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Abstract

We study the problem of estimating the high-
dimensional Gaussian graphical model where the
data are arbitrarily corrupted. We propose a ro-
bust estimator for the sparse precision matrix in
the high- dimensional regime. At the core of our
method is a robust covariance matrix estimator,
which is based on truncated inner product. We
establish the statistical guarantee of our estima-
tor on both estimation error and model selection
consistency. In particular, we show that provided
that the number of corrupted samples n

2

for each
variable satisfies n

2

. p
n/

p
log d, where n is

the sample size and d is the number of variables,
the proposed robust precision matrix estimator
attains the same statistical rate as the standard es-
timator for Gaussian graphical models. In addi-
tion, we propose a hypothesis testing procedure
to assess the uncertainty of our robust estimator.
We demonstrate the effectiveness of our method
through extensive experiments on both synthetic
data and real-world genomic data.

1 Introduction
Gaussian graphical models (GGMs) have attracted in-
creasing attention in recent years, especially in the field
of high-dimensional statistical learning. In Gaussian
graphical models, a d-dimensional random vector X =

(X
1

, . . . , Xd)
> follows a multivariate normal distribution

Nd(0,⌃⇤
). It corresponds to the vertex set V = {1, . . . , d}

of an undirected graph G = (V,E), where the edge set
E describes the conditional independence relationships be-
tween nodes X

1

, . . . , Xd. It is well-known that the graph
G is encoded by the sparsity pattern of the precision matrix
⇥

⇤
= ⌃

⇤�1. More specifically, no edge connects Xi and
Xj if and only if ⇥⇤

ij = 0. Consequently, estimation of
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the precision matrix ⇥

⇤ corresponds to parameter estima-
tion, and specifying the non-zero set of ⇥⇤ corresponds to
graphical model selection (Cox & Wermuth, 1996).

In the high-dimensional settings, where the number of
variables d can exceed the number of observations n, a
large body of literature has studied the problem of preci-
sion matrix estimation in Gaussian graphical models and
their variants (Meinshausen & Bühlmann, 2006; Yuan &
Lin, 2007; Friedman et al., 2008; Banerjee et al., 2008;
Yuan, 2010; Cai et al., 2011; Wang et al., 2016; Xu &
Gu, 2016; Xu et al., 2016; 2017). For instance, Mein-
shausen & Bühlmann (2006) developed a neighborhood
pursuit approach for estimating conditional independence
relationship separately for each node in the graph. This
method estimates the precision matrix by solving a collec-
tion of sparse regression problems using Lasso in paral-
lel. Yuan & Lin (2007); Friedman et al. (2008); Banerjee
et al. (2008) proposed a `

1

norm regularized Gaussian neg-
ative log-likelihood method, which called Graphical Lasso
(GLasso), to directly estimate the precision matrix. More
recently, Yuan (2010); Cai et al. (2011) proposed the graph-
ical Dantzig selector and CLIME, respectively. Both of
these methods can be solved by linear programming and
have more favorable theoretical properties than GLasso.

Note that most of the aforementioned methods rely on the
assumption that the observations follow a Gaussian distri-
bution. There also exists some work, such as Ravikumar
et al. (2011), studied sub-Gaussian data under bounded
higher order moments. However, in many real-word ap-
plications, the data can follow a heavy-tailed distribution,
or may even be corrupted arbitrarily. In such cases, con-
ventional methods yield inaccurate graph estimation even
if there are only a few contaminated observations due to
the lack of robustness. In order to address this issue, a large
body of literature (Liu et al., 2012; Finegold & Drton, 2011;
Hirose & Fujisawa, 2015; Sun & Li, 2012; Yang & Lozano,
2015; Balmand & Dalalyan, 2015; Öllerer & Croux, 2015;
Loh & Tan, 2015; Chen et al., 2015; Tarr et al., 2016) has
focused on providing more robust estimators for precision
matrices in the past years. However, most of these esti-
mators were established under some specific contamination
models, thus they are not good at dealing with the situation
when data are arbitrarily corrupted.
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In this paper, we propose a robust estimator to estimate
the precision matrix in high-dimensional GGMs with ar-
bitrarily corrupted data. More specifically, we consider the
situation that the corrupted data can appear in any coor-
dinates of the observations. This includes situations that
some observations are outliers or data follow some specific
contamination models as special cases. The definition of
the arbitrary corruption model will be presented in section
3. The key idea of our method is to use a robust covariance
matrix estimator, which remains accurate provided a con-
trolled number of arbitrarily corrupted coordinates. Our
theory provides not only the spectral norm based estima-
tion error of the proposed estimator, but also the model se-
lection consistency guarantee. More importantly, we show
that provided that the number of corrupted samples n

2

for
each variable satisfies n

2

. p
n/

p
log d, where n is the

sample size and d is the number of variables, the proposed
robust precision matrix estimator attains the same statisti-
cal rate as the standard estimator for Gaussian graphical
models. Beyond point estimation, we also propose a hy-
pothesis testing procedure to assess the uncertainty of our
robust estimator with corrupted observations, and construct
the confidence interval for the point estimate. Thorough ex-
periments on both synthetic data and real-world genomic
data corroborate the effectiveness of our method.

