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Abstract
We propose a novel, efficient approach for dis-
tributed sparse learning with observations ran-
domly partitioned across machines. In each
round of the proposed method, worker machines
compute the gradient of the loss on local data and
the master machine solves a shifted `1 regular-
ized loss minimization problem. After a number
of communication rounds that scales only log-
arithmically with the number of machines, and
independent of other parameters of the problem,
the proposed approach provably matches the es-
timation error bound of centralized methods.

1. Introduction
We consider learning a sparse linear regressor β minimiz-
ing the population objective:

β� � arg min
β

EX,Y�D r`pY, xX,βyqs , (1)

where pX, Y q P X � Y � Rp � Y are drawn from an un-
known distribution D and `p�, �q is a convex loss function,
based on N i.i.d. samples txi, yiuNi�1 drawn from D, and
when the support S :� supportpβ�q � tj P rps | β�j � 0u
of β� is small, |S| ¤ s. In a standard single-machine set-
ting, a common empirical approach is to minimize the `1
regularized empirical loss (see, e.g., (2) below). Here we
consider a setting where data are distributed across m ma-
chines, and, for simplicity, assume1 that N � nm, so that
each machine j has access to n i.i.d. observations (from the
same source D) txji, yjiuni�1 (equivalently, that N � nm
samples are randomly partitioned across machines).

The main contribution of the paper is a novel algorithm
for estimating β� in a distributed setting. Our estimator is
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1Results in the paper easily generalize to a setting where each
machine has a different number of observations.

able to achieve the performance of a centralized procedure
that has access to all data, while keeping computation and
communication costs low. Compared to the existing one-
shot estimation approach (Lee et al., 2015b), our method
can achieve the same statistical performance without per-
forming the expensive debiasing step. As the number of
communication rounds increases, the estimation accuracy
improves until matching the performance of a centralized
procedure, which happens after the logarithm of the total
number of machines rounds. Furthermore, our results can
be achieved under weak assumptions on the data generating
procedure.

We assume that the communication occurs in rounds. In
each round, machines exchange messages with the master
machine. Between two rounds, each machine only com-
putes based on its local information, which includes local
data and previous messages (Zhang et al., 2013b; Shamir
& Srebro, 2014; Arjevani & Shamir, 2015). In a non-
distributed setting, efficient estimation procedures need to
balance statistical efficiency with computation efficiency
(runtime). In a distributed setting, the situation is more
complicated and we need to balance two resources, local
runtime and number of rounds of communication, with the
statistical error. The local runtime refers to the amount of
work each machine needs to do. The number of rounds
of communication refers to how often do local machines
need to exchange messages with the master machine. We
compare our procedure to other algorithm using the afore-
mentioned metrics.

We consider the following two baseline estimators of β�:
the local estimator uses data available only on the mas-
ter (first) machine and ignores data available on other ma-
chines. In particular, it computes

β̂local � arg min
β

1

n

ņ

i�1

`py1i, xx1i,βyq � λ||β||1 (2)

using locally available data. The local procedure is efficient
in both communication and computation, however, the re-
sulting estimation error is large compared to an estimator
that uses all of the available data. The other idealized base-
line is the centralized estimator

β̂centralize � arg min
β

1

mn

m̧

j�1

ņ

i�1

`pyji, xxji,βyq�λ||β||1.
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Approach n Á ms2 log p ms2 log p Á n Á s2 log p
Communication Computation Communication Computation

Centralize n � p Tlassopmn, pq n � p Tlassopmn, pq
Avg-Debias p p � Tlassopn, pq � �

This paper (EDSL) p 2 � Tlassopn, pq logm � p logm � Tlassopn, pq

Table 1. Comparison of resources required for matching the centralized error bound of various approaches for high-dimensional dis-
tributed sparse linear regression problems, where Tlassopn, pq is the runtime for solving a generalized lasso problem of size n� p.

Unfortunately, due to data being huge and communication
expensive, we cannot compute the centralized estimator,
even though it achieves the optimal statistical error.

