unlabeled points, adaptively
queries a few of them, and then fills in the remaining la-
bels. The goal is to do this with as few errors as possi-
ble. (In particular, the learner does not return a classifier
from some predefined parametrized class.) One scheme be-
gins by building a neighborhood graph on the unlabeled
data, and propagating queried labels along the edges of
this graph (Zhu et al., 2003; Cesa-Bianchi et al., 2009;
Dasarathy et al., 2015). Another starts with a hierarchical
clustering of the data and moves down the tree, sampling at
random until it finds clusters that are relatively pure in their
labels (Dasgupta & Hsu, 2008). The label complexity of
such methods have typically be given in terms of smooth-
ness properties of the underlying data distribution (Castro
& Nowak, 2008; Kpotufe et al., 2015).

Another line of work has focused on active learning of lin-
ear separators, by querying points close to the current guess
at the decision boundary (Balcan et al., 2007; Dasgupta
et al., 2009; Balcan & Long, 2013). Such algorithms are
close in spirit to those used in practice, but their analysis
to date has required fairly strong assumptions to the effect
that the underlying distribution on the unlabeled points is
logconcave. Interestingly, regret guarantees for online al-
gorithms of this sort can be shown under far weaker condi-
tions (Cesa-Bianchi et al., 2006).

The third category of results, to which the present paper be-
longs, considers active learning strategies for general con-
cept classes H. Some of these schemes (Cohn et al., 1994;
Dasgupta et al., 2007; Beygelzimer et al., 2009; Balcan
et al., 2009; Zhang & Chaudhuri, 2014) are fairly mellow in
the sense described earlier, using generalization bounds to
gauge which labels can be inferred from those obtained so
far. The label complexity of these methods can be bounded
in terms of a quantity known as the disagreement coeffi-
cient (Hanneke, 2007). In the realizable case, the canonical
such algorithm is that of (Cohn et al., 1994), henceforth re-
ferred to as CAL. Other methods use a prior distribution ⇡
over the hypothesis class, sometimes assuming that the tar-
get classifier is a random draw from this prior. These meth-
ods typically aim to shrink the mass of the version space
under ⇡, either greedily and explicitly (Dasgupta, 2004;
Guillory & Bilmes, 2009; Golovin et al., 2010) or implic-
itly (Freund et al., 1997). Perhaps the most widely-used of
these methods is the latter, query-by-committee, henceforth
QBC. As mentioned earlier, shrinking ⇡-mass is not an op-
timal strategy if low misclassification error is the ultimate
goal. In particular, what matters is not the prior mass of the
remaining version space, but rather how different these can-
didate classifiers are from each other. This motivates using
the diameter of the version space as a yardstick, which was
first proposed in (Dasgupta, 2005) and is taken up again
here.

3. Preliminaries
Consider a binary hypothesis class H, a data space X , and
a distribution D over X . For mathematical convenience,
we will restrict ourselves to finite hypothesis classes. (We
can do this without loss of generality when H has finite VC
dimension, since we only use the predictions of hypotheses
on a pool of unlabeled points; however, we do not spell out
the details of this reduction here.) The hypothesis distance

induced by D over H is the pseudometric

d(h, h0
) := Pr

x⇠D(h(x) 6= h0
(x)).

Given a point x 2 X and a subset V ⇢ H, denote

V +

x

= {h 2 V : h(x) = 1}
and V �

x

= V \ V +

x

. Given a sequence of data points
x
1

, . . . , x
n

and a target hypothesis h⇤, the induced version

space is the set of hypotheses that are consistent with the
target hypotheses on the sequence, i.e.

{h 2 H : h(x
i

) = h⇤
(x

i

) for all i = 1, . . . , n}.

3.1. Diameter and the Splitting Index

The diameter of a set of hypotheses V ⇢ H is the maximal
distance between any two hypotheses in V , i.e.

diam(V ) := max

h,h

02V

d(h, h0
).
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Without any prior information, any hypothesis in the ver-
sion space could be the target. Thus the worst case error of
any hypothesis in the version space is the diameter of the
version space. The splitting index roughly characterizes the
number of queries required for an active learning algorithm
to reduce the diameter of the version space below ✏.