The remainder of this paper is organized as follows: In
Section 2, we discuss some more related work about the ro-
bust precision matrix estimation. Section 3 summarizes our
proposed estimation method and testing procedure in gen-
eral and also introduces some necessary backgrounds. Sec-
tion 4 presents our main results including estimation error
bound and inference property. Section 5 provides numeri-
cal results, for our method and a number of other methods,
of some simulated datasets and a real example on gene ex-
pression data. Section 6 concludes with discussion.

Notation Let A = [Aij ] 2 Rd⇥d be a d ⇥ d matrix
and x = [x

1

, . . . , xd]
> 2 Rd be a d-dimensional vec-

tor. For 0 < q < 1, we define the `
0

, `q and `1
vector norms as kxk

0

=

Pd
i=1

1{xi 6= 0}, kxkq =

(

Pd
i=1

|xi|q)
1
q , kxk1 = max

1id |xi|, where 1{·} rep-
resents the indicator function. We use the following nota-
tions for the matrix `q , `

max

, `
1,1 and `F norms: kAkq =

maxkxkq=1

kAxkq, kAk1,1 = maxij |Aij |, kAk
1,1 =

Pd
i=1

Pd
j=1

|Aij |, kAkF = (

P

ij |Aij |2)1/2. We use
A⇤j = (A

1j , . . . , Adj)
> to denote the j-th column vector

of A and A⇤\j to denote the submatrix of A with the j-
th column A⇤j removed. We also denote by �

max

(A) and
�
min

(A) the largest and smallest eigenvalues of matrix A,
respectively. Furthermore, for a matrix ⇥ and sets of tuples
S, S

1

, ⇥S1,S denotes the set of numbers (⇥jk)j2S1,k2S .
We define the maximum degree of a graph or row cardi-
nality as s = max

1in |{j 2 V | ⇥⇤
ij 6= 0}|, where

V = {1, . . . , d} is the vertex set. Finally, for a sequence
of random variables Xn, we write Xn

d�! X , for some ran-
dom variable X , if Xn converges in distribution to X .

2 Related Work

In recent years, some attempts have been made toward the
robust estimation of high-dimensional GGMs under differ-
ent corruption models. For example, to deal with heavy
tailed distributions, Liu et al. (2012) developed a semi-
parametric approach called the nonparanormal SKEPTIC.
Finegold & Drton (2011) proposed a penalized likelihood
approach based on multivariate t-distributions. They also
proposed an alternative t-model which requires the use of
variational EM or Markov chain Monte Carlo algorithms.
Hirose & Fujisawa (2015) introduced a robust estimation
procedure for sparse precision matrices based on the penal-
ized negative �-likelihood function.

In order to address outliers, Sun & Li (2012) proposed
a robust estimation of GGMs via a robustified likelihood
function with `

1

penalization. In particular, they first use
coordinate descent to efficiently estimate the structure of
the precision matrix. Then, based on the estimated struc-
ture, they re-estimate the parameters of the precision ma-
trix using iterative proportional fitting algorithm to en-
sure the positive definiteness of their estimator. Yet their
method does not have any theoretical guarantee. Yang
& Lozano (2015) proposed a trimmed Graphical Lasso
method. Specifically, by adding weights to different data
points, they improved upon the original graphical Lasso
such that it is more robust to outliers. However, they did not
provide any model selection consistency guarantee. Bal-
mand & Dalalyan (2015) also studied the problem of ro-
bustly estimating the covariance matrix when data are cor-
rupted by outliers. In particular, they proposed to use a
modified scaled lasso procedure for covariance matrix es-
timation and provided the theoretical guarantee of their
method.

Another line of related work is Öllerer & Croux (2015);
Loh & Tan (2015); Chen et al. (2015); Tarr et al. (2016),
which studied the problem of robust precision matrix es-
timation in high dimensions under the ✏-contamination
model. In particular, under the cell-wise contamination
model, Tarr et al. (2016) evaluated the performance of the
Glasso and CLIME estimators together with a U-statistic
based robust covariance estimator for sparse precision ma-
trix estimation. Under the same contamination model,
Öllerer & Croux (2015) provided an analysis for the ro-
bustness of these estimators in terms of breakdown be-
havior. Later on, from the point of statistical consistency,
Loh & Tan (2015) established the statistical error bounds
for these estimators. However, these methods (Öllerer &
Croux, 2015; Loh & Tan, 2015; Tarr et al., 2016) highly
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depend on the specific cell-wise contamination structure
on the data matrix. Recently, inspired by Tukey’s depth
estimator (Tukey, 1975) for vector estimation, Chen et al.
(2015) introduced the concept of matrix depth and pro-
posed a robust covariance matrix estimator using empiri-
cal depth function. They showed that their proposed esti-
mator can achieve minimax optimal statistical rate under
Huber’s ✏-contamination model. However, it is computa-
tionally very expensive to compute the deepest depth of a
matrix even in a moderate dimension, which makes such
method infeasible in the high-dimensional regime.

