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Abstract

A data-driven identification of dynamical sys-
tems requiring only minimal prior knowledge
is promising whenever no analytically derived
model structure is available, e.g., from first prin-
ciples in physics. However, meta-knowledge on
the system’s behavior is often given and should
be exploited: Stability as fundamental property
is essential when the model is used for controller
design or movement generation. Therefore, this
paper proposes a framework for learning sta-
ble stochastic systems from data. We focus on
identifying a state-dependent coefficient form of
the nonlinear stochastic model which is globally
asymptotically stable according to probabilistic
Lyapunov methods. We compare our approach
to other state of the art methods on real-world
datasets in terms of flexibility and stability.

1. Introduction

An accurate identification of the system dynamics is the
first and very crucial step to many modern control methods.
Although reinforcement learning also allows model-free
search for optimal policies, it is known to be less efficient
and difficult to analyze. Therefore, classical control en-
gineers employ system identification techniques to obtain
parametric model descriptions of dynamical systems from
observation data, e.g., in the linear case ARX and ARMAX
models. The identification focuses on model selection, i.e.,
finding the model structure and the corresponding set of pa-
rameters. But often this set of model candidates is difficult
to find, especially for complex, possibly non-deterministic,
systems (Ljung, 1998). Therefore, the need for data-driven
models has emerged recently as control engineering is in-
creasingly applied in areas without analytic description of
the dynamical system. We consider the following two ap-
plication scenarios: First, assume a set of trajectories for a
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robotic task is given through human demonstrations, e.g.,
object grasping. The goal is to represent the motion with a
dynamical system. To ensure the reproduction terminates
at the desired final point (object to grasp), we introduce the
stability constraint. Second, consider a dynamical system
which is known to be stable, e.g., a pendulum which rests
in hanging position. The goal is to identify the dynamics
precisely without further physical insights.

Bayesian non-parametric methods, more particularly Gaus-
sian Processes (GPs) where successfully employed by Ko-
cijan et al. (2005) and Wang et al. (2005) for system iden-
tification. Other approaches focus on learning switching
linear systems (Fox et al., 2009) or employ an EM algo-
rithm (Ghahramani & Roweis, 1999) for nonlinear systems.
However, these approaches neglect the prior assumption
that the dynamical system is stable, which becomes cru-
cial when the learned model is used as a generative pro-
cess such as in movement generation for robotics (Ijspeert
et al., 2002). If stability is not considered during learning,
the identified model suffers from spurious attractors which
are not part of the true dynamics or instability.

Only little work has merged the extensive knowledge on
stability theory from control engineering with the powerful
data-driven approaches for system identification: For ex-
ample Boots et al. (2008) and Chiuso & Pillonetto (2010)
take stability constraints for learning dynamical systems
into account but are limited to linear systems. The work
by Khansari-Zadeh & Billard (2011) ensures stability of
the system by constraining the optimization of a Gaus-
sian Mixture Model (GMM) to stability conditions derived
from Lyapunov methods. The work by Paraschos et al.
(2013) relies on a phase variable to ensure stability, which
makes the approach time-dependent and therefore less ro-
bust. Control Lyapunov functions are used by Khansari-
Zadeh & Billard (2014) to ensure global stability for the
learned system. These approaches partially employ prob-
abilistic models (GP, GMM), but limit the analysis to the
deterministic part by only considering the mean regression.
By discarding the true underlying probability distribution,
information regarding reliability of the model provided by
the data is lost. This leads to overconfident conclusions
regarding performance or safety on the real system.

Therefore, this work proposes a framework for learning
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probabilistic nonlinear dynamical systems from observa-
tion, which takes the prior assumption of stability into ac-
count. The required stochastic stability conditions of the
discrete-time Markov processes are derived from Lyapunov
theory. We provide simulation results to validate the pro-
posed approach and compare it to previously mentioned
methods for identifying dynamical systems.

2. Problem Formulation

We consider an autonomous, dynamical, discrete-time sys-
tem with continuous-valued state x5, € X = R?. The state
evolves according to an unknown stochastic process'

Ti+1 = f(wkva)k)a (1)

with initial value &y € X and wy, is a random variable from
the probability space (£2, F,P) with sample space €2, the
corresponding o-algebra F and the probability measure P.
Since x;, € X is fixed at each step, (1) describes a state de-
pendent distribution over @y 1. A realization of @y, € 2, is
drawn at every time step, yielding a realization of the next
step. As the distribution for x_; only depends on the state
at time step k, f is a Markov process, denoted by {a}}.