In a related setting, Lee et al. (2015b) studied a one-shot ap-
proach to learning β�, called Avg-Debias, that is based on
averaging the debiased lasso estimators (Zhang & Zhang,
2013). Under strong assumptions on the data generat-
ing procedure, their approach matches the centralized error
bound after one round of communication. While an en-
couraging result, there are limitations to this approach, that
we list below.

• The debiasing step in Avg-Debias is computationally
heavy as it requires each local machine to estimate a
p�p matrix. For example, Javanmard (2014) (section
5.1) transforms the problem of estimating the debias-
ing matrix Θ into p generalized lasso problems. This
is computationally prohibitive for high-dimensional
problems (Zhang & Zhang, 2013; Javanmard & Mon-
tanari, 2014). In comparison, our procedure requires
only solving one `1 penalized objective in each itera-
tion, which has the same time complexity as comput-
ing β̂local in (2). See Section 2 for details.

• Avg-Debias procedure only matches the statistical er-
ror rate of the centralized procedure when the sam-
ple size per machine satisfies n Á ms2 log p. Our
approach improves this sample complexity to n Á
s2 log p.

• Avg-Debias procedure requires strong conditions on
the data generating process. For example, the data
matrix is required to satisfy the generalized coherence
condition for debiasing to work2. As we show here,
such a condition is not needed for consistent high-
dimensional estimation in a distributed setting. In-
stead, we only require standard restricted eigenvalue
condition that are commonly assumed in the high-
dimensional estimation literature.

Our method (EDSL) addresses the aforementioned issues
2The generalized coherence states that there exists a matrix

Θ, such that ||Σ̂Θ � Ip||8 À
b

log p
n

, where Σ̂ is the empirical
covariance matrix.

of Avg-Debias. Table 1 summarizes the resources required
for the approaches discussed above to solve the distributed
sparse linear regression problems.

Parallel Work In parallel work (publicly announced on
arXiv simultaneously with the results in this contribution),
Jordan et al. (2016) present a method which is equivalent to
the first iteration of our method, and thus achieves the same
computational advantage over Avg-Debias as depicted in
the left column of Table 1 and discussed in the first and
third bullet points above. Jordan et al. extend the idea
in ways different and orthogonal to this submission, by
considering also low-dimensional and Bayesian inference
problems. Still, for high-dimensional problems, they only
consider a one-shot procedure, and so do not achieve sta-
tistical optimality in the way our method does, and do not
allow using n À ms2 log p samples per machine (see right
half of Table 1). The improved one-shot approach is thus
a parallel contribution, made concurrently by Jordan et al.
and by us, while the multi-step approach and accompanied
reduction in required number of samples (discusse in the
second bullet point above) and improvement in statistical
accuracy is a distinct contribution of this this submission.

Other Related Work A large body of literature exists
on distributed optimization for modern massive data sets
(Dekel et al., 2012; Duchi et al., 2012; 2014; Zhang et al.,
2013b; Zinkevich et al., 2010; Boyd et al., 2011; Balcan
et al., 2012; Yang, 2013; Jaggi et al., 2014; Ma et al., 2015;
Shamir & Srebro, 2014; Zhang & Xiao, 2015; Lee et al.,
2015a; Arjevani & Shamir, 2015). A popular approach to
distributed estimation is averaging estimators formed lo-
cally by different machines (Mcdonald et al., 2009; Zinke-
vich et al., 2010; Zhang et al., 2012; Huang & Huo, 2015).
Divide-and-conquer procedures also found applications in
statistical inference (Zhao et al., 2014a; Cheng & Shang,
2015; Lu et al., 2016). Shamir & Srebro (2014) and Rosen-
blatt & Nadler (2014) showed that averaging local estima-
tors at the end will have bad dependence on either condition
number or dimension of the problem. Yang (2013), Jaggi
et al. (2014) and Smith et al. (2016) studied distributed op-
timization using stochastic (dual) coordinate descent, these
approaches try to find a good balance between computation
and communication, however, their communication com-
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plexity depends badly on the condition number. As a re-
sult, they are not better than first-order approaches, such as
(proximal) accelerated gradient descent (Nesterov, 1983),
in terms of communication. Shamir et al. (2014) and Zhang
& Xiao (2015) proposed truly communication-efficient dis-
tributed optimization algorithms. They leveraged the local
second-order information and, as a result, obtained milder
dependence on the condition number compared to the first-
order approaches (Boyd et al., 2011; Shamir & Srebro,
2014; Ma et al., 2015). Lower bounds were studied in
Zhang et al. (2013a), Braverman et al. (2015), and Arjevani
& Shamir (2015). However, it is not clear how to extend
these existing approaches to problems with non-smooth ob-
jectives, including the `1 regularized problems.