All the aforementioned methods are limited to data with
heavy tails and outliers. Therefore, they are not suitable to
deal with data that are arbitrarily corrupted.

3 Problem Setup and Estimation Method

In this section, we first introduce the setup of our problem,
then we present our proposed estimation method and hy-
pothesis testing procedure.

3.1 Problem Setup

Let X = (X
1

, . . . , Xd)
> be a d-dimensional multivari-

ate Gaussian random vector with zero mean and covari-
ance matrix ⌃

⇤. It is associated with an undirected graph
G = (V,E) with vertex set V = (1, . . . , d) correspond-
ing to random variables and edge set E = {(j, k) | j 6=
k,⇥⇤

jk 6= 0} describing the connections of nodes, where
⇥

⇤
= ⌃

⇤�1 is the precision matrix.

Suppose we have n i.i.d. observations X
1

, . . . ,Xn, each
of which is drawn from the multivariate Gaussian distribu-
tion Nd(0,⌃⇤

). Let X = [X
1

, . . . ,Xn]
> 2 Rn⇥d be the

data matrix and there may exist arbitrary corruption of the
data matrix X. More specifically, for each variable/column
of data matrix X, we allow at most n

2

coordinates to be
arbitrarily corrupted, and we call this kind of corruption
model as the arbitrary corruption model. Note that under
the arbitrary corruption model, we do not require the cor-
rupted entries lie in the same n

2

rows. Clearly, a special
case of the arbitrary corruption model is the outlier model
where the corruption appears in n

2

observations. Under
the arbitrary corruption model, n

2

is the upper bound on
the number of corruptions for each variable, and under the
outlier model, n

2

is the upper bound on the number of out-
liers. Specifically, under the outlier model, the set of row
indices {1, . . . , n} of the data matrix X is divided into two
disjoint subsets A and O with |A| = n

1

, |O| = n
2

, and
n = n

1

+ n
2

. XA denotes samples drawn from the au-
thentic distribution. XO denotes samples that are outliers.
In general, there is no constraint on the type of corruptions
in our setting except an upper bound on the number of cor-
ruptions, i.e., n

2

. For example, these corruptions could be
drawn from other distributions or even be deterministic.

3.2 Estimation Method

Before we introduce our estimation method, we first in-
troduce the truncated inner product which was proposed
by Chen et al. (2013). The truncated inner product hu,vin2

is defined as follows: given two n-dimensional vectors
u,v 2 Rn, and the truncation number n

2

satisfying
n
2

 n, we first compute the quantity qi = uivi, for
i = 1, . . . , n. Then we sort {|qi|}ni=1

and select the small-
est (n� n

2

) ones. Let ⌦ be the set of selected indices with
cardinality |⌦| = n� n

2

, then we have the truncated inner
product as hu,vin2 =

P

i2⌦

qi.

The main idea of our estimation method is to use a robust
covariance matrix estimator which can mitigate the impact
of arbitrary corruptions. More specifically, given a data ma-
trix X 2 Rn⇥d, which is arbitrarily corrupted, we obtain
the robust covariance matrix estimator b

⌃ through a trun-
cation procedure that each element b⌃jk is calculated via
truncated inner product hX⇤j ,X⇤kin2/n1

. The motivation
of this truncation procedure is that the corrupted coordi-
nates with large magnitude may heavily affect the precision
of our estimation results, and this simple truncation proce-
dure can reduce such impact. Next, we introduce our robust
estimator, which is based on the robust covariance matrix
estimator and CLIME:
b

⇥ = argmin

⇥2Rd⇥d

k⇥k
1,1 subject to kb⌃⇥� Ik1,1  �,

(3.1)

where b

⌃ is the robust covariance matrix estimator obtained
through truncation, � > 0 is a constraint parameter. We
refer to (3.1) as Robust CLIME (RCLIME). Note that here
we do not consider the Glasso type estimator since it re-
quires the stringent incoherence condition on the covari-
ance matrix to guarantee the model selection consistency.
Let ✓⇤

i = ⇥

⇤
⇤i denote the i-th column of ⇥

⇤. To esti-
mate the precision matrix more efficiently, instead of solv-
ing (3.1), we can estimate each column of ⇥⇤ as follows:

b✓ = argmin

✓2Rd

k✓k
1

subject to kb⌃✓ � eik1  �,

(3.2)

for i = 1, . . . , d, and ei 2 Rd denotes a column vector that
the i-th element is 1 and others are 0. Note that the com-
bined solution b

⇥

1

= [

b✓1

1

, . . . , b✓1

d] of (3.2) is equivalent to
the solution of (3.1) (Cai et al., 2011). In addition, since
b

⇥

1 is not symmetric, we need the following symmetriza-
tion procedure to get our robust estimator

b

⇥ = arginf
⇥2Sd

++

k⇥� b

⇥

1k
1

, (3.3)

where Sd
++

= {A 2 Rd⇥d | A = A

>,A � 0} denotes
all d ⇥ d symmetric positive definite matrices. The sym-
metrization procedure in (3.3) can be solved by the pro-
jected gradient descent method, and in practice, we can use
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many simple symmetrization methods, such as the method
provided in Cai et al. (2011).

