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A. Additional Applications and Experimental Results
In this section, we present the application of our generic framework to one-bit matrix completion as well as additional
experimental results for matrix sensing.

A.1. One-bit Matrix Completion

Compared with matrix completion, we only observe the sign of each noisy entries of the unknown low-rank matrix X⇤ in
one-bit matrix completion (Davenport et al., 2014; Cai & Zhou, 2013). We consider the uniform sampling model, which
has been studied in existing literature (Davenport et al., 2014; Cai & Zhou, 2013; Ni & Gu, 2016). More specifically, we
consider the following observation model, which is based on a differentiable function f : R ! [0, 1]

Y
jk

=

(

+1, with probability f(X⇤
jk

),

�1, with probability 1� f(X⇤
jk

),
(A.1)

where we use a binary matrix Y to denote the observation matrix in (A.1). In addition, if the function f is a cumulative
distribution function with respect to �Z

jk

, then we can rewrite the observation model (A.1) as follows

Y
jk

=

(

+1, if X⇤
jk

+ Z
jk

> 0,

�1, if X⇤
jk

+ Z
jk

< 0,
(A.2)

where we use Z 2 Rd1⇥d2 to denote the noise matrix with i.i.d. elements Z
jk

. A lot of functions can be applied to
observation model (A.1), and we consider the broadly-used logistic function f(X

jk

) = eXjk/(1+eXjk
) as the observation

probability function in our study, which is equivalent to the fact that each noise element Z
jk

in model (A.2) follows the
standard logistic distribution. Similar to matrix completion, we use ⌦ ✓ [d

1

]⇥ [d
2

] to denote the index set of the observed
elements. Therefore, given the logistic function f and the index set ⌦, we define F

⌦

(U,V) for one-bit matrix completion
as follows

F
⌦

(U,V) := L
⌦

(UV>
) +R(U,V) =

1

n

n

X

i=1

F
⌦Si

(U,V),

where L
⌦

(UV>
) is the negative log-likelihood function such that

L
⌦

(UV>
) = � 1

N

X

(j,k)2⌦

⇢

1
�

Y
jk

= 1

 

log

�

f(U
j⇤V

>
⇤k)

�

+ 1
�

Y
jk

= �1

 

log

�

1� f(U
j⇤V

>
⇤k)

�

�

.

Therefore, for each component function, we have

F
⌦Si

(U,V) = L
⌦Si

(UV>
) +R(U,V),

where {⌦Si}n
i=1

denote the mutually disjoint subsets such that [n

i=1

⌦Si = ⌦. In addition, we have |⌦Si | = b for
i = 1, . . . , n such that |⌦| = nb. And L

⌦Si
(UV>

) is defined as

L
⌦Si

(UV>
) =

1

b

X

(j,k)2⌦Si

⇢

1
�

Y
jk

= 1

 

log

�

f(U
j⇤V

>
⇤k)

�

+ 1
�

Y
jk

= �1

 

log

�

1� f(U
j⇤V

>
⇤k)

�

�

.

A.2. Theoretical Guarantees for One-bit Matrix Completion

We establish the theoretical guarantee of our algorithm for one-bit matrix completion. We obtain the restricted strong
convexity and smoothness conditions for L

N

with parameters µ = C
1

µ
↵

and L = C
2

L
↵

. In addition, we are able to get
the restricted strong smoothness condition for each component function L

i

with parameter L0
= c

0

L
↵

> L. Here, µ
↵

and
L
↵

are defined as

µ
↵

 min

✓

inf

|x|↵

⇢

f 02
(x)

f2

(x)
� f 00

(x)

f(x)

�

, inf

|x|↵

⇢

f 02
(x)

(1� f(x))2
+

f 00
(x)

1� f(x)

�◆

, (A.3)

L
↵

� max

✓

sup

|x|↵

⇢

f 02
(x)

f2

(x)
� f 00

(x)

f(x)

�

, sup
|x|↵

⇢

f 02
(x)

(1� f(x))2
+

f 00
(x)

1� f(x)

�◆

, (A.4)
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where f(x) is the function used in (A.1), and each element X
jk

satisfies |X
jk

|  ↵. Note that given the function f(x) and
constant ↵, we can calculate µ

↵

and L
↵

, which are fixed constants and do not rely on dimension of the unknown low-rank
matrix. For example, if we have logistic function, we can get µ