Most of the above mentioned work is focused on estima-
tors that are (asymptotically) linear. Averaging at the end
reduces the variance of the these linear estimators, result-
ing in an estimator that matches the performance of a cen-
tralized procedure. Zhang et al. (2013c) studied averag-
ing local estimators obtained by the penalized kernel ridge
regression, with the `2 penalty was chosen smaller than
usual to avoid the large bias problem. The situation in a
high-dimensional setting is not so straightforward, since
the sparsity inducing penalty introduces the bias in a non-
linear way. Zhao et al. (2014b) illustrated how averaging
debiased composite quantile regression estimators can be
used for efficient inference in a high-dimensional setting.
Averaging debiased high-dimensional estimators was sub-
sequently used in Lee et al. (2015b) for distributed estima-
tion, multi-task learning (Wang et al., 2015), and statistical
inference (Battey et al., 2015).

Notation. We use rns to denote the set t1, . . . , nu. For a
vector a P Rn, we let supportpaq � tj : aj � 0u be
the support set, ||a||q , q P r1,8q, the `q-norm defined as
||a||q � p°iPrns |ai|qq1{q , and ||a||8 � maxiPrns |ai|. For
a matrix A P Rn1�n2 , we use the following element-wise
`8 matrix norms ||A||8 � maxiPrn1s,jPrn2s |aij |. Denote
In as n� n identity matrix. For two sequences of numbers
tanu8n�1 and tbnu8n�1, we use an � Opbnq to denote that
an ¤ Cbn for some finite positive constant C, and for all n
large enough. If an � Opbnq and bn � Opanq, we use the
notation an � bn. We also use an À bn for an � Opbnq
and an Á bn for bn � Opanq.
Paper Organization. We describe our method in Section
2, and present the main results in the context of sparse lin-
ear regression in Section 3, and provide a generalized the-
ory in Section 4. We demonstrate the effectiveness of the
proposal via experiments in Section 5, and conclude the pa-
per with discussions in Section 6. In Appendix, in Section
A we illustrate some concrete examples of the general re-
sults in Section 4, and all proofs are deferred in Section B.
More experimental results are presented in Section C.

Algorithm 1 Efficient Distributed Sparse Learning
(EDSL).
Input: Data txji, yjiujPrms,iPrns, loss function `p�, �q.
Initialization: The master obtains β̂0 by minimizing (3),
and broadcast β̂0 to every worker.
for t � 0, 1, . . . do

Workers:
for j � 2, 3, . . . ,m do

if Receive β̂t from the master then
Calculate gradient ∇Ljpβ̂tq and send it to the
master.

end
end
Master:
if Receive t∇Ljpβ̂tqumj�2 from all workers then

Obtain β̂t�1 by solving the shifted `1 regularized
problem in (4).
Broadcast β̂t�1 to every worker.

end
end

2. Methodology
In this section, we detail our procedure for estimating β�

in a distributed setting. Algorithm 1 provides an outline of
the steps executed by the master and worker nodes. Let

Ljpβq � 1

n

ņ

i�1

`pyji, xxji,βyq, j P rms,

be the empirical loss at each machine. Our method starts
by solving a local `1 regularized M -estimation program.
At iteration t � 0, the master (first) machine obtains β̂0 as
a minimizer of the following program

minL1pβq � λ0||β||1. (3)