3.3 Hypothesis Test

Based on the proposed robust estimator (3.1), we are inter-
ested in testing whether there is an edge between node j
and node k in GGMs (Jankova et al., 2015; Neykov et al.,
2015; Gu et al., 2015; Xu et al., 2016). More specifically,
we want to develop a procedure for the hypothesis test that
H

0

: ⇥

⇤
jk = 0 versus H

1

: ⇥

⇤
jk 6= 0. Let us assume that

the k-th column of the precision matrix ⇥

⇤ to be the vector
✓⇤
k = (↵⇤,�⇤>

)

> where ↵⇤ is the j-th element of the vec-
tor ✓⇤

k and �⇤ 2 Rd�1 is the remaining (d�1)-dimensional
vector. Thus it is equivalent to test the one dimensional
component H

0

: ↵⇤
= 0 versus the non-restricted alterna-

tive H
1

: ↵⇤ 6= 0. In this case, �⇤ are nuisance parame-
ters. To this end, we first introduce the following estimation
equation projected (EEP) along the direction b

w:
bS(✓) = b

w

>�
b

⌃✓ � ek

�

, (3.4)

where b

⌃ is the the robust covariance matrix estimator and
b

w is the solution of the optimization problem (3.2) with
i = j. The motivation of projecting the estimation equa-
tion to a sparse direction (3.4) is to help us construct a
test statistic which has a tractable limiting distribution in
the high-dimensional regime. In high-dimensional settings,
b

⌃ is not positive definite, we cannot solve the equation
b

⌃

b✓ � ek = 0 by taking the inverse of b⌃ directly. There-
fore, given the sparsity assumption on ✓⇤, the estimator
in (3.2) can address such ill-posed problem for solving the
estimation equation b

⌃

b✓� ek = 0 in high-dimensional set-
tings. Furthermore, projecting the estimation equation to
a certain direction (3.4) makes the limiting distribution of
b✓ = (b↵, b�>

)

> in (3.2) tractable. More specifically, if we
choose the b

w as the projection direction, then due to the
fact that b

w is a consistent estimator of w

⇤
:= ⇥

⇤
⇤j , the

estimator b� of the high-dimensional nuisance parameters
in (3.2) is asymptotically ignorable along this direction.
Therefore, we can solve the projected estimation equation
bS(↵, b�) = 0 to get an debiased estimator of ↵⇤ as follows:

e↵ = b↵�
b

w

>
(

b

⌃

b✓ � ek)

b

w

>
b

⌃⇤j
, (3.5)

where b✓ = (b↵, b�>
)

> is the estimator of ⇥

⇤
⇤k, and b

w is
the estimator of ⇥

⇤
⇤j . Thus we define the following test

statistic built upon the debiased estimator e↵
bTn =

p
n
1

(e↵� ↵⇤
)/b�, (3.6)

where n is the number of observations, n
2

is the upper
bound on the number of corruptions, n

1

= n � n
2

, and
b�2

= bwj
b✓k + bwk

b✓j , where bwj , b✓j denote the j-th ele-
ments of b

w and b✓ respectively. Note that b�2 is a consis-
tent estimator to �2

= w⇤
j ✓

⇤
k + w⇤

k✓
⇤
j under the Gaussian

assumption of the data, where w⇤
j , ✓

⇤
k are the j-th and k-

th columns of w

⇤ and ✓⇤ respectively. We will show in
the next section that the proposed debiased estimator e↵ is
consistent to ↵⇤, and the test statistic bTn is asymptotically
normal

p
n
1

(e↵�↵⇤
)/b�

d�! N(0, 1) under the null hypoth-
esis. Therefore, our asymptotic level-↵ test is given by

 n =

(

0 (⌘ accept H
0

) if | bTn|  C↵,
1 (⌘ reject H

0

) if | bTn| > C↵,
(3.7)

where C↵ = �

�1

(1�↵/2) is the (1�↵/2)-quantile of the
standard normal distribution N(0, 1). Furthermore, we can
construct asymptotic level-↵ confidence intervals of ↵⇤ as
e↵±��1

(1�↵/2)b�/
p
n. Note that in practice, although we

have no idea about the exact upper bound on the number of
corruptions, i.e., n

2

, we can use techniques such as cross-
validation to choose the best truncation number n

2

.