We assume that consecutive measurements of the state are
available, thus N data pairs are given in the trainings set
D = {&,,Zn1})_,. Based on these measurements, we
model the unknown dynamics f including the distribu-
tion w;y, using the prior knowledge, that the stochastic pro-
cess (1) converges to the origin «;, = 0. The model con-
sists of the mapping f,, and a encoding of the random vari-
able w defined by a finite parameter vector ¢ € W. As the
model f,, must best possibly explain the data D, the prob-
lem is formulated as constrained likelihood maximization

N

P = arg mgx Z log P (:En+1|:in, fw) , (2a)
n=1

s.t. {x} } converges to the origin for k — co.  (2b)

As different stochastic stability concepts exist, the conver-
gence in (2b) is defined as convergence with probability one
(w.p.1) (Kushner, 1971):

Definition 1 (Convergence w.p.1). {xy} converges to the
originw.p.1 if, for each e > 0, ||xk|| > € only finitely often.

'Notation: Bold symbols denote vectors or multivariate func-
tions, capital letters matrices and I, the p x p identity ma-
trix. A > 0 denotes positive definiteness of the matrix A,
E [-] the expected value, V [] the variance of a random variable
and C [, ] the covariance between two random variables, where
C[a] = Cla,a]. X denotes a realization of the random variable
X. Imitating Matlab indexing, A. ;) denotes the i-th column,
A, the j-throw and A(;.2 ;) the first and second element in the
i-the column of A. The i-th entry of the vector &y, is denoted xx,;.

This also implies the following type of convergence, which
might be more intuitive to the reader.

Definition 2 (Convergence in probability). The chain {xy}
converges to the origin in probability if P(||xk| > €) — 0,
for each € > 0.

We do not consider any control input here, thus the identifi-
cation takes place for the closed-loop system for a existing
controller or an uncontrolled system.

3. Stability Conditions for the Model
3.1. The Model

Consider the state-dependent coefficient form of f

1 = A(zp) Tk, 3)

where, for a fixed xj, A is arandom variable from the prob-
ability space (Q4, Fa,Pa) with the sample space 24 C
R?*4_ The probability density function of A is specified
by the vector & € ©, which is state dependent through
6% : X — ©. This mapping is itself parametrized by a
vector 1. At each step, a realization of A, denoted by A,
is drawn and multiplied by the state x; to proceed by one
step. This is visualized in Figure 1 along with the two-layer
model structure: The first layer maps current state j, € X
onto the parameter @ € O, denoted by 8% : X — ©. The
mapping is parametrized by 1. The second layer is the
probability distribution on A which assigns to each element
in the sample space {24 a probability based on 6.

‘Model " Simulation
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Figure 1. Illustration of the two layer design of the proposed
model and the process of simulation.

To illustrate this multilayer design, we give a brief example
in the scalar case d = 1: Assume A(xy) follows, for a
given wy,, a Gaussian distribution A ~ N'(u, o). Therefore,
the parameter vector is @ = [ o7 with p € R, 0 € RT,
thus © - C R x RT. The dependency of these parameters
on the current state xj, is expressed in 0}(’/, e.g.,

{“(xkﬂ = 0% (zk) = szk] ; )

O'(.’)Sk
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where linear dependency of the mean on the state and a
quadratic relation between variance and the state is as-
sumed. The parameters defining 0}{’/ here are 1 = [w 2]T.
Generally, the first layer 8% : X — © can be any state of
the art parametric regression method which is parametrized
by 1. For layer two, any probability distribution with a
fixed set of parameters is applicable for A.

Leaving the stochastic aspect aside, model (3) is the state-
dependent coefficient (SDC) form which is reached by fac-
torizing a nonlinear system into a linear-like structure. It
was shown, that for a any continuous differentiable func-
tion f with f(0) = 0, their exists a matrix-valued function
A(x) such that f(x) = A(x)x, see Cimen (2008). Thus,
the SDC form is not limiting the expressive power of our
model. It also reflects the setup of many real-world system,
e.g., consider an actuator whose output is generally noisy
and the magnitude of the noise is dependent on the temper-
ature. By modeling the temperature as a state, the model (3)
allows to capture this varying precision of the actuator.