The vector β̂0 is broadcasted to all other machines, which
use it to compute a gradient of the local loss at β̂0. In par-
ticular, each worker computes∇Ljpβ̂0q and communicates
it back to the master. This constitutes one round of com-
munication. At the iteration t � 1, the master solves the
shifted `1 regularized problem

β̂t�1 � arg min
β
L1pβq �

C
1

m

m̧

j�1

∇Ljpβ̂tq �∇L1pβ̂tq,β
G

� λt�1||β||1. (4)

A minimizer β̂t�1 is communicated to other machines,
which use it to compute the local gradient ∇Ljpβ̂t�1q as
before.

Formulation (4) is inspired by the proposal in Shamir et al.
(2014), where the authors studied distributed optimization
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for smooth and strongly convex empirical objectives. Com-
pared to Shamir et al. (2014), we do not use any averaging
scheme, which would require additional rounds of commu-
nication and, moreover, we add an `1 regularization term to
ensure consistent estimation in high-dimensions. Different
from the distributed first-order optimization approaches,
the refined objective (4) leverages both global first-order in-
formation and local higher-order information. To see this,
suppose we set λt�1 � 0 and that Ljpβq is a quadratic ob-
jective with invertible Hessian. Then we have the following
closed form solution for (4),

β̂t�1 � β̂t �
�
∇2L1pβ̂tq

	�1

�
�m�1

¸
jPrms

∇Ljpβ̂tq
�

,

which is exactly a sub-sampled Newton updating rule. Un-
fortunately for high-dimensional problems, the Hessian is
no longer invertible, and a `1 regularization is added to
make the solution well behaved. The regularization param-
eter λt will be chosen in a way, so that it decreases with
the iteration number t. As a result we will be able to show
that the final estimator performs as well at the centralized
solution. We discuss in details how to choose λt in the fol-
lowing section.

3. Main Result
We illustrate our main theoretical results in the context of
sparse linear regression model

yji � xxji,β�y � εji, i P rns, j P rms, (5)

where xji is a subgaussian p-dimensional vector of in-
put variables and εji is i.i.d. mean zero subgaussian noise.
The loss function considered is the usual the squared loss
`py, ŷq � 1

2 py � ŷq2. With this notation, the centralized
approach leads to the lasso estimator (Tibshirani, 1996)

β̂centralize � arg min
β

1

m

m̧

j�1

Ljpβq � λ||β||1,

where the loss at worker j is

Ljpβq � 1

2n

¸
iPrns

pyji � xβ,xjiyq2.

Before stating the main result, we provide the definition of
the subgaussian norm (Vershynin, 2012).

Definition 1 (Subgaussian norm). The subgaussian norm
||X||ψ2 of a subgaussian p-dimensional random vector X ,
is defined as

||X||ψ2
� sup
xPSp�1

sup
q¡1

q�1{2pE|xX,xy|qq1{q,

where Sp�1 is the p-dimensional unit sphere.

We also need an assumption on the restricted strong con-
vexity constant (Negahban et al., 2012).
Assumption 2. We assume that there exists a κ ¡ 0, such
that for any ∆ P CpS, 3q,

1

2n
||X1∆||22 ¥ κ||∆||22,

where

CpS, 3q � t∆ P Rp | ||∆Sc ||1 ¤ 3||∆S ||1u
is a restricted cone in Rp, and

X1 � rxT11; xT12; . . . ; xT1ns P Rn�p

is the data matrix on the master machine.

When xji are randomly drawn from a subgaussian distri-
bution, Assumption (2) is satisfied with high probability as
long as n Á s log p (Rudelson & Zhou, 2013).