4 Main Results
In this section, we present our main results and discuss con-
nections with some related works. We start by stating some
assumptions, which are required in our analysis. We im-
pose an important eigenvalue condition on the population
covariance matrix.
Assumption 4.1. There exist a constant  > 0 such that

0 < 1/  �
min

(⌃

⇤
)  �

max

(⌃

⇤
)   < 1.

This assumption can exclude singular or nearly singular co-
variance matrices, thus guarantee the uniqueness of ⇥⇤.

In this paper, we consider the precision matrix ⇥

⇤ that
belongs to a class of matrices U(s), i.e., U(s) =

�

⌦ 2
Rd⇥d

�

�

⌦ � 0, k⌦k
1

 M,max

1id

Pd
j=1

1{⌦ij 6=
0}  s

 

, where ⌦ � 0 means ⌦ is positive definite
and s corresponds to the row cardinality. Note that this
sparse precision matrix class has been previously consid-
ered in Cai et al. (2011); Liu & Wang (2012); Zhao & Liu
(2013). In addition, it immediately implies that k⇥⇤

⇤jk1 
k⇥⇤k

1

 M , where ⇥

⇤
⇤j is the jth column vector of ⇥⇤.

Now, we are ready to provide our main results. The first
one characterizes the performance of our robust estimator
under the arbitrary corruption model. It shows that even
if the upper bound on the number of corruptions n

2

scales
with

p
n, where n is the number of observations, our ro-

bust estimator can still recover the correct support. Note
that our results are derived under the arbitrary corruption
model. Since the outlier model is a special case of the arbi-
trary corruption model, our results can directly apply to the
outlier case.
Theorem 4.2. Under the arbitrary corruption model, sup-
pose ⇥

⇤ 2 U(s) and Assumption 4.1 is satisfied. In ad-
dition, assume the upper bound on the number of corrup-
tions n

2

satisfies n
2

 a
p
n for some constant a � 0. If
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n � 4a2, and we choose the regularization parameter sat-
isfying � = CM2

�

p

log d/n + n
2

log d/n
�

, then, with
probability at least 1 � C

1

/d, the estimator b⇥ in (3.1) sat-
isfies

k b⇥�⇥

⇤k
2

 C
2

M22

✓

s

r

log d

n
+

n
2

s log d

n

◆

. (4.1)

Furthermore, if the nonzero entries of ⇥⇤ satisfy

min

i 6=j,⇥⇤
ij 6=0

|⇥⇤
ij | � C

3

M22

✓

r

log d

n
+

n
2

log d

n

◆

,

then the Robust CLIME can correctly identify nonzero en-
tries of ⇥⇤.
Remark 4.3. According to (4.1), the estimation error of
our robust estimator consists of two terms. The first one
O(s

p

log d/n) corresponds to the estimation error without
corruptions. The second extra term O(sn

2

log d/n), which
is linear in n

2

, is due to the effect of arbitrary corruption.
More specifically, if there is no corruption in our data, then
the second term becomes zero since n

2

= 0. Therefore, the
estimation error of our method reduces to O(s

p

log d/n),
which matches the minimax optimal rate for sparse pre-
cision matrix estimation without corruptions in terms of
spectral norm (Yuan, 2010; Cai et al., 2011; Ravikumar
et al., 2011). In addition, (4.1) in Theorem 4.2 indicates
that our robust estimator can correctly recover the support
of ⇥⇤ even if the upper bound on the number of corrup-
tions n

2

scales with
p

n/ log d, where n is the number of
observations. In addition, under the outlier model, this esti-
mation result is comparable to the result provided by Yang
& Lozano (2015). In their study, they proved that the pro-
posed estimator can successfully recover the true parameter
provided that the upper bound of the number of outliers is
O(

p
n). However, Yang & Lozano (2015) does not con-

sider the case when the data is arbitrarily corrupted.

Furthermore, if the upper bound on the number of corrup-
tions n

2

satisfies n
2

. p
n/

p
log d, our robust estimator

can achieve the same statistical rate as the standard estima-
tor for Gaussian graphical models. This is summarized in
the following corollary.
Corollary 4.4. Under the same conditions of Theorem 4.2,
if we further assume that the upper bound on the number
of corruptions n

2

satisfies n
2

. p
n/

p
log d, then for the

robust estimator b

⇥ in (3.1), we have, with probability at
least 1� C/d, that

k b⇥�⇥

⇤k
2

 C
1

M22s

r

log d

n
.

Furthermore, if the nonzero entries of ⇥⇤ satisfy

min

i 6=j,⇥⇤
ij 6=0

|⇥⇤
ij | � C

2

M22

p

log d/n,

then the Robust CLIME can correctly identify the nonzero
entries of ⇥⇤.

Remark 4.5. Compared with Theorem 4.2, Corollary
4.4 implies that under a slightly stricter condition on
the upper bound of the number of corruptions n

2

=

O(

p
n/

p
log d), our robust estimator can successfully re-

cover the true parameter ⇥

⇤ with guaranteed estimation
error O(s

p

log d/n). Note that this error bound exactly
recover the spectral norm error bound for the case without
corruptions (Yuan, 2010; Cai et al., 2011; Ravikumar et al.,
2011), which demonstrates the superiority of our estimator.