↵

= e↵/(1 + e↵)2 and L
↵

= 1/4. Furthermore, we define
�
↵

as follows, which reflects the steepness property of the sample loss function L
N

(·)

�
↵

� sup

|x|↵

⇢

|f 0
(x)|

f(x)
�

1� f(x)
�

�

. (A.5)

Moreover, we can derive the upper bound of the rL
N

(X⇤
) in terms of spectral norm. If we choose the step size ⌘ = c0

1

/�
1

,
where c0

1

= µ0/
�

c0
0


�

, and the inner loop iterations m � c0
2

2, where c0
0

, c0
1

and c0
2

are some constants, then we have the
following convergence result of our algorithm for the model of matrix completion.
Corollary A.1. Consider one-bit matrix completion under uniform sampling model with log-concave function f in (A.1).
Suppose X⇤ satisfies the incoherence condition. There exist constants {c

i

}7
i=1

such that if we choose parameters ⌘ =

c
1

/�
1

, where c
1

= µ0/
�

c
2


�

, m � c
3

2, and the number of observations satisfies N � c
4

r2d log d, then for any initial
solution eZ0 2 B(c

5

p
�
r

), with probability at least 1� c
6

/d, the output of our Algorithm 1 satisfies

E
⇥

d2(eZS ,Z⇤
)

⇤

 ⇢Sd2(eZ0,Z⇤
) + c

7

max{�2

↵

, r�2�2

1

}rd log d
N

, (A.6)

where the contraction parameter ⇢ < 1.
Remark A.2. For one-bit matrix completion, our algorithm achieves O

�

r
p

d log d/N
�

statistical error after
O
�

log(N/(r2d log d))
�

number of outer loop iterations. We note that this statistical error is near optimal, compared
with the minimax lower bound of one-bit matrix completion O

�

p

rd log d/N) established in (Davenport et al., 2014; Cai
& Zhou, 2013). Moreover, Remark 3.10 tells us that for our estimator eZS to achieve ✏ accuracy, the overall computational
complexity required by our algorithm is O

�

(N + 2b)r3d log(1/✏)
�

. Nevertheless, the overall computational complexity
for the state-of-the-art gradient descent based algorithm (Wang et al., 2016) to obtain ✏ accuracy is O

�

Nr3d log(1/✏)
�

.
Therefore, as long as we have   n, our approach is more efficient than the state-of-the-art gradient descent method.
Furthermore, the overall computational complexities for the state-of-the-art projected gradient descent algorithm (Chen
& Wainwright, 2015) and the conditional gradient descent (a.k.a., Frank-Wolfe) algorithm (Ni & Gu, 2016) to obtain ✏
accuracy are both O

�

Nr2 log(1/✏)
�

2. If we have 2  nr, our method clearly has a lower computational complexity than
theirs.

A.3. Experimental Results for Matrix Sensing and One-bit Matrix Completion

In this section, we present our experimental results for matrix sensing and one-bit matrix completion respectively.

A.3.1. MATRIX SENSING

For matrix sensing, we use the same procedure as in matrix completion to generate the unknown low-rank matrix X⇤.
Then, we obtain linear measurements from the following observation model y

i

= hA
i

,X⇤i + ✏
i

, where each element of
the sensing matrix A

i

follows i.i.d. standard normal distribution. We also consider the same noisy and noiseless settings
as in matrix completion.

For the results of the convergence rate, Figure 2(a) and 2(c) illustrate the squared relative error kbX�X⇤k2
F

/kX⇤k2
F

in log
scale versus number of effective data passes for both methods under setting (i). These results show the linear convergence
rate of our method. Most importantly, it clearly demonstrates the superiority of our approach, since our algorithm shows
better performance after the same number of effective data passes compared with the state-of-the-art gradient descent
algorithm (Zheng & Lafferty, 2015; Wang et al., 2016). Since we get results with similar patterns for other settings, we
leave them out for simplicity. Figure 2(b) shows the empirical recovery probability of different methods under setting (i).
The result implies a phase transition around N = 3rd, which is consistent with the optimal sample complexity that N is
linear with rd. Besides, since we get results with similar patterns for other settings, we leave them out to save space. For
the results of statistical error, Figure 2(d) shows, in the noisy case, how the estimation errors scale with the rescaled sample
size N/(rd), which confirms our theoretical results.