While reducing the diameter of a version space V ⇢ H,
we will sometimes identify pairs of hypotheses h, h0 2 V
that are far apart and therefore need to be separated. We
will refer to {h, h0} as an edge. Given a set of edges E =

{{h
1

, h0
1

}, . . . , {h
n

, h0
n

}} ⇢ �H
2

�
, we say a data point x ⇢-

splits E if querying x separates at least a ⇢ fraction of the
pairs, that is, if

max

���E+

x

|, |E�
x

��  (1� ⇢)|E|

where E+

x

= E \ �H+
x

2

�
and similarly for E�

x

. When at-
tempting to get accuracy ✏ > 0, we need to only eliminate
edge of length greater than ✏. Define

E
✏

= {{h, h0} 2 E : d(h, h0
) > ✏}.

The splitting index of a set V ⇢ H is a tuple (⇢, ✏, ⌧) such
that for all finite edge-sets E ⇢ �V

2

�
,

Pr
x⇠D(x ⇢-splits E

✏

) � ⌧.

The following theorem, due to Dasgupta (2005), bounds
the sample complexity of active learning in terms of the
splitting index. The ˜O notation hides polylogarithmic fac-
tors in d, ⇢, ⌧ , log 1/✏, and the failure probability �.

Theorem 1 (Dasgupta 2005). Suppose H is a hypothesis

class with splitting index (⇢, ✏, ⌧). Then to learn a hypoth-

esis with error ✏,

(a) any active learning algorithm with  1/⌧ unlabeled

samples must request at least 1/⇢ labels, and

(b) if H has VC-dimension d, there is an active learning

algorithm that draws

˜O(d/(⇢⌧) log2(1/✏)) unlabeled

data points and requests

˜O((d/⇢) log2(1/✏)) labels.

Unfortunately, the only known algorithm satisfying (b)
above is intractable for all but the simplest hypothesis
classes: it constructs an ✏-covering of the hypothesis space
and queries points which whittle away at the diameter of
this covering. To overcome this intractability, we consider
a slightly more benign setting in which we have a sam-
plable prior distribution ⇡ over our hypothesis space H.

3.2. An Average Notion of Diameter

With a prior distribution, it makes sense to shift away from
the worst-case to the average-case. We define the average

diameter of a subset V ⇢ H as the expected distance be-
tween two hypotheses in V randomly drawn from ⇡, i.e.

�(V ) := E
h,h

0⇠⇡|
V

[d(h, h0
)]

where ⇡|
V

is the conditional distribution induced by re-
stricting ⇡ to V , that is, ⇡|

V

(h) = ⇡(h)/⇡(V ) for h 2 V .

Intuitively, a version space with very small average diame-
ter ought to put high weight on hypotheses that are close to
the true hypothesis. Indeed, given a version space V with
h⇤ 2 V , the following lemma shows that if �(V ) is small
enough, then a low error hypothesis can be found by two
popular heuristics: random sampling and MAP estimation.

Lemma 2. Suppose V ⇢ H contains h⇤
. Pick ✏ > 0.

(a) (Random sampling) If �(V )  ✏ ⇡|
V

(h⇤
) then

E
h⇠⇡|

V

[d(h⇤, h)]  ✏.

(b) (MAP estimation) Write p
map

= max

h2V

⇡|
V

(h).
Pick 0 < ↵ < p

map

. If

�(V )  2✏ (min{⇡|
V

(h⇤
), p

map

� ↵})2 ,

then d(h⇤, h)  ✏ for any h with ⇡|
V

(h) � p
map

�↵.

Proof. Part (a) follows from

�(V ) = E
h,h

0⇠⇡|
V

[d(h, h0
)] � ⇡|

V

(h⇤
)E

h⇠⇡|
V

[d(h⇤, h)].

For (b), take � = min(⇡|
V

(h⇤
), p

map

� ↵) and define
V
⇡,�

= {h 2 V : ⇡|
V

(h) � �}. Note that V
⇡,�

contains
h⇤ as well as any h 2 V with ⇡|

V

(h) � p
map

� ↵.

We claim diam(V
⇡,�

) is at most ✏. Suppose not. Then there
exist h

1

, h
2

2 V
⇡,�

satisfying d(h
1

, h
2

) > ✏, implying

�(V ) = E
h,h

0⇠⇡|
V

[d(h, h0
)]

� 2 · ⇡|
V

(h
1

) · ⇡|
V

(h
2

) · d(h
1

, h
2

) > 2�2✏.