The structure of the model (3) combines two important cri-
teria. First, it provides more flexibility than a linear sys-
tem with random parameters, so it encodes also nonlinear
dynamics.Second, it is simple enough to allow a quadratic
Lyapunov function analysis and therefore the derivation of
analytic constraints for convergence as needed for the opti-
mization in (2).

3.2. Stability Analysis

For approaching the problem as formulated in Section 2,
an analytic condition for the constraint in the optimization
problem (2b), given that f,, is of the form (3), is needed.
The literature on stability criteria for dynamical systems is
very rich and for nonlinear systems Lyapunov type meth-
ods are often used. They are based on the following idea:
If there is a function representing the “energy” in the sys-
tem (called Lyapunov function) which constantly decreases
over time, the state will converge to a ”zero energy” state,
the origin. More precise, the Lyapunov function must be
positive definite and it must be strictly decreasing over
time, except in the origin. Using the stochastic discrete-
time version of Lyapunov methods and the Borel-Cantelli
Lemma leads to the following conditions for exponential
stability (which implies convergence w.p.1 as defined in
Definition 1)

Theorem 1 (Exponential Stability, (Kushner, 1971)).

Given a positive definite function V (x,) > 0 for which

E[V(xgs1)|ze]) =V (k) < —aV(x), Vo, € X'\ 0,
(%)

for some o > O then

EV(xpim)lze]) < (1—a)™V(x) and  (6)
V(xktm) — 0form — oo (wp.1). (7

For the class of systems in (3) a quadratic function V' (xy,)
is a proper Lyapunov function to derive sufficient stability
constraints for arbitrary distributions on A as shown in the
following proposition:

Proposition 1 (Stability of the model (3)). Consider a
stochastic process generated from (3) where in each step a
realization of A is drawn from sample space Q4 C R*4,
The process is globally exponentially stable at x;, = 0 if
there exists a P > 0 such that

E[AT(z),)] PE[A(z))] +Q — (1 — a)P < 0, Vaj, € X,
3

for some o > 0, where Q is defined as

Qij)(xk) = ZP(Z,:) C[A¢o (), A (zk)], 9
1
forany xg € X.

Proof. Considering a quadratic Lyapunov function
V(er) = wZPwk with P > 0, the inequality from
Theorem 1 in (5) is given as

E [@] , Peiy1|@pg] —2] Py < —ox] Py,
which yields for the stochastic? process Tx11 = A(x)Tk

x] E[AT] PE [A] x4+ Tr (P C [Axy]) — (10)
—(1—-a)zfPx, <0, VapecX.

Now, an expression for the trace is derived as follows

Z A(:,i)xk,i]>

Tr (PC[Axy]) = Tr (P(C

=Tr PZ Lk,iLk,j (® [A(:,i), A(:,j)]
1,

= ZP(z,:) C[A¢a, Awj)] orizn;, = TLQ@p
i,5,0
where definition of @ in (9) was substituted. Using this
simplification, (10) is rewritten as

a] (IE[TA] PE[A]+Q — (1 — a)P) ), <0,

which must hold for Vx;, € X. To ensure this, the ma-
trix E [A]T PE [A] +Q — (1 — a) P must be negative semi-
definite, which concludes the proof. O

The @}, dependency of the random process A as been dropped
for notational convenience.
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The interpretation of Proposition 1 is analogue to the lin-
ear deterministic case x,1 = Ax, which is stable if there
exists a matrix P for which ATPA — P < 0: In the non-
linear case in (3) the negative definiteness must be fulfilled
for A(zxy), Vo € X. The probabilistic nature of the sys-
tem (3) in addition requires “a buffer”, which here is Q.
The deterministic case is reconstructed if A has zero vari-
ance. The scalar case, considered in the following remark,
also allows an intuitive insight to the Proposition 1: There
is a trade-off between the magnitude of the expected value
and the variance of A as follows:

Remark 1. In the scalar case®, i.e. d = 1 in (3), with
Q = PV [A(zy)] condition (8) simplifies for any P > 0 to

E[A(z)]? + V[A(zp)] <1—a, Vzped. (1)

4. Stable Learning with Various Distributions

Our learning framework consists of three major steps:

1. Chose any probability distribution for the random
variable A in (3) which is given by a fixed set of pa-
rameters & € O and whose first two moments are
available. It is assumed that subset ©* C © for
which (8) is fulfilled is non-empty, thus ©* = ().

