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Abstract
We consider empirical risk minimization of lin-
ear predictors with convex loss functions. Such
problems can be reformulated as convex-concave
saddle point problems and solved by primal-dual
first-order algorithms. However, primal-dual al-
gorithms often require explicit strongly convex
regularization in order to obtain fast linear con-
vergence, and the required dual proximal map-
ping may not admit closed-form or efficient so-
lution. In this paper, we develop both batch and
randomized primal-dual algorithms that can ex-
ploit strong convexity from data adaptively and
are capable of achieving linear convergence even
without regularization. We also present dual-free
variants of adaptive primal-dual algorithms that
do not need the dual proximal mapping, which
are especially suitable for logistic regression.

1. Introduction
We consider the problem of regularized empirical risk min-
imization (ERM) of linear predictors. Let a1, . . . , an ∈ Rd
be the feature vectors of n data samples, φi : R → R be
a convex loss function associated with the linear prediction
aTi x, for i = 1, . . . , n, and g : Rd → R be a convex regu-
larization function for the predictor x ∈ Rd. ERM amounts
to solving the following convex optimization problem:

min
x∈Rd

{
P (x)

def
= 1

n

∑n
i=1 φi(a

T
i x) + g(x)

}
. (1)

This formulation covers many well-known classification
and regression problems. For example, logistic regres-
sion is obtained by setting φi(z) = log(1 + exp(−biz))
where bi ∈ {±1}. For linear regression problems, the loss
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function is φi(z) = (1/2)(z − bi)
2, and we get ridge re-

gression with g(x) = (λ/2)‖x‖22 and the elastic net with
g(x) = λ1‖x‖1 + (λ2/2)‖x‖22.

LetA = [a1, . . . , an]
T be the n by d data matrix. Through-

out this paper, we make the following assumptions:
Assumption 1. The functions φi, g and matrix A satisfy:

• Each φi is δ-strongly convex and 1/γ-smooth where
γ > 0 and δ ≥ 0, and γδ ≤ 1;

• g is λ-strongly convex where λ ≥ 0;

• λ+ δµ2 > 0, where µ =
√
λmin(ATA).

The strong convexity and smoothness mentioned above are
with respect to the standard Euclidean norm, denoted as
‖x‖ =

√
xTx. (See, e.g., Nesterov (2004, Sections 2.1.1

and 2.1.3) for the exact definitions.) We allow δ = 0, which
simply means φi is convex. Let R = maxi{‖ai‖} and
assuming λ > 0, then R2/(γλ) is a popular definition of
condition number for analyzing complexities of different
algorithms. The last condition above means that the primal
objective function P (x) is strongly convex, even if λ = 0.

There have been extensive research activities in recent
years on developing efficiently algorithms for solving prob-
lem (1). A broad class of randomized algorithms that ex-
ploit the finite sum structure in the ERM problem have
emerged as very competitive both in terms of theoretical
complexity and practical performance. They can be put
into three categories: primal, dual, and primal-dual.

Primal randomized algorithms work with the ERM prob-
lem (1) directly. They are modern versions of ran-
domized incremental gradient methods (e.g., Bertsekas,
2012; Nedic & Bertsekas, 2001) equipped with variance
reduction techniques. Each iteration of such algo-
rithms only process one data point ai with complexity
O(d). They includes SAG (Roux et al., 2012), SAGA
(Defazio et al., 2014), and SVRG (Johnson & Zhang,
2013; Xiao & Zhang, 2014), which all achieve the itera-
tion complexity O

(
(n+R2/(γλ)) log(1/ǫ)

)
to find an ǫ-

optimal solution. In fact, they are capable of exploiting
the strong convexity from data, meaning that the condition
number R2/(γλ) in the complexity can be replaced by the
more favorable oneR2/(γ(λ+δµ2/n)). This improvement
can be achieved without explicit knowledge of µ from data.
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Dual algorithms solve Fenchel dual of (1) by maximizing

D(y)
def
= 1

n

∑n
i=1 −φ∗i (yi)− g∗

(
− 1
n

∑n
i=1 yiai

)
(2)

using randomized coordinate ascent algorithms. (Here φ∗i
and g∗ denotes the conjugate functions of φi and g.) They
include SDCA (Shalev-Shwartz & Zhang, 2013), Nesterov
(2012) and Richtárik & Takáč (2014). They have the same
complexity O

(
(n+R2/(γλ)) log(1/ǫ)

)
, but cannot ex-

ploit strong convexity, if any (when δµ2 > 0), from data.

