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A. Illustrative Examples of General Sparse Learning Problems
In this section we discuss additional examples of high-dimensional statistical learning problems for which Theorem 6 is
applicable.

A.1. Sparse Logistic Regression

For logistic model, performing maximum likelihood estimation (MLE) on (12) leads to the logistic loss function
`pyji, xβ,xjiyq � logp1 � expp�yjixβ,xjiyqq. For high-dimensional problems, when we add a `1 regularization, we
obtain the `1 regularized logistic regression model (Zhu & Hastie, 2004, Wu et al., 2009):

β̂centralize � arg min
β

1

mn

¸
jPrms

¸
iPrns

logp1� expp�yjixβ,xjiyqq � λ||β||1.

The logistic loss is 1
4 -smooth, and we also know M � 1

4 because of self-concordance (Zhang & Xiao, 2015). Let Ljpβq �
1
n

°
iPrns logp1 � expp�yjixβ,xjiyqq, (Negahban et al., 2012) showed that if xji are drawn from mean zero distribution

with sub-Gaussian tails, then L1pβq satisfies the restricted strong condition (5). Moreover, we have the following control
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.

Lemma 10. Then we have the following upper bound holds in probability at least 1� δ:����
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À ||xji||8
c

2 logpp{δq
mn

.

The following `1 error bound states the estimation error for logistic regression with `1 regularization, which was estab-
lished, for example, in (van de Geer, 2008, Negahban et al., 2012).

Lemma 11. Under the model (12), when n ¥ p64{κqs log p, we have the following estimation error bound for β̂0 holds
with probability at least 1� δ:

||β̂0 � β�||1 À sσX
κ

c
2 logpnp{δq

n
.

With above analysis for sparse logistic regression model with random design, we are ready to present the results for the
estimation error bound which established local exponential convergence.
Corollary 12. Under sparse logistic regression model with random design, and set λt�1 as (9). If the following condition
holds for some T ¥ 0:

||β̂T � β�||1 ¤ 4

c
logp2p{δq

n
. (13)

Then with probability at least 1� 2δ, we have the following estimation error bound for all t ¥ T :

||β̂t�1 � β�||1 ¤1� at�T�1
n
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||β̂t�1 � β�||2 ¤1� at�T�1
n
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where

an � 24sσσX
κ

c
logp2p{δq

n
and bn �

?
sσσX
κ

c
logpnp{δq

n
.

A.2. High-dimensional Generalized Linear Models

The results are readily extendable to other high-dimensional generalized linear models (McCullagh & Nelder, 1989, van de
Geer, 2008), where the response variable yji P Y is drawn from the distribution

Ppyji|xjiq9 exp

�
yjixxji,β�y � Φpxxji,β�yq

Apσq


,
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where Φp�q is a link function and Apσq is a scale parameter. Under the random subgaussian design, as long as the loss
function has Lipschitz gradient, then the algorithm and corresponding estimation error bound and be applied.

A.3. High-dimensional Graphical Models

The results can also be used for the distributed unsupervised learning setting where the task is to learn a sparse graphical
structure that represents the conditional independence between variables. Widely studied graphical models are Gaussian
graphical models (Meinshausen & Bühlmann, 2006, Yuan & Lin, 2007) for continuous data and Ising graphical models
(Ravikumar et al., 2010) for binary observations. As shown in (Meinshausen & Bühlmann, 2006, Ravikumar et al., 2010),
these model selection problems can be reduced to solving parallel `1 regularized linear regression and logistic regression
problems, respectively. Thus the approach presented in this paper can be readily applicable for these tasks.

B. Proofs
The section contains proofs of some theorems and lemmas stated in the main paper.

B.1. Proof of Lemma 8

Proof. Recall the definition of L̃1 from (11). We have
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m

¸
jPrms

∇Ljpβ̂tq �∇L1pβ̂tq

� 1

m

¸
jPrms

∇Ljpβ�q �∇L1pβ�q �∇L1pβ̂tq �
�
� 1

m

¸
jPrms

∇Ljpβ�q � 1

m

¸
jPrms

∇Ljpβ̂tq
�

.