2. Chose any parametric regression method to represent
the mapping 8% : X — ©. The parameters of this
mapping are denoted by ¢ € W. The set of all ¢ for
which all ¢ € X map to ©* is denoted by ¥*.

3. The likelihood maximization under constraints
N
g 1 ( 701#) a2
P arggggc*; og P (xpii1|Tn (12)

is solved, where @ € U* is equivalent to constraint (8)
with P > 0 and o > 0.

The optimization (12) is a general constrained nonlinear
program in a rather high dimensional space (depending on
number of parameters of the regression method in step 2).
However, independent of the optimality, the model f ;. of
the form (3) is exponentially stable, thus any sample path
of the system converges. For computational simplicity, we
focus on two types of distribution which naturally fulfill the
constraints as explained in the next sections.

4.1. Stability with Beta Distribution

For certain choices of distributions, constraint (8) is ful-
filled for all possible parameter 8, thus ©* = O, which

3Even though A, Q, P are scalars here, we keep them capital-
ized for notational consistency.

makes the optimization unconstrained. One example of
such a distribution is the Beta distribution as given in the
following corollary.

Corollary 1. The scalar system zpy1 =

A(mk)xk
where A(wy) = k(A(wy) —n) with Beta distributed
A(xg) ~ B(a(zg),b(xy)) and K = 2, n = 0.5 with state
dependent parameters |[a(xy) b(xg)]T = Bg (), with any

Oz X = Op = Rﬁ_ is exponentially stable.

Proof. Applying the affine transformation to mean and
variance leads to*

Bl = (8 [460)] 1) = (75571).
ab
@t 02@rbr 1)

V [A(zg)] = k2 V [A(xk)] — k2

Condition (11) is rewritten to

(R(E[A(wr)] =m)* + K V[A(zr)] S 1—a, Vay € X,

where the best possible choice for 7 minimizes
(E[A(zg)] —n)?, because it leaves the largest possi-
ble range for k. As E[A] is in the interval |0, 1] the
minimization is achieved with the choice n = % Then,
condition (11), divided by %2 on both sides, evaluates to

a? a 1 ab

(a+b)? 7a+b+1+(a+b)2(a+b+1)
ab +1<1—oz
(a+b)a+bd+1) 4~ k2

0...

=

As a > 0 can be chosen arbitrarily small this condition
holds for every || < 2. Hence, according to Theorem 1
the system x+1 = A(x)xy is exponentially stable. [

To ensure maximal flexibility of the model, x = 2 is set
for further considerations. This leads to the conclusion that

5=05= Ri. Therefore, in the optimization, no con-
straints on ¥ must be considered, thus ¥ = ¥*,

4.2, Stability with Dirichlet Distribution

Constructing A from a Dirichlet distribution also allows for
unconstrained optimization as it also leads to stable behav-
ior as shown in the following corollary.

Corollary 2. The d-dimensional system xj11 = A(xy)Ty
where each row of A(xy,) consists of the first d elements of
a d + 1 dimensional Dirichlet distributed vector, thus,

A(iﬁ) = agll):d)’ with a®™ ~ D (9%1 (ack)) , Vi=1...d,

with any 0%" : X — Op, Vi, is asymptotically stable w.p.1.

“The state dependency of a, b is dropped for notational conve-
nience.
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Proof. By construction the sample space of A, () 4 contains
only elements for which

A(i,j) > 0, A(i,j) < ]., VZ,] =1...d
d
and » A ) <1, Vi=1...d.  (13)
j=1

Consider now a realization of A(xj) denoted by A and
since the following statements hold for any realization in
the sample space, we omit writing VA € € 4. It follows

d d
Z A(lj) <1Vs = iZZiDC(lZA(w) <1
j=1 j=1
—_ d —_
= Al = }2%2 |[Aupl <1,
4

where the last inequality holds because all elements of A
are strictly positive and [|A||o denotes the Maximum Ab-
solute Row Sum Norm. Consider now M consecutive re-

alizations A(Y) withi = 1,..., M. For the maximum norm
of state in the M-th step holds
M M
Jweenle = | TT AT < T 4™ llewlle
m=1 ) m=1

_ M -
< (maXHA(m)H ) ekl o Moo,
m [e%e]

where the submultiplicativity property of induced matrices
(Horn & Johnson, 2013) is used. As convergence towards
the origin holds for each element in the sample space, the
system is stable with probability one. Therefore, the pa-
rameter space is unrestricted O, = Op = ]Ri“. O

Remark 2. Note that this approach only allows to rep-
resent the special class of positive systems. Nevertheless,
positive systems play an important role in control engineer-
ing for modeling the evolution of strictly positive quantities
as shown in (Farina & Rinaldi, 2011).