Primal-dual algorithms solve the convex-concave saddle
point problem minxmaxy L(x, y) where

L(x, y) def
= 1

n

∑n
i=1

(
yi〈ai, x〉 − φ∗i (yi)

)
+ g(x). (3)

In particular, SPDC (Zhang & Xiao, 2015) achieves an
accelerated linear convergence rate with iteration com-
plexity O

(
(n+

√
nR/

√
γλ) log(1/ǫ)

)
, which is better

than the aforementioned non-accelerated complexity when
R2/(γλ) > n. Lan & Zhou (2015) developed dual-free
variants of accelerated primal-dual algorithms, but with-
out considering the linear predictor structure in ERM.
Balamurugan & Bach (2016) extended SVRG and SAGA
to solving saddle point problems.

Accelerated primal and dual randomized algorithms have
also been developed. Nesterov (2012), Fercoq & Richtárik
(2015) and Lin et al. (2015b) developed accelerated coordi-
nate gradient algorithms, which can be applied to solve the
dual problem (2). Allen-Zhu (2016) developed an acceler-
ated variant of SVRG. Acceleration can also be obtained
using the Catalyst framework (Lin et al., 2015a). They
all achieve the same O

(
(n+

√
nR/

√
γλ) log(1/ǫ)

)
com-

plexity. A common feature of accelerated algorithms is that
they require good estimate of the strong convexity param-
eter. This makes hard for them to exploit strong convexity
from data because the minimum singular value µ of the data
matrix A is very hard to estimate in general.

In this paper, we show that primal-dual algorithms are ca-
pable of exploiting strong convexity from data if the algo-
rithm parameters (such as step sizes) are set appropriately.
While these optimal setting depends on the knowledge of
the convexity parameter µ from the data, we develop adap-
tive variants of primal-dual algorithms that can tune the pa-
rameter automatically. Such adaptive schemes rely criti-
cally on the capability of evaluating the primal-dual opti-
mality gaps by primal-dual algorithms.

A major disadvantage of primal-dual algorithms is that the
required dual proximal mapping may not admit closed-
form or efficient solution. We follow the approach of
Lan & Zhou (2015) to derive dual-free variants of the
primal-dual algorithms customized for ERM problems with
the linear predictor structure, and show that they can also
exploit strong convexity from data with correct choices of
parameters or using an adaptation scheme.

Algorithm 1 Batch Primal-Dual (BPD) Algorithm

input: parameters τ , σ, θ, initial point (x̃(0) = x(0), y(0))
for t = 0, 1, 2, . . . do
y(t+1) = proxσf∗

(
y(t) + σAx̃(t)

)

x(t+1) = proxτg
(
x(t) − τAT y(t+1)

)

x̃(t+1) = x(t+1) + θ(x(t+1) − x(t))
end for

2. Batch primal-dual algorithms
We first study batch primal-dual algorithms, by considering
a “batch” version of the ERM problem (1),

minx∈Rd

{
P (x)

def
= f(Ax) + g(x)

}
. (4)

where A ∈ Rn×d. We make the following assumptions:

Assumption 2. The functions f , g and matrix A satisfy:

• f is δ-strongly convex and 1/γ-smooth where γ > 0
and δ ≥ 0, and γδ ≤ 1;

• g is λ-strongly convex where λ ≥ 0;

• λ+ δµ2 > 0, where µ =
√
λmin(ATA).

Using conjugate functions, we can derive the dual of (4) as

maxy∈Rn

{
D(y)

def
= −f∗(y)− g∗(−AT y)

}
, (5)

and the convex-concave saddle point formulation is

min
x∈Rd

max
y∈Rn

{
L(x, y) def

= g(x) + yTAx− f∗(y)
}
. (6)

We consider the primal-dual first-order algorithm proposed
by Chambolle & Pock (2011; 2016) for solving the saddle
point problem (6), given in Algorithm 1, where proxψ(·),
for any convex function ψ : Rn ∪ {∞}, is defined as

proxψ(β) = arg min
α∈Rn

(
ψ(α) + (1/2)‖α− β‖2

)
.

Assuming that f is smooth and g is strongly convex,
Chambolle & Pock (2011; 2016) showed that Algorithm 1
achieves accelerated linear convergence rate if λ > 0.
However, they did not consider the case where additional
or the sole source of strong convexity comes from f(Ax).
In the following theorem, we show how to set the parame-
ters τ , σ and θ to exploit both sources of strong convexity
to achieve fast linear convergence.

Theorem 1. Suppose Assumption 2 holds and (x⋆, y⋆) is
the unique saddle point of L defined in (6). Let L = ‖A‖ =√
λmax(ATA). If we set the parameters in Algorithm 1 as

σ = 1
L

√
λ+δµ2

γ , τ = 1
L

√
γ

λ+δµ2 , (7)

and θ = max{θx, θy} where

θx =
(
1− δ

(δ+2σ)
µ2

L2

)
1

1+τλ , θy = 1
1+σγ/2 , (8)
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then we have
(

1
2τ + λ

2

)
‖x(t) − x⋆‖2 + γ

4 ‖y(t) − y⋆‖2 ≤ θtC,

L(x(t), y⋆)− L(x⋆, y(t)) ≤ θtC,

whereC =
(

1
2τ +

λ
2

)
‖x(0)−x⋆‖2+

(
1
2σ+

γ
4

)
‖y(0)−y⋆‖2.