Using the triangle inequality
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We focus on bounding the second term in the right-hand-side inequality above. Let τji � `1pyji, xβ�,xjiyq and define
vjipβ̂tq P Rp:

vjipβ̂tq � xjip`1pyji, xβ�,xjiyq � `1pyji, xβ̂t,xjiyqq

� τjixjix
T
ji

�
β̂t � β�

	
� xji

`3pyji,ujiq
2

pxβ̂t � β�,xjiyq2

where uji is a number between xβ̂t,xjiy and xβ�,xjiy. With this notation
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The first term above can be further upper bounded by����
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Using Hoeffding’s inequality together with a union bound, we have with probability at least 1� δ,
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Combining the bounds, the proof of the lemma is complete.

B.2. Proof of Lemma 9

Proof. The proof uses ideas presented in (Negahban et al., 2012). By triangle inequality we have

||β̂t�1||1 � ||β�||1 �||β� � pβ̂t�1 � β�qSc � pβ̂t�1 � β�qS ||1 � ||β�||1
¥||β� � pβ̂t�1 � β�qSc ||1 � ||pβ̂t�1 � β�qS ||1 � ||β�||1
�||pβ̂t�1 � β�qSc ||1 � ||pβ̂t�1 � β�qS ||1.

By the optimality of β̂t�1 for (4), we have

L̃1pβ̂t�1, β̂tq � λt�1||β̂t�1||1 � L̃1pβ�, β̂tq � λt�1||β�||1 ¤ 0.

Thus
L̃1pβ̂t�1, β̂tq � L̃1pβ�, β̂tq � λt�1p||pβ̂t�1 � β�qSc ||1 � ||pβ̂t�1 � β�qS ||1q ¤ 0.

By the convexity of L̃1p�, β̂tq, we further have

L̃1pβ̂t�1, β̂tq � L̃1pβ�, β̂tq ¥ x∇L̃1pβ�, β̂tq, β̂t�1 � β�y.

Thus by Hölder’s inequality

0 ¥x∇L̃1pβ�, β̂tq, β̂t�1 � β�y � λt�1p||pβ̂t�1 � β�qSc ||1 � ||pβ̂t�1 � β�qS ||1q
¥ � ||∇L̃1pβ�, β̂tq||8||β̂t�1 � β�||1 � λt�1p||pβ̂t�1 � β�qSc ||1 � ||pβ̂t�1 � β�qS ||1q.

Under the assumption on λt�1 we further have

0 ¥ �λt�1

2
||β̂t�1 � β�||1 � λt�1p||pβ̂t�1 � β�qSc ||1 � ||pβ̂t�1 � β�qS ||1q

� λt�1

2
||pβ̂t�1 � β�qSc ||1 � 3λt�1

2
||pβ̂t�1 � β�qS ||1,

which completes the proof.
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B.3. Proof of Theorem 6

Proof. For the term L̃1pβ̂t�1, β̂tq � L̃1pβ�, β̂tq we have

L̃1pβ̂t�1, β̂tq � L̃1pβ�, β̂tq �L1pβ̂t�1q �
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∇Ljpβ̂tq �∇L1pβ̂tq, β̂t�1

G

� L1pβ�q �
C

1

m

¸
jPrms

∇Ljpβ̂tq �∇L1pβ̂tq,β�
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�x∇L̃1pβ�, β̂tq, β̂t�1 � β�y � κ||β̂t�1 � β�||22,

where the first inequality we use the restricted strong convexity condition (5). Also by the optimality of β̂t�1 for (4), we
have

L̃1pβ̂t�1, β̂tq � L̃1pβ�, β̂tq � λt�1||β̂t�1||1 � λt�1||β�||1 ¤ 0.