But this contradicts our assumption on �(V ). Since both
h, h⇤ 2 V

⇡,�

, we have (b).

3.3. An Average Notion of Splitting

We now turn to defining an average notion of splitting. A
data point x ⇢-average splits V if

max

⇢
⇡(V +

x

)

2

⇡(V )

2

�(V +

x

),
⇡(V �

x

)

2

⇡(V )

2

�(V �
x

)

�
 (1� ⇢)�(V ).

And we say a set S ⇢ H has average splitting index

(⇢, ✏, ⌧) if for any subset V ⇢ S such that �(V ) > ✏,

Pr
x⇠D (x ⇢-average splits V ) � ⌧.
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Intuitively, average splitting refers to the ability to signifi-
cantly decrease the potential function

⇡(V )

2

�(V ) = E
h,h

0⇠⇡

[ (h, h0 2 V ) d(h, h0
)]

with a single query.

While this potential function may seem strange at first
glance, it is closely related to the original splitting index.
The following lemma, whose proof is deferred to Section 5,
shows the splitting index bounds the average splitting index
for any hypothesis class.
Lemma 3. Let ⇡ be a probability measure over a hypoth-

esis class H. If H has splitting index (⇢, ✏, ⌧), then it has

average splitting index (

⇢

4dlog(1/✏)e , 2✏, ⌧).

Dasgupta (2005) derived the splitting indices for several
hypothesis classes, including intervals and homogeneous
linear separators. Lemma 3 implies average splitting in-
dices within a log(1/✏) factor in these settings.

Moreover, given access to samples from ⇡|
V

, we can
easily estimate the quantities appearing in the defini-
tion of average splitting. For an edge sequence E =

({h
1

, h0
1

}, . . . , {h
n

, h0
n

}), define

 (E) :=

nX

i=1

d(h
i

, h0
i

).

When h
i

, h0
i

are i.i.d. draws from ⇡|
V

for all i = 1, . . . , n,
which we denote E ⇠ (⇡|

V

)

2⇥n, the random variables
 (E),  (E�

x

), and  (E+

x

) are unbiased estimators of the
quantities appearing in the definition of average splitting.
Lemma 4. Given E ⇠ (⇡|

V

)

2⇥n

, we have

E

1

n
 (E)

�
= �(V ) and E


1

n
 (E+

x

)

�
=

⇡(V +

x

)

2

⇡(V )

2

�(V +

x

)

for any x 2 X . Similarly for E�
x

and V �
x

.

Proof. From definitions and linearity of expectations, it is
easy to observe E[ (E)] = n�(V ). By the independence
of h

i

, h0
i

, we additionally have

E

1

n
 (E+

x

)

�
=

1

n
E

2

4
X

{h
i

,h

0
i

}2E

+
x

d(h
i

, h0
i

)

3

5

=

1

n
E

2

4
X

{h
i

,h

0
i

}2E

[h
i

2 V +

x

] [h0
i

2 V +

x

] d(h
i

, h0
i

)

3

5

=

1

n

X

{h
i

,h

0
i

}2E

✓
⇡(V +

x

)

⇡(V )

◆
2

E
⇥
d(h

i

, h0
i

) |h
i

, h0
i

2 V +

x

⇤

=

✓
⇡(V +

x

)

⇡(V )

◆
2

�(V +

x

).

Remark: It is tempting to define average splitting in terms
of the average diameter as

max{�(V +

x

),�(V �
x

)}  (1� ⇢)�(V ).

However, this definition does not satisfy a nice relation-
ship with the splitting index. Indeed, there exist hypothesis
classes V for which there are many points which 1/4-split
E for any E ⇢ �V

2

�
but for which every x 2 X satisfies

max{�(V +

x

),�(V �
x

)} ⇡ �(V ).

This observation is formally proven in the appendix.

4. An Average Splitting Index Algorithm
Suppose we are given a version space V with average split-
ting index (⇢, ✏, ⌧). If we draw ˜O(1/⌧) points from the data
distribution then, with high probability, one of these will ⇢-
average split V . Querying that point will result in a version
space V 0 with significantly smaller potential ⇡(V 0

)

2

�(V 0
).

If we knew the value ⇢ a priori, then Lemma 4 combined
with standard concentration bounds (Hoeffding, 1963; An-
gluin & Valiant, 1977) would give us a relatively straight-
forward procedure to find a good query point:

1. Draw E0 ⇠ (⇡|
V

)

2⇥M and compute the empirical es-
timate b�(V ) =

1

M

 (E0
).