The proof of Theorem 1 is given in Appendices B and C.
Here we give a detailed analysis of the convergence rate.
Substituting σ and τ in (7) into the expressions for θy and
θx in (8), and assuming γ(λ+ δµ2) ≪ L2, we have

θx ≈ 1− γδµ2

L2

(
2

√
γ(λ+δµ2)

L + γδ
)−1

− λ
L

√
γ

λ+δµ2 ,

θy = 1

1+
√
γ(λ+δµ2)/(2L)

≈ 1−
√
γ(λ+δµ2)

2L .

Since the overall condition number of the problem is
L2

γ(λ+δµ2) , it is clear that θy is an accelerated convergence
rate. Next we examine θx in two special cases.

The case of δµ2 = 0 but λ > 0. In this case, we have
τ = 1

L

√
γ
λ and σ = 1

L

√
λ
γ , and thus

θx=
1

1+
√
γλ/L

≈ 1−
√
γλ
L , θy=

1
1+

√
γλ/(2L)

≈ 1−
√
γλ
2L .

Therefore we have θ = max{θx, θy} ≈ 1 −
√
λγ
2L . This

indeed is an accelerated convergence rate, recovering the
result of Chambolle & Pock (2011; 2016).

The case of λ = 0 but δµ2 > 0. In this case, we have
τ = 1

Lµ

√
γ
δ and σ = µ

L

√
δ
γ , and

θx = 1− γδµ2

L2 · 1
2
√
γδµ/L+γδ

, θy ≈ 1−
√
γδµ
2L .

Notice that 1
γδ

L2

µ2 is the condition number of f(Ax). Next
we assume µ≪ L and examine how θx varies with γδ.

• If γδ ≈ µ2

L2 , meaning f is badly conditioned, then

θx ≈ 1− γδµ2

L2 · 1
3
√
γδµ/L

= 1−
√
γδµ
3L .

Because the overall condition number is 1
γδ

L2

µ2 , this is
an accelerated linear rate, and so is θ = max{θx, θy}.

• If γδ ≈ µ
L , meaning f is mildly conditioned, then

θx ≈ 1− µ3

L3
1

2(µ/L)3/2+µ/L
≈ 1− µ2

L2 .

This represents a half-accelerated rate, because the
overall condition number is 1

γδ
L2

µ2 ≈ L3

µ3 .

• If γδ = 1, i.e., f is a simple quadratic function, then

θx ≈ 1− µ2

L2
1

2µ/L+1 ≈ 1− µ2

L2 .

This rate does not have acceleration, because the over-
all condition number is 1

γδ
L2

µ2 ≈ L2

µ2 .

Algorithm 2 Adaptive Batch Primal-Dual (Ada-BPD)
input: problem constants λ, γ, δ, L and µ̂ > 0, initial

point (x(0), y(0)), and adaptation period T .
Compute σ, τ , and θ as in (7) and (8) using µ = µ̂
for t = 0, 1, 2, . . . do
y(t+1) = proxσf∗

(
y(t) + σAx̃(t)

)

x(t+1) = proxτg
(
x(t) − τAT y(t+1)

)

x̃(t+1) = x(t+1) + θ(x(t+1) − x(t))

if mod(t+ 1, T ) == 0 then
(σ, τ, θ) = BPD-Adapt

(
{P (s), D(s)}t+1

s=t−T
)

end if
end for

Algorithm 3 BPD-Adapt (simple heuristic)
input: previous estimate µ̂, adaption period T , primal and

dual objective values {P (s), D(s)}ts=t−T
if P (t) −D(t) < θT (P (t−T ) −D(t−T )) then
µ̂ :=

√
2µ̂

else
µ̂ := µ̂/

√
2

end if
Compute σ, τ , and θ as in (7) and (8) using µ = µ̂

output: new parameters (σ, τ, θ)

In summary, the extent of acceleration in the dominating
factor θx (which determines θ) depends on the relative size
of γδ and µ2/L2, i.e., the relative conditioning between
the function f and the matrix A. In general, we have full
acceleration if γδ ≤ µ2/L2. The theory predicts that the
acceleration degrades as the function f gets better condi-
tioned. However, in our numerical experiments, we often
observe acceleration even if γδ gets closer to 1.

As explained in Chambolle & Pock (2011), Algorithm 1
is equivalent to a preconditioned ADMM. Deng & Yin
(2016) characterized various conditions for ADMM to ob-
tain linear convergence, but did not derive the convergence
rate for the case we consider in this paper.