Next, we present the asymptotic results of our proposed test
statistics in (3.6), which verifies the effectiveness of our
testing procedure. Note that we consider the case that the
true observations are drawn from a Gaussian distribution.

Theorem 4.6. Suppose Assumption 4.1 is satisfied andp
n
1

sM24

(

p

log d/n
1

+ n
2

log d/n
1

)

2

= o(1), where
n
1

= n� n
2

. If we choose regularization parameter satis-
fying � = CM2

(

p

log d/n
1

+n
2

log d/n
1

), then the test
statistic in (3.6) is asymptotically normal

p
n
1

(e↵� ↵⇤
)

b�
d�! N(0, 1),

where b�2

= bwj
b✓k + bwk

b✓j , and e↵ is defined in (3.5).

Remark 4.7. Theorem 4.6 provides us an efficient test
for the existence of an edge in GGMs, and gives us
an efficient interval estimation of ↵⇤

= ⇥

⇤
ij . In ad-

dition, Theorem 4.6 implies that if the upper bound on
the number of corruptions n

2

satisfies n
2

. p
n/

p
log d

and the quantity M is a constant, then the assumptionp
n
1

sM24

(

p

log d/n
1

+ n
2

log d/n
1

)

2

= o(1) reduces
to s log d/

p
n = o(1), which gives us the sparsity as-

sumption that s = O(

p
n log d). This requirement on

sparsity matches the best-known results for edge testing
in GGMs (Liu et al., 2013; Ren et al., 2015). More im-
portantly, Theorem 4.6 suggests that even when n

2

=

O(

p
n/

p
log d) out of n observations of each variable are

arbitrarily corrupted, our testing procedure is still efficient.

5 Experiments
In this section, we compare our robust estimator with
some existing methods, including trimmed Graphical
Lasso (tGLasso) (Yang & Lozano, 2015), t⇤-Lasso
(tLasso) (Finegold & Drton, 2011), robust `

1

penalized
likelihood (RLL) (Sun & Li, 2012), nonparanormal SKEP-
TIC (Liu et al., 2012), and pairwise based covariance es-
timator (spearC) (Loh & Tan, 2015) on some synthetic
datasets. Our comparisons focus on their performance in
both graph recovery and parameter estimation. The imple-
mentation of tLasso and RLL is based on the code provided
by authors. The implementation of other baseline algo-
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rithms is based on R package huge

1. We conduct some
simulations to investigate the performance of our proposed
hypothesis testing procedure. Furthermore, we compare
our method with GLasso on a gene expression data.

5.1 Synthetic Data

In our numerical simulations, we consider the following
two settings: (i) n = 100, d = 100; and (ii) n = 200,
d = 400. We generate the true precision matrices based on
two graph structures: cluster and band. More specifically,
the precision matrices ⇥⇤ are generated by huge package,
and the magnitude of correlations is the default value (0.3)
in the huge generator. In order to incorporate corruptions,
we generate our observations by the following procedure.

For the arbitrary corruption model, we first generate the
n by d data matrix X from the Gaussian distribution
Nd(0,⇥⇤�1

). Then, for each column of the data matrix,
we let np coordinates be arbitrarily corrupted, where we
consider the corruption rate p = 0.1 for small number of
corruptions and p = 0.2 for large number of corruptions. In
addition, each corrupted coordinate is generated by normal
distributions N(µ,�) as follows:

MA
1

: µ = 1, � = 1, MA
2

: µ = 2, � = 1. (5.1)

For the outlier model, we use the setup similar to Sun & Li
(2012); Yang & Lozano (2015). Specifically, we generate
each observation from the mixture model as follows:

Xi ⇠ (1� p)Nd(0,⇥
⇤�1

) +

p

2

Nd(µ,⇥
0�1

)

+

p

2

Nd(�µ,⇥0�1

) for i = 1, . . . , n,

where we consider the corruption rate p = 0.1 for small
number of corruptions and p = 0.2 for large number of
corruptions. Furthermore, each outlier is generated by nor-
mal distributions Nd(µ,⇥0�1

) as follows

MO
1

: µ = (1, . . . , 1)>, ⇥0
= Id, (5.2)

MO
2

: µ = (2, . . . , 2)>, ⇥0
= Id. (5.3)

Note that under both corruption models, we set the cor-
ruption rate p 2 {0.1, 0.2}. In other words, we choose
the number of corruptions to be 10% and 20% of all ob-
servations. This is due to the threshold of the number of
corruptions n

2

= O(

p
n) suggested in our theorem.

Point Estimation: We choose tuning parameters of each
method as follow. For tGLasso, we choose n

2

/n from
[0.5, 1], which is suggested by Yang & Lozano (2015). For
RLL, we choose � 2 {0.005, 0.01, 0.02}, which is sug-
gested by Sun & Li (2012). And for Robust CLIME, we
choose n

2

around 15 (±5). Since the performance of t⇤-
1http://cran.r-project.org/web/packages/huge

Lasso is similar to t-Lasso, we just show the results of t⇤-
Lasso. All results we reported are their best performance
based on these parameters.