2. Draw E ⇠ (⇡|
V

)

2⇥N for N depending on ⇢ and b�.

3. For suitable M and N , it will be the case that with
high probability, for some x,

1

N
max

�
 (E+

x

), (E�
x

)

 ⇡ (1� ⇢)b�.

Querying that point will decrease the potential.

However, we typically would not know the average split-
ting index ahead of time. Moreover, it is possible that the
average splitting index may change from one version space
to the next. In the next section, we describe a query selec-
tion procedure that adapts to the splittability of the current
version space.

4.1. Finding a Good Query Point

Algorithm 2, which we term SELECT, is our query selec-
tion procedure. It takes as input a sequence of data points
x
1

, . . . , x
m

, at least one of which ⇢-average splits the cur-
rent version space, and with high probability finds a data
point that ⇢/8-average splits the version space.

SELECT proceeds by positing an optimistic estimate of ⇢,
which we denote b⇢

t

, and successively halving it until we are
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Algorithm 1 DBAL

Input: Hypothesis class H, prior distribution ⇡
Initialize V = H
while 1

n

 (E) � 3✏

4

for E ⇠ (⇡|
V

)

2⇥n do
Draw m data points x = (x

1

, . . . , x
m

)

Query point x
i

= SELECT(V,x) and set V to be con-
sistent with the result

end while
return Current version space V in the form of the
queried points (x

1

, h⇤
(x

1

)), . . . , (x
K

, h⇤
(x

K

))

Algorithm 2 SELECT

Input: Version space V , prior ⇡, data x = (x
1

, . . . , x
m

)

Set b⇢
1

= 1/2
for t = 1, 2, . . . do

Draw E0 ⇠ (⇡|
V

)

2⇥m

t and compute b�
t

=

1

m

t

 (E0
)

Draw E ⇠ (⇡|
V

)

2⇥n

t

If 9x
i

s.t. 1

n

t

max

�
 (E+

x

i

), (E�
x

i

)

  (1 � b⇢
t

)

b
�

t

,
then halt and return x

i

Otherwise, let b⇢
t+1

= b⇢
t

/2
end for

confident that we have found a point that b⇢
t

-average splits
the version space. In order for this algorithm to succeed, we
need to choose n

t

and m
t

such that with high probability
(1) b�

t

is an accurate estimate of �(V ) and (2) our halting
condition will be true if b⇢

t

is within a constant factor of ⇢
and false otherwise. The following lemma, whose proof is
in the appendix, provides such choices for n

t

and m
t

.

Lemma 5. Let ⇢, ✏, �
0

> 0 be given. Suppose that ver-

sion space V satisfies �(V ) > ✏. In SELECT, fix a round

t and data point x 2 X that exactly ⇢-average splits V
(that is, max{⇡|

V

(V +

x

)

2

�(V +

x

), ⇡|
V

(V �
x

)

2

�(V �
x

)} =

(1� ⇢)�(V )). If

m
t

� 48

b⇢2
t

✏
log

4

�
0

and n
t

� max

(
32

b⇢2
t

b
�

t

,
40

b
�

2

t

)
log

4

�
0

then with probability 1� �
0

,

b
�

t

� (1� b⇢
t

/4)�(V ) and

(a) if ⇢  b⇢
t

/2, then

1

n
t

max

�
 (E+

x

), (E�
x

)

 
> (1� b⇢

t

)

b
�

t

.

(b) If ⇢ � 2b⇢
t

, then

1

n
t

max

�
 (E+

x

), (E�
x

)

  (1� b⇢
t

)

b
�

t

.

Given the above lemma, we can establish a bound on the
number of rounds and the total number of hypotheses SE-
LECT needs to find a data point that ⇢/8-average splits the
version space.

Theorem 6. Suppose that SELECT is called with a ver-

sion space V with �(V ) � ✏ and a collection of points

x
1

, . . . , x
m

such that at least one of x
i

⇢-average splits V .

If �
0

 �/(2m(2 + log(1/⇢))), then with probability at

least 1 � �, SELECT returns a point x
i

that (⇢/8)-average

splits V , finishing in less than dlog(1/⇢)e + 1 rounds and

sampling O
⇣⇣

1

✏⇢

2 +

log(1/⇢)

�(V )

2

⌘
log

1

�0

⌘
hypotheses in total.