Remark 3. An affine transformation, as shown for
Beta distribution is not possible here because ab-
solute values are taken in the row sum. There-
fore,  from ijl | A <1 one cannot conclude

25:1 |k(Ag ;) — 0.5)| < 1forany k> 1.

5. Simulations
5.1. Setup

We validate our approach, labeled LeSSS (for Learning
Stable Stochastic Systems), using synthetic and human mo-
tion data and the simulation of a chemical reactor. For
the Beta distribution, Gaussian Mixture Regression (GMR)

1073
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Figure 2. Comparison of true and inferred x; dependent variance
(top) and mean (bottom) function.

is used for the mapping from the state to the parameters
05 : X — Op. Thus, the parameter vector 1, is the con-
catenation of the prior m;, the means p; and the covariances
Yy forl =1,...L . The code (based on Calinon (2009))
includes k-means clustering initialization and a transforma-
tion of ¥; and 7; to make it an unconstrained optimization.
To evaluate the likelihood function for each training point
{Zn+1,ZTn}, the Beta distribution parameters are computed
[an b,]T = Og (Z,) using GMR. Then, the log likelihood
of A,, = Z11/Z, given the parameters [a,, b,] is evalu-
ated using the density function of the Beta distribution. As
all possible parameter O3 = [a b]T € R% lead to stability,
finding 1) is an unconstrained optimization problem.

For the Dirichlet distribution, the mapping from the state
to the parameters 0% : X — Op uses a nearest neighbor
approach for computational simplicity. The 2d = 4 closest
data points are considered for fitting the training parame-
ters of the Dirichlet distribution locally. Then a training
point is placed at the center of these four points. At re-
production, the closest such training point and its Dirichlet
parameters are taken for regression. This does not necessar-
ily maximize the likelihood, but shows accurate results for
reproduction. We compare the following models from lit-
erature regarding reproduction precision and convergence
properties:

e The approach introduced by Boots et al. (2008)
learns stable linear dynamical system (stable LDS)
from data. It constraints the search of the deter-
ministic dynamic matrix A to ensure the stability
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of 11 = Axy,.

e Gaussian Process Dynamical Models (GPDM) (Wang
et al., 2005) represent dynamical system in the gen-
eral form x;11 = f(xy), with Gaussian Process
f ~ GP(0, k(xk, z})). We employ a zero prior mean
function and a squared exponential kernel. The hyper-
parameters of the kernel are optimized using the like-
lihood as described by Rasmussen & Williams (2006).
In reproduction, this method can either be used in de-
terministic setting by only taking the posterior mean
prediction pgp(xg) thus xpy; = pgp(xy) or the
stochastic setting @x+1 ~ N(ugp(xk), Xop(xk)),
where ¥gp () is the posterior variance. GPDMs are
bounded (Beckers & Hirche, 2016a;b) but not stable.

e The Stable Estimator of Dynamical Systems (SEDS)
as introduced by Khansari-Zadeh & Billard (2011)
constraints the likelihood optimization of GMR pa-
rameters to a class of mean stable dynamical time-
continuous systems. The GMR maps from cur-
rent state x to the time derivative . It fo-
cuses on deterministic systems by only consider-
ing stability criteria for the mean prediction of the
GMR, peyy (), while ignoring the stochastic na-
ture of GMMs, (its variance prediction Xgyvm). We
also run this method in a stochastic setting, where
z ~ N (peym (), Zomm (). For our simulations,
five mixtures are employed.

Before starting the comparison to existing approaches,
LeSSS is demonstrated on a synthetic dataset.

5.2. Simulation 1: Synthetic Data

For the first simulation, the task is to identify the stable
nonlinear stochastic system given by

1 = A(zw)r, (14)

where A(zy) ~ B ((zx — 5)%, (z +5)7) .