Combining above two inequalities we obtain with probability at least 1� δ:

λt�1||β�||1 � λt�1||β̂t�1||1 ¥x∇L̃1pβ�, β̂tq, β̂t�1 � β�y � κ||β̂t�1 � β�||22
¥� ||∇L̃1pβ�, β̂tq||8||β̂t�1 � β�||1 � κ||β̂t�1 � β�||22
¥� λt�1

2
||β̂t�1 � β�||1 � κ||β̂t�1 � β�||22.

By triangle inequality that λt�1||β̂t�1 � β�||1 ¥ λt�1||β�||1 � λt�1||β̂t�1||1, we have
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2
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2
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2
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¤6

?
sλt�1||pβ̂t�1 � β�qS ||2

¤6
?
sλt�1||β̂t�1 � β�||2.

We get

||β̂t�1 � β�||2 ¤ 6
?
sλt�1

κ
.
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Substitute λt�1 in (9) concludes the proof for `2 estimation error bound. For ||β̂t�1 � β�||1, we know

||β̂t�1 � β�||1 ¤||pβ̂t�1 � β�qS ||1 � ||pβ̂t�1 � β�qSc ||1
¤4||pβ̂t�1 � β�qS ||1 ¤ 4

?
s||pβ̂t�1 � β�qS ||2

¤4
?
s||β̂t�1 � β�||2 ¤ 24sλt�1

κ
,

which obtains the desired bound.

B.4. Proof of Theorem 3

Proof. Theorem 3 follows from Theorem 6 after we verify some conditions. First, it is easy to see that the quadratic loss
L � 1,M � 0. Under conditions of Theorem, with probability 1� δ,����

���� 1

m

¸
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∇Ljpβ�q
����
����
8

À σσX

c
logpp{δq
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.

This follows from Corollary 5.17 of Vershynin (2012). Furthermore, with probability at least 1� δ, we have

max
jPrms,iPrns

||xji||8 À σX
a

logpmnp{δq.

Finally,

||β̂0 � β�||1 À sσσX
κ

c
logpnp{δq

n
,

with probability at least 1 � δ (Wainwright, 2009, Meinshausen & Yu, 2009, Bickel et al., 2009). Plugging these bounds
into Theorem 6 completes the proof.

B.5. Proof of Corollary 7

Proof. The proof proceeds by recursively applying Theorem 6 and sum a geometric sequence. For notation simplicity let
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b �
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.

By Theorem 6 we have

||β̂t�1 � β�||1 ¤a� b||β̂t � β�||1 � c||β̂t � β�||21
¤a� 2b||β̂t � β�||1
¤a� 2bpa� 2b||β̂t�1 � β�||1q ¤ . . .

¤a
ţ

k�0

p2bqk � p2bqt�1||β̂0 � β�||1.

�ap1� p2bqt�1q
1� 2b

� p2bqt�1||β̂0 � β�||1, (16)

which completes the `1 estimation error bound. For ||β̂t�1 � β�||2, we first use (16) to obtain

||β̂t � β�||1 ¤ ap1� p2bqtq
1� p2bq � p2bqt||β̂0 � β�||1.
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Then apply Theorem 6 to obtain that
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||β̂t � β�||1 ¤ a

4
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which concludes the proof.

B.6. Proof of Lemma 10

Proof. By the definition of Ljpβq, we have
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Appling Azuma-Hoeffding inequality (Hoeffding, 1963) and the union bound over rps leads to the desired bound.

C. Full Experimental Results
We run the algorithms for both distributed regression and classification problems. The algorithms to be compared are:

• Local: the first machine just solves a related `1 regularized problem (lasso or `1 regularized logistic regression) with
the optimal λ, and outputs the solution. Obviously this approach is communication free.

• Centralize: the master gathers all data from different machines together, and solves a centralized `1 regularized loss
minimization problem with the optimal λ, and outputs the solution. This approach is communication expensive as all
data needs to be communicated, but it usually gives us the best estimation and prediction performance.