Remark 1: It is possible to modify SELECT to find a point
x
i

that (c⇢)-average splits V for any constant c < 1 while
only having to draw O(1) more hypotheses in total. First
note that by halving b⇢

t

at each step, we immediately give
up a factor of two in our approximation. This can be made
smaller by taking narrower steps. Additionally, with a con-
stant factor increase in m

t

and n
t

, the approximation ratios
in Lemma 5 can be set to any constant.

Remark 2: At first glance, it appears that SELECT requires
us to know ⇢ in order to calculate �

0

. However, a crude
lower bound on ⇢ suffices. Such a bound can always be
found in terms of ✏. This is because any version space
is (✏/2, ✏, ✏/2)-splittable (Dasgupta, 2005, Lemma 1). By
Lemma 3, so long as ⌧ is less than ✏/4, we can substitute

✏

8dlog(2/✏)e for ⇢ in when we compute �
0

.

Proof of Theorem 6. Let T := dlog(1/⇢)e + 1. By
Lemma 5, we know that for rounds t = 1, . . . , T , we don’t
return any point which does worse than b⇢

t

/2-average splits
V with probability 1 � �/2. Moreover, in the T -th round,
it will be the case that ⇢/4  b⇢

T

 ⇢/2, and therefore,
with probability 1� �/2, we will select a point which does
no worse than b⇢

T

/2-average split V , which in turn does no
worse than ⇢/8-average split V .

Note that we draw m
t

+ n
t

hypotheses at each round. By
Lemma 5, for each round b�

t

� 3�(V )/4 � 3✏/4. Thus

# of hypotheses drawn =

TX

t=1

m
t

+ n
t

=

TX

t=1

 
48

b⇢2
t

✏
+

32

b⇢2
t

b
�

t

+

40

b
�

2

t

!
log

4

�
0


TX

t=1

✓
96

✏b⇢2
t

+

72

�(V )

2

◆
log

4

�
0

Given b⇢
t

= 1/2t and T  2 + log 1/⇢, we have

TX

t=1

1

b⇢2
t

=

TX

t=1

2

2t 
 

TX

t=1

2

t

!
2


⇣
2

2+log 1/⇢

⌘
2

=

16

⇢2
.
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Plugging in �
0

 �

2m(2+log(1/⇢))

, we recover the theorem
statement.

4.2. Active Learning Strategy

Using the SELECT procedure as a subroutine, Algorithm 1,
henceforth DBAL for Diameter-based Active Learning, is
our active learning strategy. Given a hypothesis class
with average splitting index (⇢, ✏/2, ⌧), DBAL queries data
points provided by SELECT until it is confident �(V ) < ✏.

Denote by V
t

the version space in the t-th round of DBAL.
The following lemma, which is proven in the appendix,
demonstrates that the halting condition (that is,  (E) <
3✏n/4, where E consists of n pairs sampled from (⇡|

V

)

2)
guarantees that with high probability DBAL stops when
�(V

t

) is small.

Lemma 7. The following holds for DBAL:

(a) Suppose that for all t = 1, 2, . . . ,K that �(V
t

) > ✏.
Then the probability that the termination condition is

ever true for any of those rounds is bounded above by

K exp

�� ✏n

32

�
.

(b) Suppose that for some t = 1, 2, . . . ,K that �(V
t

) 
✏/2. Then the probability that the termination con-

dition is not true in that round is bounded above by

K exp

�� ✏n

48

�
.

Given the guarantees on the SELECT procedure in The-
orem 6 and on the termination condition provided by
Lemma 7, we get the following theorem.

Theorem 8. Suppose that H has average splitting index

(⇢, ✏/2, ⌧). Then DBAL returns a version space V satisfy-

ing �(V )  ✏ with probability at least 1 � � while using

the following resources:

(a) K  8

⇢

⇣
log

2

✏

+ 2 log

1

⇡(h

⇤
)

⌘
rounds, with one label

per round,

(b) m  1

⌧

log

2K

�

unlabeled data points sampled per

round, and

(c) n  O
⇣⇣

1

✏⇢

2 +

log(1/⇢)

✏

2

⌘ �
log

mK

�

+ log log

1

✏

�⌘
hy-

potheses sampled per round.