The learning algorithm is given 100 training points
{Zn, Tni1 109 equally spaced in the state space interval
[—8, 8] which are drawn from the state dependent Beta dis-
tribution (14). Here L = 3 was chosen for the number of
mixtures in the GMR for the mapping 0? X — Op.

Figure 2 compares the mean and variance of the original
system (14) to the one inferred by our model. It clearly
shows that the model offers sufficient flexibility to recon-
struct the original system. Note: It is also possible to verify
the parameter functions a(xy), b(xy) as given in (14), but
we directly look at the mean and variance functions as there
exists a unique mapping and it is more intuitive for inter-
pretation. It must be omitted, that the data was generated
from the same model which the algorithm is learning. This

e Training Data
—— E [A(zy)] inferred || 0.04
—— V[A(zy)] inferred
- 0.02
. I I Jo
0 50 100 150 200
Tk

Figure 3. The inferred mean and variance function for the training
set of the projected Z-shape movement are shown along with the
training data (the realizations of the random variable A).

[ I I
Training Data

o
o *
200 1 1\ stable LDS
—— GPDM

—— SEDS
—— LeSSS

100 - n
~
8
O |
| | | | |
0 20 40 60 80 100 120
k
Figure 4. Comparison of simulations for zo = 193 for stable

LDS and the mean predictions from the models GPDM, SEDS
and LeSSS.

explains the good fitting, but is of course not often the case
in practical application. Therefore, we continue with a real
world dataset in the following.

5.3. Simulation 2: Human Motion Data

For the next simulation, we use the data set for letter-
shaped motions provided by Khansari-Zadeh & Billard
(2011). The 225 trainings points of 3 trajectories of the two
dimensional Z-shaped motion are projected on the y-axis.
The GMR for 0% : X — Ogp is trained with two mixtures.

Figure 3 shows the training data along with the fit of the
mean and variance functions. The mean function shows a
smoothed estimate of the training data. The model iden-
tifies properly that the training data has higher variability
(around z;, = 0) and captures this in its variance function.

Figure 4 compares the reproduction of the models stable
LDS, GPDM, SEDS and LeSSS if taking the deterministic
(mean) output of each model (all starting from the same

V[A]
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Figure 5. Comparison of simulations for xo = 193 with the

stochastic models of GPDM, SEDS and LeSSS.

initial point). The stable LDS approach leads to a con-
verging trajectory, but fails to capture the complexity of the
dynamic (as the true dynamic is nonlinear). The GPDM
converges to a spurious attractor at x ~ —9.3 which is
undesired but not surprising. SEDS and LeSSS both lead
to asymptotic stable reproductions of the movement. Since
the data does not contain the full state (due to the projection
on the y-axis), it is not possible to reproduce the movement
precisely with a dynamical system model.

Figure 5 compares the reproduction of the three stochastic
dynamical models GPDM, SEDS and LeSSS based on three
sample paths drawn from each model. The GPDM again
converges to the spurious attractor. SEDS clearly shows
that convergence of the mean is not sufficient for converg-
ing trajectories of a stochastic system, as the drawn sam-
ple paths are strongly oscillating around the origin without
tendency to converge. In the stochastic case only LeSSS
generates converging trajectories.

Figure 6 shows an example for the human motion imitation
in the 2D case on a different training data set. It shows
the deterministic trajectory and 5 sample path realizations,
where all of them show high reproduction precision and
convergence to the orign.

5.4. Simulation 3: Chemical Reactor Simulation

For the last validation, we utilize simulated data from a
simplified chemical reactor (Einarsson, 1998). The closed-
loop reactor is modeled by a piecewise affine system with
two states: the fluid level x; and the temperature x5. Both
states are physically positive quantities, therefore the ap-
proach in Section 4.2 is suitable. The switching between
different dynamic matrices is state dependent and occurs
at x1 = 3 and x2 = 50, which corresponds to a discrete
change of the control inputs. The training data consists of 8
trajectories of 15 steps each, which are pairwise initialized
at the 4 different regions of the dynamics and perturbed

I I
—— Training Data
Deterministic
- - - Stochastic

100 |-

T2

50

| | | | | |
0 50 100 150 200 250 300
T1

Figure 6. 2D simulation for human motion data set with LeSSS.