• Prox GD: the distributed proximal gradient descent is ran on the `1 regularized objective, where we initialized the
starting point with the first machine’s solution.

• Avg-Debias: the method proposed in Lee et al. (2015b), with fine tuned regularization and hard thresholding param-
eters. This approach only requires one round of communication, where each machine sends a p-dimensional vector.
However, Avg-Debias is computationally prohibitive because of the debiasing operation.

• EDSL: the proposed efficient distributed sparse learning approach, where the regularization level at each iteration is
fine tuned on a held out test data set.

C.1. Simulations

The full experimental results plotted in Figure 3 and Figure 4, with various settings of pn, p,m, sq, and condition numbers
1{κ. We have the following observations:
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Table 2. List of real-world datasets used in the experiments.
Name #Instances #Features Task
a9a 48,842 123 Classification

connect-4 67,557 127 Regression
dna 2,000 181 Regression

mitface 6,977 362 Classification
mnist 1 vs 2 14,867 785 Classification

mnist 60,000 785 Regression
mushrooms 8,124 113 Classification

protein 17,766 358 Regression
spambase 4,601 57 Classification

usps 7,291 257 Regression
w8a 64,700 301 Classification
year 51,630 91 Regression

• The Avg-Debias approach obtained much better estimation error compared to Local after one round of communication
and sometimes performed quite close to Centralize. However, in most cases, there is still a gap compared with
Centralize, especially when the problem is not well-conditioned or the number of machines m is large.

• When the problem is well conditioned (Σij � 0.5|i�j| case), Prox GD converges reasonably fast. However, it
becomes very slow when the condition number becomes bad (Σij � 0.5|i�j|{5 case). We expect to observe a sim-
ilar phenomenon for other first-order distributed optimization algorithms, such as accelerated proximal gradient or
ADMM.

• As theory suggests, EDSL obtained a solution that is competitive with Avg-Debias after one round of communication.
The estimation error decreases to match performance of Centralize within few rounds of communications; typically
less than 5, even though the theory suggests EDSL will match the performance of centralize within Oplogmq rounds
of communication.

C.2. Real-world Data Evaluation

In real world data evaluation presented in Section 5.2, the datasets are publicly available from the LIBSVM website7 and
UCI Machine Learning Repository8. The statistics of these datasets are summarized in Table 2, where some of the multi-
class classification datasets are adopted under the regression setting with squared losses. The results are plotted in Figure
5 where for some datasets the performance of Avg-Debias is significantly worse than others (mostly because the debiasing
step fails), thus we omit these plots. The plots are shown in Figure 5 We have the following observations

• Since there is no well-specified model on these datasets, the curves behave quite differently on different data sets.
However, a large gap between the local and centralized procedure is consistent as the later uses 10 times more data.

• Avg-Debias often fails on these real datasets and performs much worse than in simulations. The main reason might
be that the assumptions, such as well-specified model or generalized coherence condition, fail, then Avg-Debias can
totally fail and produce solution even much worse than the local.

• Prox GD approach still converges slowly in most of the cases.

• The proposed EDSL is quite robust on real world data sets, and can output a solution which is highly competitive with
the centralized model within a few rounds of communications.

• There exits a slight “zig-zag” behavior for EDSL approach on some data sets. For example, on the mushrooms data
set, the predictive performance of EDSL is not stable.

7https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
8http://archive.ics.uci.edu/ml/
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Figure 3. Comparison of various algorithms for distributed sparse regression, 1st and 3rd row: well-conditioned cases, 2nd and 4th row:
ill-conditioned cases.
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Figure 4. Comparison of various algorithms for distributed sparse classification (logistic regression), 1st and 3rd row: well-conditioned
cases, 2nd and 4th row: ill-conditioned cases.
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Figure 5. Comparison of various approaches for distributed sparse regression and classification on real world datasets. (Avg-Debias is
omitted when it is significantly worse than others.)