First, we use receiver operating characteristic (ROC)
curves to compare the overall performance of our method
with others in model selection over the full paths. For
the arbitrary corruption model, the ROC curves on cluster
graphs averaged over 50 simulations are shown in Figure 1.
We can observe that under the arbitrary corruption model,
as the number of corruptions increase, the advantage of our
approach becomes more significant. For the outlier model,
we also observe similar good performance of our method,
especially for outliers with large magnitude. Due to space
limit, the ROC curves for the outlier model can be found
in the longer version of this paper. These results indicate
that our method is very competitive in the graph recovery
problem with arbitrary corruptions.

Then, we evaluate the performance of our method and
some existing approaches in parameter estimation. For
model settings mentioned above, we choose the corruption
rate p = 0.1 for the purpose of comparisons. We gener-
ate a dataset as the training sample, and an independent
dataset from the same distribution as the test set. We set
n
2

/n = 0.9 for tGLasso, � = 0.01 for RLL, and n
2

= np
for Robust CLIME. We also choose the tuning parameter
� by grid search based on its performance on the training
sample and evaluate those estimators on the test set. Here
we use Spectral norm error k b⇥�⇥

⇤k
2

and Frobenius norm
error k b⇥�⇥

⇤kF to compare the performance of different
methods in parameter estimation. Tables 1 and 2 summa-
rize estimation error results in term of Spectral norm av-
eraged over 50 simulations. These results demonstrate the
advantage of our method in parameter estimation. Other
comparison results in terms of Frobenius norm error are
deferred to the longer version of this paper.

Hypothesis Test: We investigate the finite sample per-
formance of our proposed hypothesis testing procedure
through some simulation studies. We use the data gener-
ating process similar to Jankova et al. (2015); Neykov et al.
(2015), and we consider the case that there are some cor-
ruptions in our data. More specifically, for the aforemen-
tioned two settings, we consider the band graph structure
with band width 1 with the corresponding precision ma-
trix ⇥

⇤ generated by R package huge. The magnitude
of correlations is the default value in the huge generator.
In order to incorporate corruptions, we use the same ap-
proach described above to generate observations. Specifi-
cally, for the arbitrary corruption model, we generate sam-
ples through model MA

2

in (5.1) with p = 0.1, 0.2. For
the outlier model, we generate samples through model MO

2

in (5.2) with p = 0.1, 0.2.

To check the validity of the type I error of our test, we run
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Figure 1. ROC curves of different methods on cluster graphs under the arbitrary corruption model. (a): d = 400, n = 200, p = 0.1, µ =
1; (b): d = 400, n = 200, p = 0.2, µ = 1; (c): d = 400, n = 200, p = 0.1, µ = 2; (d): d = 400, n = 200, p = 0.2, µ = 2

Table 1. Quantitative comparisons of the GLasso, t⇤Lasso, tGLasso, RLL, SKEPTIC, spearC and our Robust estimator on the cluster,
band graphs in terms of k b⇥�⇥⇤k2 under the outlier model.

Model d GLasso t⇤Lasso tGLasso RLL SKEPTIC spearC Ours

Band 100 5.803(0.107) 4.180(0.129) 2.755(0.217) 3.639(0.315) 5.579(0.177) 4.071(0.133) 2.471(0.110)
400 5.886(0.171) 5.755(0.114) 2.939(0.102) 3.739(0.181) 5.891(0.115) 4.481(0.114) 2.877(0.109)

Cluster 100 5.537(0.071) 5.318(0.031) 4.944(0.093) 5.004(0.110) 5.529(0.061) 5.283(0.098) 4.776(0.127)
400 9.444(0.092) 8.828(0.108) 8.586(0.127) 8.795(0.087) 9.489(0.177) 8.819(0.143) 8.160(0.102)

Table 2. Quantitative comparisons of the GLasso, t⇤Lasso, tGLasso, RLL, SKEPTIC, spearC and our Robust estimator on the cluster,
band graphs in terms of k b⇥�⇥⇤k2 under arbitrary the corruption model.

Model d GLasso t⇤Lasso tGLasso RLL SKEPTIC spearC Ours

Band 100 4.688(0.096) 3.694(0.258) 4.682(0.118) 4.403(0.107) 4.530(0.134) 4.487(0.159) 3.433(0.171)
400 4.763(0.127) 3.886(0.219) 4.768(0.095) 4.584(0.183) 4.586(0.107) 4.552(0.128) 3.581(0.144)

Cluster 100 5.022(0.092) 4.447(0.133) 4.906(0.171) 5.496(0.106) 4.907(0.116) 4.850(0.125) 4.111(0.131)
400 7.133(0.127) 6.798(0.181) 7.408(0.112) 9.050(0.209) 6.840(0.161) 6.804(0.139) 6.428(0.177)
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Figure 2. Q-Q plot of test statistic bTn. (a-b): data generated from the outlier model with d = 100, n = 100 and d = 400, n = 200
respectively; (c,d): data generated from the arbitrary corruption model with d = 100, n = 100 and d = 400, n = 200 respectively.