We are now ready to state the estimation error bound for
β̂t�1 obtained using Algorithm 1.
Theorem 3. Assume that data are generated from a sparse
linear regression model in (5) with ||xji||ψ2 ¤ σX and
||εji||ψ2

¤ σ. Let

λt�1 � 2

mn

����
���� ¸
jPrms

¸
iPrns

xjiεji

����
����
8

� 2L

�
max
j,i

||xji||28


� ||β̂t � β�||1 �

c
logp2p{δq

n
(6)

Then for t ¥ 0 we have, with probability at least 1� 2δ,

||β̂t�1 � β�||1 ¤1� at�1
n

1� an

48sσσX
κ

c
logpp{δq
mn

� at�1
n

sσσX
κ

c
logpnp{δq

n
, (7)

||β̂t�1 � β�||2 ¤1� at�1
n

1� an

12
?
sσσX
κ

c
logpp{δq
mn

� atnbn
sσσX
κ

c
logpnp{δq

n
, (8)

where

an � 96sσσX
κ

c
logp2p{δq

n
and

bn � 24
?
sσσX
κ

c
logpnp{δq

n
.

We can simplify the bound obtained in Theorem 3 by look-
ing at the scaling with respect to n,m, s, and p, by treating
κ, σ and σX as constants. Suppose n Á s2 log p and set

λt �
c

log p

mn
�
c

log p

n

�
s

c
log p

n

�t
.
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The following error bounds hold for Algorithm 1:

||β̂t � β�||1 ÀP s
c

log p

mn
�
�
s

c
log p

n

�t�1

,

||β̂t � β�||2 ÀP
c
s log p

mn
�
�c

s log p

n

��
s

c
log p

n

�t
.

We can compare the above bounds to the performance of
the local and centralized lasso (Wainwright, 2009; Mein-
shausen & Yu, 2009; Bickel et al., 2009). For β̂local, we
have

||β̂local � β�||1 ÀP s
c

log p

n

and

||β̂local � β�||2 ÀP
c
s log p

n
.

For β̂centralize, we have

||β̂centralize � β�||1 ÀP s
c

log p

mn

and

||β̂centralize � β�||2 ÀP
c
s log p

mn
.

We see that after one round of communication, we have

||β̂1 � β�||1 ÀP s
c

log p

mn
� s2 log p

n

and

||β̂1 � β�||2 ÀP
c
s log p

mn
� s3{2 log p

n
.

These bounds match the results in Lee et al. (2015b) with-
out expensive debiasing step. Furthermore, when m À

n
s2 log p , they match the performance of the centralized
lasso. Finally, as long as t Á logm and n Á s2 log p, it

is easy to check that
�
s
b

log p
n


t�1

À s
b

log p
mn . There-

fore,

||β̂t�1 � β�||1 ÀP s
c

log p

mn

and

||β̂t�1 � β�||2 ÀP
c
s log p

mn
,

which matches the centralized lasso performance without
additional error terms. That is, as long as n Á s2 log p, the
rounds of communication to matches centralized procedure
only increase logarithmically with the number of machines
and independent of other parameters. Differently, for dis-
tributed learning methods studied in the literature for mini-
mizing smooth objectives, the rounds of communication to
match centralized procedure increase polynomially with m

(see table 1 in (Zhang & Xiao, 2015)). This is because here
we exploit the underlying restricted strong convexity from
empirical loss functions, while prior work on distributed
minimization of smooth objectives (Shamir et al., 2014;
Zhang & Xiao, 2015) only consider strong convexity ex-
plicitly from regularization.

4. Generalized Theory and Proof Sketch
In order to establish Theorem 3, we prove an error bound
on β̂ � β� for a general loss `p�, �q and β̂ obtained using
Algorithm 1. To simplify the presentation, we assume that
the domain X is bounded and that the loss function `p�, �q
is smooth.

Assumption 4. The loss `p�, �q is L-smooth with respect to
the second argument:

`1pa, bq � `1pa, cq ¤ L|b� c|, @a, b, c P R

Furthermore, |`3pa, bq| ¤M for all a, b P R.

Commonly used loss functions in statistical learning, in-
cluding the squared loss for regression and logistic loss for
classification, satisfy this assumption (Zhang et al., 2013b).