Proof. From definition of the average splitting index, if
we draw m =

1

⌧

log

2K

�

unlabeled points per round, then
with probability 1 � �/2, each of the first K rounds will
have at least one data point that ⇢-average splits the cur-
rent version space. In each such round, if the version space
has average diameter at least ✏/2, then with probability
1 � �/4 SELECT will return a data point that ⇢/8-average
splits the current version space while sampling no more

than n = O
⇣⇣

1

✏⇢

2 +

1

✏

2 log
1

⇢

⌘
log

mK log

1
✏

�

⌘
hypotheses

per round by Theorem 6.

By Lemma 7, if the termination check uses n0
=

O
�
1

✏

log

1

�

�
hypotheses per round, then with probability

1 � �/4 in the first K rounds the termination condition
will never be true when the current version space has av-
erage diameter greater than ✏ and will certainly be true if
the current version space has diameter less than ✏/2.

Thus it suffices to bound the number of rounds in which we
can ⇢/8-average split the version space before encounter-
ing a version space with ✏/2.

Since the version space is always consistent with the true
hypothesis h⇤, we will always have ⇡(V

t

) � ⇡(h⇤
). After

K =

8

⇢

⇣
log

2

✏

+ 2 log

1

⇡(h

⇤
)

⌘
rounds of ⇢/8-average split-

ting, we have

⇡(h⇤
)

2

�(V
K

)  ⇡(V
K

)

2

�(V
K

)


⇣
1� ⇢

8

⌘
K

⇡(V
0

)

2

�(V
0

)

 ⇡(h⇤
)

2✏

2

Thus in the first K rounds, we must terminate with a ver-
sion space with average diameter less than ✏.

5. Proof of Lemma 3
In this section, we give the proof of the following relation-
ship between the original splitting index and our average
splitting index.

Lemma 3. Let ⇡ be a probability measure over a hypoth-

esis class H. If H has splitting index (⇢, ✏, ⌧), then it has

average splitting index (

⇢

4dlog(1/✏)e , 2✏, ⌧).

The first step in proving Lemma 3 is to relate the splitting
index to our estimator  (·). Intuitively, splittability says
that for any set of large edges there are many data points
which remove a significant fraction of them. One may sus-
pect this should imply that if a set of edges is large on av-
erage, then there should be many data points which remove
a significant fraction of their weight. The following lemma
confirms this suspicion.

Lemma 9. Suppose that V ⇢ H has splitting index

(⇢, ✏, ⌧), and say E = ({h
1

, h0
1

}, . . . , {h
n

, h0
n

}) is a se-

quence of hypothesis pairs from V satisfying

1

n

 (E) > 2✏.
Then if x ⇠ D, we have with probability at least ⌧ ,

max

�
 (E+

x

), (E�
x

)

 
✓
1� ⇢

4dlog(1/✏)e
◆
 (E).
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Figure 1. Simulation results on homogeneous linear separators. Left: d = 10. Middle: d = 25. Right: d = 50.

Proof. Consider partitioning E as

E
0

= {{h, h0} 2 E : d(h, h0
) < ✏} and

E
k

= {{h, h0} 2 E : d(h, h0
) 2 [2

k�1✏, 2k✏)

for k = 1, . . . ,K with K = dlog 1

✏

e. Then E
0

, . . . , E
K

are
all disjoint and their union is E. Define E

1:K

= [K

k=1

E
k

.

We first claim that  (E
1:K

) >  (E
0

). This follows from
the observation that because  (E) � 2n✏ and each edge in
E

0

has length less than ✏, we must have

 (E
1:K

) =  (E)�  (E
0

) > 2n✏� n✏ >  (E
0

).

Next, observe that because each edge {h, h0} 2 E
k

with
k � 1 satisfies d(h, h0

) 2 [2

k�1✏, 2k✏), we have

 (E
1:K

) =

KX

k=1

X

{h,h0}2E

k

d(h, h0
) 

KX

k=1

2

k✏|E
k

|.

Since there are only K summands on the right, at least one
of these must be larger than  (E

1:K

)/K. Let k denote that
index and let x be a point which ⇢-splits E

k

. Then we have

 ((E
1:K

)

+

x

)   (E
1:K

)�  (E
k

\ (E
k

)

+

x

)

  (E
1:K

)� ⇢2k�1✏|E
k

|

⇣
1� ⇢

2K

⌘
 (E

1:K

).