500 simulations. The detail of our hypothesis testing pro-
cedure is described in Section 3.3. In the two different set-
tings, we set n

2

= 10 and n
2

= 20 respectively, and we
choose the tuning parameters � by cross-validations. Ta-
ble 3 summarizes the empirical type I errors of our test in
different settings. We can observe that the empirical type I

errors are close to the significance level. Figure 2 shows the
Q-Q plots of our test statistic bTn in (3.6) based on 500 sim-
ulations. These plots corroborate the asymptotic normality
of our test statistic. All these results demonstrate the advan-
tage of our hypothesis testing procedure under the arbitrary
corruption model.
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Figure 3. Genetic network identified by Robust CLIME for the gene expression data of Arabidopsis thaliana. Solid edges: graph
estimated by Robust CLIME. Dotted arrows: known metabolic pathway. Left white figure and Right grey figure correspond to MEP and
MAV pathway respectively. Note that the arrow lines correspond to the known metabolic pathway, they do not mean directed networks.

Table 3. Empirical coverage of 95% confidence intervals and
Type I error at 0.05 significant level

Corruption model d Coverage Width Type I error

outlier 100 0.956 0.338 0.044
400 0.946 0.344 0.054

arbitrary 100 0.950 0.352 0.050
400 0.942 0.356 0.058

5.2 Gene Expression Data

In this subsection, we use the gene expression data of
Arabidopsis thaliana, which was analyzed by Wille et al.
(2004) and later on by Finegold & Drton (2011); Hirose &
Fujisawa (2015), to illustrate the advantage of our method.
This data set includes n = 118 observations with 39 gene
expression levels. For this gene expression dataset, we pre-
process it through R package limma

3. Figure 6 in Ap-
pendix illustrates the histogram of some rescaled gene ex-
pression data. It shows that some rescaled gene expressions
contain some expression levels with extreme large magni-
tude, which may be outliers. Therefore, we want to apply
our method to construct a network among these genes. For
Robust CLIME, we set n

2

= 10 and adopt 5-fold cross-
validation to choose the tuning parameter �.

The graph estimated by our method is given in Figure 3.
The dotted arrows and the solid undirected edges corre-
spond to the known metabolic pathway and the graph esti-
mated by Robust CLIME, respectively. We can see that our
approach identifies a similar graph to that obtained by pre-
vious analysis of Wille et al. (2004) but with fewer ”cross-
talk” edges between two pathways. For example, our ap-
proach finds the important connection between AACT2 and

3Available on http://bioconductor.org/packages/limma

the group MK, MPDC1, and FFPS2 in MAV pathway. And
in MEP path way, it also identifies the connection among
DXR, MCT, CMK and MECPS. Other methods such as
GLasso tends to estimate more links between two pathways
in order to identify these important relationships. These
edges between two pathways provided by GLasso might
be inaccurate relationships due to the lack of robustness.
The graph recovered by GLasso and the graph established
by Wille et al. (2004) can be found in the longer version of
this paper.

6 Conclusions and Future Work
In this paper, for the Gaussian graphical model estimation
with arbitrary corruptions, we proposed a new estimator
for high-dimensional precision matrices based on the ro-
bust covariance matrix estimator. We not only provide the
estimation error bound of our robust estimator, but also
propose a hypothesis testing procedure to assess the uncer-
tainty of our robust estimator with corrupted observations,
and construct the confidence interval for the point estimate.
However, most of the robust high dimensional estimators
as well as our proposed estimator are not invariant under
the group action (Davies et al., 2005; Draisma et al., 2013),
we will study this problem in our future work.
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Andreas, Laule, Oliver, Bleuler, Stefan, Hennig, Lars,
Prelic, Amela, von Rohr, Peter, Thiele, Lothar, et al.
Sparse graphical gaussian modeling of the isoprenoid
gene network in arabidopsis thaliana. Genome Biol, 5
(11):R92, 2004.

Xu, Pan and Gu, Quanquan. Semiparametric differential
graph models. In Advances in Neural Information Pro-
cessing Systems, pp. 1064–1072, 2016.

Xu, Pan, Tian, Lu, and Gu, Quanquan. Communication-
efficient distributed estimation and inference for
transelliptical graphical models. arXiv preprint
arXiv:1612.09297, 2016.

Xu, Pan, Zhang, Tingting, and Gu, Quanquan. Efficient
algorithm for sparse tensor-variate gaussian graphical
models via gradient descent. In Artificial Intelligence
and Statistics, pp. 923–932, 2017.

Yang, Eunho and Lozano, Aurélie C. Robust gaussian
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