Next, we state the restricted strong convexity condition for
a general loss function (Negahban et al., 2012).

Assumption 5. There exists κ ¡ 0 such that for any ∆ P
CpS, 3q

L1pβ� �∆q � L1pβ�q � x∇L1pβ�q,∆y ¥ κ||∆||22,

with CpS, 3q � t∆ P Rp|||∆Sc ||1 ¤ 3||∆S ||1u.

The restricted strong convexity holds with high probabil-
ity for a wide range of models and designs and it is com-
monly assumed for showing consistent estimation in high-
dimensions (see, for example, van de Geer & Bühlmann,
2009; Negahban et al., 2012; Raskutti et al., 2010; Rudel-
son & Zhou, 2013, for details).

Our main theoretical result establishes a recursive esti-
mation error bound, which relates the estimation error
||β̂t�1 �β�|| to that of the previous iteration ||β̂t �β�||1.

Theorem 6. Suppose Assumption 4 and 5 holds. Let

λt�1 �2

����
���� 1

m

¸
jPrms

∇Ljpβ�q
����
����
8

� 2L

�
max
j,i

||xji||28


||β� � β̂t||1

c
logp2p{δq

n

� 2M

�
max
j,i

||xji||38

�

||β̂t � β�||21
	
.

(9)
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Then with probability at least 1� δ, we have

||β̂t�1 � β�||1 ¤48s

κ

����
���� 1

m

¸
jPrms

∇Ljpβ�q
����
����
8

� 48sL

κ

�
max
j,i

||xji||28


||β� � β̂t||1

c
logp2p{δq

n

� 48sM

κ

�
max
j,i

||xji||38

�

||β̂t � β�||21
	
,

and

||β̂t�1 � β�||2 ¤12
?
s

κ

����
���� 1

m

¸
jPrms

∇Ljpβ�q
����
����
8

� 12
?
sL

κ

�
max
j,i

||xji||28


||β� � β̂t||1

c
logp2p{δq

n

� 4
?
sM

κ

�
max
j,i

||xji||38

�

||β̂t � β�||21
	
.

Theorem 6 upper bounds the estimation error ||β̂t�1 �
β�||1 as a function of ||β̂t � β�||1. Applying Theorem 6
iteratively, we immediately obtain the following estimation
error bound which depends on the quality of local `1 regu-
larized estimation ||β̂0 � β�||1.
Corollary 7. Suppose the conditions of Theorem 6 are sat-
isfied. Furthermore, suppose that for all t, we have

M

�
max
j,i

||xji||8


||β̂t � β�||1 ¤ L

c
logp2p{δq

n
. (10)

Then with probability at least 1� δ, we have

||β̂t�1 � β�||1 ¤ at�1
n ||β̂0 � β�||1

� p1� anq�1p1� at�1
n q � 48s

κ
�
����
���� 1

m

¸
jPrms

∇Ljpβ�q
����
����
8

and

||β̂t�1 � β�||2 ¤ atnbn � ||β̂0 � β�||1
� p1� anq�1p1� at�1

n q � 12
?
s

κ
�
����
���� 1

m

¸
jPrms

∇Ljpβ�q
����
����
8

,

where

an � 96sL

κ

�
max
j,i

||xji||28

c

logp2p{δq
n

and

bn � 24
?
sL

κ

�
max
j,i

||xji||28

c

logp2p{δq
n

.

For the quadratic loss we have that M � 0 and the condi-
tion in (10) holds. For other types of losses, condition in
(10) will be true for t large enough when m Á s2, lead-
ing to local exponential rate of convergence until reaching
statistical optimal region.

4.1. Proof Sketch of Theorem 6

We first analyze how the estimation error bound decreases
after one round of communication. In particular, we bound
||β̂t�1 � β�|| with ||β̂t � β�||. Define

L̃1pβ, β̂tq � L1pβq�
C

1

m

¸
jPrms

∇Ljpβ̂tq �∇L1pβ̂tq,β
G
.