2.1. Adaptive batch primal-dual algorithms

In practice, it is often very hard to obtain a good esti-
mate of the problem-dependent constants, especially µ =√
λmin(ATA), in order to apply the algorithmic parame-

ters specified in Theorem 1. Here we explore heuristics
that can enable adaptive tuning of such parameters, which
often lead to much improved performance in practice.

A key observation is that the convergence rate of the BPD
algorithm changes monotonically with the overall convex-
ity parameter λ + δµ2, regardless of the extent of acceler-
ation. In other words, the larger λ + δµ2 is, the faster the
convergence. Therefore, if we can monitor the progress of
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Algorithm 4 BPD-Adapt (robust heuristic)
input: previous rate estimate ρ > 0, ∆ = δµ̂2, period T ,

constants c < 1 and c > 1, and {P (s), D(s)}ts=t−T
Compute new rate estimate ρ̂ = P (t)−D(t)

P (t−T )−D(t−T )

if ρ̂ ≤ c ρ then
∆ := 2∆, ρ := ρ̂

else if ρ̂ ≥ c ρ then
∆ := ∆/2, ρ := ρ̂

else
∆ := ∆

end if
σ = 1

L

√
λ+∆
γ , τ = 1

L

√
γ

λ+∆

Compute θ using (8) or set θ = 1

output: new parameters (σ, τ, θ)

the convergence and compare it with the predicted conver-
gence rate in Theorem 1, then we can adjust the estimated
parameters to exploit strong convexity from data. More
specifically, if the observed convergence rate is slower than
the predicted rate, then we should reduce the estimate of µ;
otherwise we should increase µ for faster convergence.

We formalize the above reasoning in Algorithm 2 (called
Ada-BPD). This algorithm maintains an estimate µ̂ of the
true constant µ, and adjust it every T iterations. We use
P (t) and D(t) to represent the primal and dual objective
values at P (x(t)) and D(y(t)), respectively. We give two
implementations of the tuning procedure BPD-Adapt: Al-
gorithm 3 is a simple heuristic for tuning the estimate
µ̂, where the increasing and decreasing factor

√
2 can be

changed to other values larger than 1. Algorithm 4 is a
more robust heuristic. It does not rely on the specific con-
vergence rate θ established in Theorem 1. Instead, it simply
compares the current estimate of objective reduction rate ρ̂
with the previous estimate ρ. It also specifies a non-tuning
range of changes in ρ, specified by the interval [c, c].

The capability of accessing both the primal and dual ob-
jective values allows primal-dual algorithms to have good
estimate of the convergence rate, which enables effective
tuning heuristics. Automatic tuning of primal-dual algo-
rithms have also been studied by, e.g., Malitsky & Pock
(2016) and Goldstein et al. (2013), but with different goals.

3. Randomized primal-dual algorithm
In this section, we come back to the ERM problem and con-
sider its saddle-point formulation in (3). Due to its finite
sum structure in the dual variables yi, we can develope ran-
domized algorithms to exploit strong convexity from data.
In particular, we extend the stochastic primal-dual coordi-
nate (SPDC) algorithm by Zhang & Xiao (2015). SPDC is

Algorithm 5 Adaptive SPDC (Ada-SPDC)

input: parameters σ, τ , θ > 0, initial point (x(0), y(0)),
and adaptation period T .

Set x̃(0) = x(0)

for t = 0, 1, 2, . . . do
pick k ∈ {1, . . . , n} uniformly at random
for i ∈ {1, . . . , n} do

if i == k then
y
(t+1)
k = proxσφ∗

k

(
y
(t)
k + σaTk x̃

(t)
)

else
y
(t+1)
i = y

(t)
i

end if
end for

x(t+1) = proxτg

(
x(t)− τ

(
u(t)+ (y

(t+1)
k −y(t)k )ak

))

u(t+1) = u(t) + 1
n (y

(t+1)
k − y

(t)
k )ak

x̃(t+1) = x(t+1) + θ(x(t+1) − x(t))

if mod(t+ 1, T · n) = 0 then
(τ, σ, θ) = SPDC-Adapt

(
{P (t−sn), D(t−sn)}Ts=0

)

end if
end for

a special case of the Ada-SPDC algorithm in Algorithm 5,
by setting the adaption period T = ∞ (no adaption). The
following theorem is proved in Appendix E.
Theorem 2. Suppose Assumption 1 holds. Let (x⋆, y⋆) be
the saddle point of the function L defined in (3), and R =
max{‖a1‖, . . . , ‖an‖}. If we set T = ∞ in Algorithm 5
(no adaption) and let

τ = 1
4R

√
γ

nλ+δµ2 , σ = 1
4R

√
nλ+δµ2

γ , (9)

and θ = max{θx, θy} where

θx =
(
1− τσδµ2

2n(σ+4δ)

)
1

1+τλ , θy = 1+((n−1)/n)σγ/2
1+σγ/2 , (10)

then we have
(

1
2τ + λ

2

)
E
[
‖x(t) − x⋆‖2

]
+ γ

4E
[
‖y(t) − y⋆‖2

]
≤ θtC,

E
[
L(x(t), y⋆)− L(x⋆, y(t))

]
≤ θtC,

whereC =
(

1
2τ +

λ
2

)
‖x(0)−x⋆‖2+

(
1
2σ+

γ
4

)
‖y(0)−y⋆‖2.