Since  (E
1:K

) �  (E
0

), we have

 (E+

x

)   (E
0

) +

⇣
1� ⇢

2K

⌘
 (E

1:K

)


⇣
1� ⇢

4K

⌘
 (E).

Symmetric arguments show the same holds for E�
x

.

Finally, by the definition of splitting, the probability of
drawing a point x which ⇢-splits E

k

is at least ⌧ , giving
us the lemma.

With Lemma 9 in hand, we are now ready to prove
Lemma 3.

Proof of Lemma 3. Let V ⇢ H such that �(V ) > 2✏. Sup-
pose that we draw n edges E i.i.d. from ⇡|

V

and draw a
data point x ⇠ D. Then Hoeffding’s inequality (Hoeffd-
ing, 1963), combined with Lemma 4, tells us that there ex-
ist sequences ✏

n

, �
n

& 0 such that with probability at least
1� 3�

n

, the following hold simultaneously:

• �(V )� ✏
n

 1

n

 (E)  �(V ) + ✏
n

,

• 1

n

 (E+

x

) � ⇡(V

+
x

)

2

⇡(V )

2 �(V +

x

)� ✏
n

, and

• 1

n

 (E�
x

) � ⇡(V

�
x

)

2

⇡(V )

2 �(V �
x

)� ✏
n

.

For ✏
n

small enough, we have that �(V )� ✏
n

> 2✏. Com-
bining the above with Lemma 9, we have with probability
at least ⌧ � 3�

n

,

max

⇢
⇡(V +

x

)

2

⇡(V )

2

�(V +

x

),
⇡(V �

x

)

2

⇡(V )

2

�(V �
x

)

�
� ✏

n

 1

n
max{ (E+

x

), (E�
x

)}


✓
1� ⇢

4dlog(1/✏)e
◆
 (E)

n


✓
1� ⇢

4dlog(1/✏)e
◆
(�(V ) + ✏

n

)

By taking n ! 1, we have ✏
n

, �
n

& 0, giving us the
lemma.

6. Simulations
We compared DBAL against the baseline passive learner as
well as two other generic active learning strategies: CAL
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Figure 2. Simulation results on k-sparse monotone disjunctions. In all cases k = 4. Top left: d = 75, p = 0.25. Top right: d = 75,
p = 0.5. Bottom left: d = 100, p = 0.25. Bottom right: d = 100, p = 0.5.

and QBC. CAL proceeds by randomly sampling a data
point and querying it if its label cannot be inferred from
previously queried data points. QBC uses a prior distri-
bution ⇡ and maintains a version space V . Given a ran-
domly sampled data point x, QBC samples two hypotheses
h, h0 ⇠ ⇡|

V

and queries x if h(x) 6= h0
(x).

We tested on two hypothesis classes: homogeneous, or
through-the-origin, linear separators and k-sparse mono-
tone disjunctions. In each of our simulations, we drew our
target h⇤ from the prior distribution. After each query, we
estimated the average diameter of the version space. We
repeated each simulation several times and plotted the av-
erage performance of each algorithm.

Homogeneous linear separators The class of d-
dimensional homogeneous linear separators can be iden-
tified with elements of the d-dimensional unit sphere. That
is, a hypothesis h 2 Sd�1 acts on a data point x 2 Rd via
the sign of their inner product:

h(x) := sign(hh, xi).

In our simulations, both the prior distribution and the data
distribution are uniform over the unit sphere. Although
there is no known method to exactly sample uniformly
from the version space, Gilad-Bachrach et al. (2005)
demonstrated that using samples generated by the hit-and-
run Markov chain works well in practice. We adopted this
approach for our sampling tasks.

Figure 1 shows the results of our simulations on homoge-
neous linear separators.

Sparse monotone disjunctions A k-sparse monotone
disjunction is a disjunction of k positive literals. Given
a Boolean vector x 2 {0, 1}n, a monotone disjunction h
classifies x as positive if and only if x

i

= 1 for some posi-
tive literal i in h.

In our simulations, each data point is a vector whose coor-
dinates are i.i.d. Bernoulli random variables with param-
eter p. The prior distribution is uniform over all k-sparse
monotone disjunctions. When k is constant, it is possible
to sample from the prior restricted to the version space in
expected polynomial time using rejection sampling.

The results of our simulations on k-sparse monotone dis-
junctions are in Figure 2.
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