(11)
Then

∇L̃1pβ, β̂tq � ∇L1pβq � 1

m

¸
jPrms

∇Ljpβ̂tq �∇L1pβ̂tq.

The following lemma bounds the `8 norm of∇L̃1pβ, β̂tq.
Lemma 8. With probability at least 1� δ, we have����
����∇L̃1pβ�, β̂tq

����
����
8

¤
����
���� 1

m

¸
jPrms

∇Ljpβ�q
����
����
8

� 2L

�
max
j,i

||xji||28


||β� � β̂t||1

c
logp2p{δq

n

�M

�
max
j,i

||xji||38

�

||β̂t � β�||21
	
.

The lemma bounds the magnitude of the gradient of the loss
at optimum point β�. This will be used to guide our choice
of the `1 regularization parameter λt�1 in (4). The follow-
ing lemma shows that as long as λt�1 is large enough, it is
guaranteed that β̂t�1 � β� is in a restricted cone.
Lemma 9. Suppose

λt�1{2 ¥
����
����∇L̃1pβ�, β̂tq

����
����
8

.

Then with probability at least 1� δ, we have β̂t�1 � β� P
CpS, 3q.
Based on the conic condition and restricted strong convex-
ity condition, we can obtain the recursive error bound stated
in Theorem 6 following the proof strategy as in Negahban
et al. (2012).

Applications Theorem 6 can be used to establish statisti-
cal guarantees for more general sparse learning problems,
for example consider the logistic regression is a popular
classification model where the binary label yji P t�1, 1u is
drawn according to a Bernoulli distribution:

Ppyji � �1|xjiq � exppyjixxji,β�yq
exppyjixxji,β�yq � 1

, (12)

we can establish local exponential convergence when ap-
plying Algorithm 1 to estimate β� in the high-dimensional
logistic model. Section A in Appendix provide formal
guarantees and more illustrative examples.
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Figure 1. Comparison of various algorithms for distributed sparse learning on simulated data, first row: sparse linear regression, second
row: sparse logistic regression.

5. Experiments
In this section we present empirical comparisons between
various approaches on both simulated and real world
datasets 3. We run the algorithms for both distributed re-
gression and classification problems, and compare with the
following algorithms: i) Local; ii) Centralize; iii) Dis-
tributed proximal gradient descent (Prox GD); iv) Avg-
Debias (Lee et al., 2015b) with hard thresholding, and v)
the proposed EDSL approach.

5.1. Simulations

We first examine the algorithms on simulated data. We
generate txjiujPrms,iPrns from a multivariate normal dis-
tribution with mean zero and covariance matrix Σ. The
covariance Σ controls the condition number of the prob-
lem and we will varying it to see how the performance
changes. We set Σij � 0.5|i�j| for the well-conditioned
setting and Σij � 0.5|i�j|{5 for the ill-conditioned setting.
The response variable tyjiujPrms,iPrns are drawn from (5)
and (12) for regression and classification problems, respec-
tively. For regression, the noise εji is sampled from a stan-
dard normal distribution. The true model β� is set to be
s-sparse, where the first s-entries are sampled i.i.d. from a
uniform distribution in r0, 1s, and the other entries are set

3Please refer to Section C in Appendix for full experimental
results and more details

to zero.

We run experiments with various pn, p,m, sq settings4. The
estimation error ||β̂t � β�||2 is shown versus rounds of
communications for for Prox GD and the proposed EDSL
algorithm. We also plot the estimation error of Local, Avg-
Debias, and Centralize as horizontal lines, since the com-
munication cost is fixed for for these algorithms56. Figure
1 summarize the results, averaged across 10 independent
trials. We have the following observations:

• The Avg-Debias approach obtained much better es-
timation error compared to Local after one round of
communication and sometimes performed quite close
to Centralize. However, in most cases, there is still
a gap compared with Centralize, especially when the
problem is not well-conditioned or m is large.