The expectation E[·] is taken with respect to the history of
random indices drawn at each iteration.

Below we give a detailed discussion on the expected con-
vergence rate established in Theorem 2.

The cases of σµ2 = 0 but λ > 0. In this case we have
τ = 1

4R

√
γ
nλ and σ = 1

4R

√
nλ
γ , and

θx = 1
1+τλ = 1− 1

1+4R
√
n/(λγ)

,

θy = 1+((n−1)/n)σγ/2
1+σγ/2 = 1− 1

n+8R
√
n/(λγ)

.
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Hence θ = θy . These recover the parameters and conver-
gence rate of the standard SPDC (Zhang & Xiao, 2015).

The cases of σµ2 > 0 but λ = 0. In this case we have
τ = 1

4Rµ

√
γ
δ and σ = µ

4R

√
δ
γ , and

θx = 1− τσδµ2

2n(σ+4δ) = 1− γδµ2

32nR2 · 1√
γδµ/(4R)+4γδ

.

θy = 1− 1
n+8nR/(µ

√
γδ)

≈ 1−
√
γδµ

8nR

(
1 +

√
γδµ
8R

)−1

.

Since the objective is R2/γ-smooth and δµ2/n-strongly
convex, θy is an accelerated rate if

√
γδµ
8R ≪ 1 (otherwise

θy ≈ 1− 1
n ). For θx, we consider different situations:

• If µ ≥ R, then we have θx ≈ 1−
√
γδµ
nR , which is an

accelerated rate. So is θ = max{θx, θy}.

• If µ < R and γδ ≈ µ2

R2 , then θx ≈ 1−
√
γδµ
nR , which

represents an accelerated rate. The iteration complex-
ity of SPDC is Õ( nR

µ
√
γδ
), which is better than that of

SVRG in this case, which is Õ( nR
2

γδµ2 ).

• If µ < R and γδ ≈ µ
R , then we get θx ≈ 1− µ2

nR2 . This
is a half-accelerated rate, because in this case SVRG
requires Õ(nR

3

µ3 ) iterations, versus Õ(nR
2

µ2 ) for SPDC.

• If µ < R and γδ ≈ 1, meaning the φi’s are well
conditioned, then we get θx ≈ 1 − γδµ2

nR2 ≈ 1 − µ2

nR2 ,
which is a non-accelerated rate. The corresponding
iteration complexity is the same as SVRG.

3.1. Parameter adaptation for SPDC

The SPDC-Adapt procedure called in Algorithm 5 follows
the same logics as the batch adaption schemes in Algo-
rithms 3 and 4, and we omit the details here. One thing we
emphasize here is that the adaptation period T is in terms
of epochs, or number of passes over the data. In addition,
we only compute the primal and dual objective values af-
ter each pass or every few passes, because computing them
exactly usually need to take a full pass of the data.

Unlike the batch case where the duality gap decreases
monotonically, the duality gap for randomized algorithms
can fluctuate wildly. So instead of using only the
two end values P (t−Tn) − D(t−Tn) and P (t) − D(t),
we can use more points to estimate the convergence
rate through a linear regression. Suppose the primal-
dual objective values for the last T + 1 passes are
(P (0), D(0)), (P (1), D(1)), . . . , (P (T ), D(T )), and we
need to estimate ρ (rate per pass) such that

P (t)−D(t) ≈ ρt
(
P (0)−D(0)

)
, t = 1, . . . , T.

We can turn it into a linear regression problem after taking
logarithm and obtain the estimate ρ̂ through

log(ρ̂) = 1
12+22+···+T 2

∑T
t=1 t log

P (t)−D(t)
P (0)−D(0) .

Algorithm 6 Dual-Free BPD Algorithm

input: parameters σ, τ , θ > 0, initial point (x(0), y(0))
Set x̃(0) = x(0) and v(0) = (f∗)′(y(0))
for t = 0, 1, 2, . . . do
v(t+1) = v(t)+σAx̃(t)

1+σ , y(t+1) = f ′(v(t+1))

x(t+1) = proxτg
(
x(t) − τAT y(t+1)

)

x̃(t+1) = x(t+1) + θ(x(t+1) − x(t))
end for

4. Dual-free Primal-dual algorithms
Compared with primal algorithms, one major disadvantage
of primal-dual algorithms is the requirement of computing
the proximal mapping of the dual function f∗ or φ∗i , which
may not admit closed-formed solution or efficient computa-
tion. This is especially the case for logistic regression, one
of the most popular loss functions used in classification.