Error/stable? | stable LDS | GPDM | SEDS | LeSSS
deterministic 322/yes 173/mo | 332/yes | 162/yes
stochastic n/a 177Mmo | 364/no | 165/yes

Table 1. Comparison of the reproduction error in terms of area
between each demonstration and its corresponding reproduction
for the stochastic and deterministic case for the chemical reactor
simulation. The area is computed for each of the 8 initial points
separately and cumulated for each of the approaches. It also indi-
cates which models are stable.

with white noise with ¢ = 0.01 for both states.

Figure 7 shows the training data along with the reproduc-
tion using stable LDS, GPDM, SEDS and LeSSS in the de-
terministic setting. The initial points in the test case were
set close to the one in the training data. The stable LDS is
not capable to capture the varying behavior in the different
regions of the piecewise affine system and therefore fails in
accuracy of the reproduction. GPDM leads again to conver-
gence outside the origin, which is undesirable. SEDS and
LeSSS are both converging as it is enforced by design. Fig-
ure 8 shows that similar to the 1D case GPDM and SEDS
fail to converge in the stochastic case while LeSSS is sta-
ble in all sample paths. Table 1 compares the methods
with regard to the reproduction precision quantitatively. It
shows that LeSSS outperforms other methods in this mea-
sure while providing the necessary guarantees regarding
convergence.

5.5. Discussion

The simulations show that LeSSS is powerful enough to
represent various nonlinear dynamics, while capturing the
probabilistic nature of the process. The incorporation of
the prior knowledge on goal convergence ensures that the
learned model is stable in probability.

The computational complexity for learning the parameters
of the model using interior-point methods, is mainly deter-
mined by the employed mapping in the first layer 6%. The



Stable Stochastic Nonlinear Dynamical Systems

stable LDS GPDM SEDS LeSSS
80 ‘ Rep‘roductiona ‘ ‘ ‘ Rep‘roduction ‘ Precise réproduction
7 veryimprecise s veryimprecise = and convergence
)
5 W 4
-— 60 | "
o &
L * "
5§ YV Wi * : *
":] q Pag ¥ ll W AN %
8 20 F /3 " e - v S >
V= \E\: ”‘IL"" = k"‘*k
\ @ | | & |
0
0 2 4 6 0 2 4 6 0 6
z1 fluid level 1 fluid level 1 fluid level 1 fluid level

Figure 7. Training data (black) of chemical reactor and the deterministic simulation for stable LDS, GPDM, SEDS and LeSSS approach.
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Figure 8. Training data (black) of chemical reactor and the stochastic simulation for GPDM, SEDS and LeSSS approach.

Simulation 2 LDS GPDM | SEDS | LeSSS
Time 0.016s 8.53s 2.47s 9.88s
Simulation 3 LDS GPDM | SEDS | LeSSS
Time 4.54s 11.2s 22.3s 18.2s

Table 2. Computation times for model learning and simulation for
all compared approaches.

computation times on a i5 CPU 2.30GHz, 2 Cores and 8GB
RAM are given for Simulation 2 and 3 in Table 2. Since the
GPDM, SEDS and LeSSS all solve non-convex optimiza-
tion problems, their commutation times are in the same or-
der of magnitude. The linear model has advantage here.
Regarding the scalability with more training points, the pa-
rameter fitting performs similarly to other approaches re-
quiring likelihood computation since this is the major fac-
tor. However, the scalability strongly depends on the em-
ployed distribution and the mapping in the first layer 0v.

This work only deals with system with a single equilibrium
point, but could be extended to system with more com-
plex attractor dynamics. However, further knowledge is
required because - in addition to the position of all equi-
librium points - their regions of attraction must be known.

6. Conclusion

This work proposes a framework for learning nonlinear sta-
ble stochastic dynamical systems from data. We introduce
a flexible model, which builds on the state-dependent co-
efficient form and derive exponential stability conditions
based on stochastic Lyapunov methods. The criteria is ap-
plicable to various probability distributions, while we focus
to investigate the application to Beta and Dirichlet distribu-
tions. Simulation results verify sufficient flexibility of the
model and the correct identification of the system’s uncer-
tainty. In comparison to existing approaches it showed ad-
vantages in reproduction precision and convergence prop-
erties on human motion data and simulated data from a real
system.
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