• ProxGD converges very slow when the condition
number becomes bad (Σij � 0.5|i�j|{5 case).

• As theory suggests, EDSL obtained a solution that is

4n: sample size per machine, p: problem dimension, m: num-
ber of machines, s: true support size.

5these algorithms have zero, one-shot and full communica-
tions, respectively.

6To give some senses about computational cost, for a problem
with n � 200, p � 1000, at each round EDSL takes about 0.048s,
while Avg-Debias takes about 40.334s.
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Figure 2. Comparison of various approaches for distributed sparse regression and classification on real world datasets.

competitive with Avg-Debias after one round of com-
munication. The estimation error decreases to match
performance of Centralize within few rounds of com-
munications; typically less than 5, even though the
theory suggests EDSL will match the performance of
centralize withinOplogmq rounds of communication.

Above experiments illustrate our theoretical results in finite
samples. As suggested by theory, when sample size per
machine n is relatively small, one round of communica-
tion is not sufficient to make Avg-Debias matches the per-
formance of centralized procedure. However, EDSL could
match the performance of Avg-Debias with one round of
communication and further improve the estimation qual-
ity by exponentially reducing the gap between centralized
procedure with Avg-Debias, until matching the centralized
performance. Thus, the proposed EDSL improves the Avg-
Debias approach both computationally and statistically.

5.2. Real-world Data Evaluation

In this section, we compare the distributed sparse learning
algorithms on several real world datasets. For all data sets,
we use 60% of data for training, 20% as held-out valida-
tion set for tuning the parameters, and the remaining 20%
for testing. We randomly partition data 10 times and re-
port the average performance on the test set. For regres-
sion tasks, the evaluation metric is the normalized Mean
Squared Error (normalized MSE), while for classification
tasks we report the miss-classification error. We randomly
partition the data on m � 10 machines. A subset of the
results are plotted in Figure 2 where for some data sets the
performance of Avg-Debias is significantly worse than oth-
ers (mostly because the debiasing step fails), thus we omit
these plots.

Since there is no well-specified model on these datasets, the
curves behave quite differently on different data sets. How-
ever, a large gap between the local and centralized proce-
dure is consistent as the later uses 10 times more data. Avg-
Debias often fails on these real datasets and performs much
worse than in the simulations, the main reason might be that

the assumptions, such as well-specified model or general-
ized coherence condition, fail, then Avg-Debias can totally
fail and produce solution even much worse than the local.
Nevertheless, the proposed EDSL performs quite robust on
real world data sets, and can often output a solution which
is highly competitive with the centralized model within a
few rounds of communications. We also observed a slight
“zig-zag” behavior for EDSL approach on some data sets.
For example, on the mushrooms data set, the predictive per-
formance of EDSL is not stable. In sum, the experimental
results on real world data sets verified that the proposed
EDSL method is effective for distributed sparse learning
problems.

6. Conclusion and Discussion
We proposed a novel approach for distributed learning with
sparsity, which is efficient in both computation and com-
munication. Our theoretical analysis showed that the pro-
posed method works under weaker conditions than Avg-
Debias estimator while matches its error bound with one-
round communication. Furthermore, the estimation error
can be improved with a logarithmic more rounds of com-
munication until matching the centralized procedure. Ex-
periments on both simulated and real-world data demon-
strate that the proposed method significantly improves
the performance over one shot averaging approaches, and
matches the centralized procedure with few iterations.

There might be several ways to improve this work. As we
see in real data experiments, the proposed approach can
still perform slightly worse than the centralized approach
on certain datasets. It is interesting to explore how to make
EDSL provably work under even weaker assumptions. For
example, EDSL requires Ops2 log pq samples per machine
to match the centralized method in Oplogmq rounds of
communications, however, it is not clear whether the sam-
ple size requirement can be improved, while still maintain-
ing low-communication cost. Last but not the least, it is in-
teresting to explore presented ideas to improve the compu-
tational cost of communication-efficient distributed multi-
task learning with shared support (Wang et al., 2015).
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