Lan & Zhou (2015) developed “dual-free” variants of
primal-dual algorithms that avoid computing the dual prox-
imal mapping. Their main technique is to replace the Eu-
clidean distance in the dual proximal mapping with a Breg-
man divergence defined over the dual loss function itself.
We show how to apply this approach to solve the struc-
tured ERM problems considered in this paper. They can
also exploit strong convexity from data if the algorithmic
parameters are set appropriately or adapted automatically.

4.1. Dual-free BPD algorithm

First, we consider the batch setting. We replace the dual
proximal mapping (computing y(t+1)) in Algorithm 1 with

y(t+1)=argmin
y

{
f∗(y)−yTAx̃(t)+ 1

σD(y, y(t))
}
, (11)

where D is the Bregman divergence of a strictly convex
kernel function h, defined as

Dh(y, y(t)) = h(y)− h(y(t))− 〈∇h(y(t)), y − y(t)〉.
Algorithm 1 is obtained in the Euclidean setting with
h(y) = 1

2‖y‖2 and D(y, y(t)) = 1
2‖y−y(t)‖2. Here we use

f∗ as the kernel function, and show that it allows us to com-
pute y(t+1) in (11) very efficiently. The following lemma
explains the details (Cf. Lan & Zhou, 2015, Lemma 1).
Lemma 1. Let the kernel h ≡ f∗ in the Bregman diver-
gence D. If we construct a sequence of vectors {v(t)} such
that v(0) = (f∗)′(y(0)) and for all t ≥ 0,

v(t+1) = v(t)+σAx̃(t)

1+σ , (12)

then the solution to problem (11) is y(t+1) = f ′(v(t+1)).

Proof. Suppose v(t) = (f∗)′(y(t)) (true for t = 0), then

D(y, y(t)) = f∗(y)− f∗(y(t))− v(t)
T
(y − y(t)).
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The solution to (11) can be written as

y(t+1)= argmin
y

{
f∗(y)−yTAx̃(t)+ 1

σ

(
f∗(y)−v(t)T y

)}

= argmin
y

{(
1 + 1

σ

)
f∗(y)−

(
Ax̃(t) + 1

σv
(t)
)T
y
}

= argmax
y

{(
v(t)+σAx̃(t)

1+σ

)T
y − f∗(y)

}

= argmax
y

{
v(t+1)T y − f∗(y)

}
= f ′(v(t+1)),

where in the last equality we used the property of conjugate
function when f is strongly convex and smooth. Moreover,

v(t+1) = (f ′)−1(y(t+1)) = (f∗)′(y(t+1)),

which completes the proof.

According to Lemma 1, we only need to provide initial
points such that v(0) = (f∗)′(y(0)) is easy to compute. We
do not need to compute (f∗)′(y(t)) directly for any t > 0,
because it is can be updated as v(t) in (12). Consequently,
we can update y(t) in the BPD algorithm using the gradient
f ′(v(t)), without the need of dual proximal mapping. The
resulting dual-free algorithm is given in Algorithm 6.
Theorem 3. Suppose Assumption 2 holds and let (x⋆, y⋆)
be the unique saddle point of L defined in (6). If we set the
parameters in Algorithm 6 as

τ = 1
L

√
γ

λ+δµ2 , σ = 1
L

√
γ(λ+ δµ2), (13)

and θ = max{θx, θy} where

θx =
(
1− τσδµ2

(4+2σ)

)
1

1+τλ , θy = 1
1+σ/2 , (14)

then we have
(

1
2τ + λ

2

)
‖x(t) − x⋆‖2 + 1

2D(y⋆, y(t)) ≤ θtC,

L(x(t), y⋆)− L(x⋆, y(t)) ≤ θtC,

where C =
(

1
2τ +

λ
2

)
‖x(0) − x⋆‖2 +

(
1
σ+

1
2

)
D(y⋆, y(0)).

Theorem 3 is proved in Appendices B and D. Assuming
γ(λ+ δµ2) ≪ L2, we have

θx ≈ 1− γδµ2

16L2 − λ
2L

√
γ

λ+δµ2 , θy ≈ 1−
√
γ(λ+δµ2)

4L .

Again, we gain insights by consider the special cases:

• If δµ2 = 0 and λ > 0, then θy ≈ 1 −
√
γλ
4L and θx ≈

1−
√
γλ
2L . So θ = max{θx, θy} is an accelerated rate.

• If δµ2 > 0 and λ = 0, then θy ≈ 1 −
√
γδµ2

4L and

θx ≈ 1− γδµ2

16L2 . Thus θ = max{θx, θy} ≈ 1− γδµ2

16L2 is
not accelerated. This conclusion does not depends on
the relative sizes of γδ and µ2/L2, and it is the major
difference from the Euclidean case in Section 2.

Algorithm 7 Adaptive Dual-Free SPDC (ADF-SPDC)

input: parameters σ, τ , θ > 0, initial point (x(0), y(0)),
and adaptation period T .

Set x̃(0) = x(0) and v(0)i = (φ∗i )
′(y(0)i ) for i = 1, . . . , n

for t = 0, 1, 2, . . . do
pick k ∈ {1, . . . , n} uniformly at random
for i ∈ {1, . . . , n} do

if i == k then

v
(t+1)
k =

v
(t)
k +σaTk x̃

(t)

1+σ , y
(t+1)
k = φ′k(v

(t+1)
k )

else
v
(t+1)
i = v

(t)
i , y

(t+1)
i = y

(t)
i

end if
end for

x(t+1) = proxτg

(
x(t)− τ

(
u(t)+ (y

(t+1)
k −y(t)k )ak

))

u(t+1) = u(t) + 1
n (y

(t+1)
k − y

(t)
k )ak

x̃(t+1) = x(t+1) + θ(x(t+1) − x(t))

if mod(t+ 1, T · n) = 0 then
(τ, σ, θ) = SPDC-Adapt

(
{P (t−sn), D(t−sn)}Ts=0

)

end if
end for

If both δµ2 > 0 and λ > 0, then the extent of acceleration
depends on their relative size. If λ is on the same order as
δµ2 or larger, then accelerated rate is obtained. If λ is much
smaller than δµ2, then the theory predicts no acceleration.

4.2. Dual-free SPDC algorithm

Following the same approach, we can derive an Adap-
tive Dual-Free SPDC algorithm, given in Algorithm 7.
On related work, Shalev-Shwartz & Zhang (2016) and
(Shalev-Shwartz, 2016) introduced dual-free SDCA.

The following theorem characterizes the choice of algorith-
mic parameters that can exploit strong convexity from data
to achieve linear convergence (proof given in Appendix F).
Theorem 4. Suppose Assumption 1 holds. Let (x⋆, y⋆) be
the saddle point of L in (3) andR=max{‖a1‖, . . . , ‖an‖}.
If we set T = ∞ in Algorithm 7 (non adaption) and let

σ = 1
4R

√
γ(nλ+ δµ2), τ = 1

4R

√
γ

nλ+δµ2 , (15)

and θ = max{θx, θy} where

θx =
(
1− τσδµ2

n(4+2σ)

)
1

1+τλ , θy = 1+((n−1)/n)σ/2
1+σ/2 ,

(16)
then we have
(

1
2τ + λ

2

)
E
[
‖x(t) − x⋆‖2

]
+ γ

4E
[
D(y⋆, y(t))

]
≤ θtC,

E
[
L(x(t), y⋆)− L(x⋆, y(t))

]
≤ θtC,

where C =
(

1
2τ +

λ
2

)
‖x(0) − x⋆‖2 +

(
1
σ+

1
2

)
D(y⋆, y(0)).
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Figure 1. Comparison of batch primal-dual algorithms for a ridge regression problem with n = 5000 and d = 3000.
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Figure 2. Comparison of randomized algorithms for ridge regression problems.

Now we discuss the results of Theorem 4 in further details.

The cases of σµ2 = 0 but λ > 0. In this case we have
τ = 1

4R

√
γ
nλ and σ = 1

4R

√
nγλ, and

θx = 1− 1

1+4R
√
n/(λγ)

, θy = 1− 1

n+8R
√
n/(λγ)

.

The rate is the same as for SPDC in Zhang & Xiao (2015).

The cases of σµ2 > 0 but λ = 0. In this case we have
τ = 1

4Rµ

√
γ
δ and σ = µ

4R

√
δγ, thus

θx = 1− τσδµ2

2n(σ+4) = 1− γδµ2

32nR2 · 1√
γδµ/(4R)+4

,

θy = 1+((n−1)/n)σ/2
1+σ/2 = 1− 1

n+8nR/(µ
√
γδ)
.

We note that the primal function now is R2/γ-smooth and
δµ2/n-strongly convex. We discuss the following cases:

• If
√
γδµ > R, then we have θx ≈ 1 −

√
γδµ

8nR and
θy ≈ 1− 1

n . Therefore θ = max{θx, θy} ≈ 1− 1
n .

• Otherwise, we have θx ≈ 1 − γδµ2

64nR2 and θy is of the
same order. This is not an accelerated rate, and we
have the same iteration complexity as SVRG.

Finally, we give concrete examples of how to compute the
initial points y(0) and v(0) such that v(0)i = (φ∗i )

′(y(0)i ).

• For squared loss, φi(α) = 1
2 (α − bi)

2 and φ∗i (β) =
1
2β

2 + biβ. So v(0)i = (φ∗i )
′(y(0)i ) = y

(0)
i + bi.

• For logistic regression, we have bi ∈ {1,−1} and
φi(α) = log(1 + e−biα). The conjugate function is
φ∗i (β) = (−biβ) log(−biβ) + (1 + biβ) log(1 + biβ)
if biβ ∈ [−1, 0] and +∞ otherwise. We can choose
y
(0)
i =− 1

2bi and v(0)i =0 such that v(0)i =(φ∗i )
′(y(0)i ).

For logistic regression, we have δ = 0 over the full do-
main of φi. However, each φi is locally strongly convex
in bounded domain (Bach, 2014): if z ∈ [−B,B], then
we know δ = minz φi

′′(z) ≥ exp(−B)/4. Therefore it
is well suitable for an adaptation scheme similar to Algo-
rithm 4 that do not require knowledge of either δ or µ.

5. Preliminary experiments
We present preliminary experiments to demonstrate the ef-
fectiveness of our proposed algorithms. First, we consider
batch primal-dual algorithms for ridge regression over a
synthetic dataset. The data matrix A has sizes n = 5000
and d = 3000, and its entries are sampled from mul-
tivariate normal distribution with mean zero and covari-
ance matrix Σij = 2|i−j|/2. We normalize all datasets
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Figure 3. Comparison of randomized algorithms for logistic regression problems.

such that ai = ai/ (maxj ‖aj‖), to ensure the maximum
norm of the data points is 1. We use ℓ2-regularization
g(x) = (λ/2)‖x‖2 with three choices of parameter λ: 1/n,
10−2/n and 10−4/n, which represent the strong, medium,
and weak levels of regularization, respectively.

Figure 1 shows the performance of four different algo-
rithms: the primal accelerated gradient (Primal AG) algo-
rithm (Nesterov, 2004) using λ as strong convexity param-
eter, the BPD algorithm (Algorithm 1) that uses the same
λ and µ2δ = 0, the optimal BPD algorithm (Opt-BPD)
that uses µ2δ = λmin(A

TA)
n ≈ 0.022

n computed from data,
and the Ada-BPD algorithm (Algorithm 2) with the robust
adaptation heuristic (Algorithm 4) with T = 10, c = 0.95
and c = 1.5. As expected, the performance of Primal-AG
is very similar to that of BPD, and Opt-BPD has the fastest
convergence. The Ada-BPD algorithm can partially exploit
strong convexity from data without knowledge of µ.

Next we compare DF-SPDC (Algorithm 5 without adap-
tion) and ADF-SPDC (Algorithm 7 with adaption) against
several state-of-the-art randomized algorithms for ERM:
SVRG (Johnson & Zhang, 2013), SAGA (Defazio et al.,
2014) Katyusha (Allen-Zhu, 2016) and the standard SPDC
method (Zhang & Xiao, 2015). For SVRG and Katyusha
(an accelerated variant of SVRG), we choose the variance
reduction period as m = 2n. The step sizes of all al-
gorithms are set as their original paper suggested. For

Ada-SPDC and ADF-SPDC, we use the robust adaptation
scheme with T = 10, c = 0.95 and c = 1.5.

We first compare these randomized algorithms for ridge re-
gression over the cpuact data from the LibSVM website
(https://www.csie.ntu.edu.tw/˜cjlin/libsvm/).
The results are shown in Figure 2. With relatively strong
regularization λ = 1/n, all methods perform similarly as
predicted by theory. When λ becomes smaller, the non-
accelerated algorithms (SVRG and SAGA) automatically
exploit strong convexity from data, so they become faster
than the non-adaptive accelerated methods (Katyusha,
SPDC and DF-SPDC). The adaptive accelerated method,
ADF-SPDC, has the fastest convergence. This indicates
that our theoretical results, which predict no acceleration
in this case, may be further improved.

Finally we compare these algorithms for logistic regres-
sion on the rcv1 dataset (from LibSVM website) and an-
other synthetic dataset with n = 5000 and d = 500,
generated similarly as before but with covariance matrix
Σij = 2|i−j|/100. For the standard SPDC, we compute the
coordinate-wise dual proximal mapping using a few steps
of scalar Newton’s method to high precision. The dual-
free SPDC algorithms only use gradients of the logistic
function. The results are presented in Figure 3. For both
datasets, the strong convexity from data is very weak, and
the accelerated algorithms performs better.
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