2Note that the overall computational complexities for the projected gradient descent (Chen & Wainwright, 2015) and conditional
gradient descent (Ni & Gu, 2016) algorithms also depend on some problem dependent parameters, which we omit here but actually can
make their computational complexities worse. Please refer to their papers for more accurate complexity results.
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Figure 2. Numerical results for matrix sensing. (a) and (c) Convergence rates for matrix sensing in the noiseless and noisy case, respec-
tively: logarithm of kbX�X⇤k2F /kX⇤k2F versus number of effective data passes. They demonstrate the linear convergence rate and the
superiority of our method; (b) Empirical probability of exact recovery versus N/(rd), which confirms the optimal sample complexity in
the noiseless case that N = O(rd); (d) Statistical error: kbX�X⇤k2F /kX⇤k2F versus N/(rd), which matches the statistical error of our
theory.

A.3.2. ONE-BIT MATRIX COMPLETION

We use the same settings of X⇤ for one-bit matrix completion as before. In order to obtain X⇤, we adopt the similar
procedure as in (Davenport et al., 2014; Bhaskar & Javanmard, 2015; Ni & Gu, 2016). In detail, we first randomly
generate U⇤ 2 Rd1⇥r,V⇤ 2 Rd2⇥r from a uniform distribution on [�1/2, 1/2]. Then we get X⇤ by X⇤

= U⇤V⇤>.
Finally, we scale X⇤ to make it satisfies kX⇤k1 = ↵ = 1. Here we consider the uniform observation model with function
f(X

ij

) = �(X
ij

/�) in (A.1), where � is the cumulative distribution function of the standard normal distribution, and �
is the noise level, which we set it to be � = 0.5.

For the results of convergence rate, we compute the logarithm of the squared relative error kbX�X⇤k2
F

/kX⇤k2
F

, which are
displayed in Figure 3(a). Note that, for the ease of illustration, we show the results of convergence rate after the first data
pass. The results not only confirm the linear rate of convergence of our algorithm, but also demonstrate the effectiveness
of our method after the same number of effective data passes. Besides, since we get results with similar patterns for other
settings, we leave them out for simplicity. For the results of statistical error, Figure 3(b) illustrates that with the same
percentage of observations, the squared relative error decreases as the ratio r/d decreases. Although our theoretical results
give O(r2d log d/|⌦|) statistical error, the simulation results suggest that our method can achieve the minimax statistical
error.
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Figure 3. Numerical results for one-bit matrix completion. (a) Convergence rates for one-bit matrix completion: logarithm of squared
relative error kbX � X⇤k2F /kX⇤k2F versus number of effective data passes. It illustrates the superiority of our method after the same
number of effective data passes; (b) Statistical error for one-bit matrix completion: squared relative error kbX �X⇤k2F /kX⇤k2F versus
|⌦|/(d1d2), which verifies the statistical rate.

B. Proof of the Main Theory
We provide the proof of our main theoretical results in this section. Since we aim to minimize the following objective
function in terms of Z = [U;V]

eF
N

(Z) = F
N

(U,V) = L
N

(UV>
) +

1

8

kU>U�V>Vk2
F

. (B.1)
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Therefore, we obtain the corresponding gradient

r eF
N

(Z) =



rUL
N

(UV>
) +

1

2

U(U>U�V>V)

rVL
N

(UV>
) +

1

2

V(U>U�V>V)

�

. (B.2)

B.1. Proof of Theorem 3.8

In order to prove Theorem 3.8, we need following lemmas, and we present the corresponding proofs in Sections D.2 and
D.3, respectively.
Lemma B.1 (Local Curvature Condition). Suppose the sample loss function L

N

satisfies Conditions 3.3 and 3.4. For
any matrix Z = [U;V] 2 R(d1+d2)⇥r, where U 2 Rd1⇥r and V 2 Rd2⇥r, denote eZ = [U;�V]. In addition, we use
R = argmineR2Qr

kZ� Z⇤
eRk

F

to denote the optimal rotation with respect to Z, and H = Z� Z⇤R, then the following
inequality holds

hr eF
N

(Z),Hi � µ

8

kX�X⇤k2
F

+

µ0�
r

10

kHk2
F

+

1

16

keZ>Zk2
F

� 3L+ 1

8

kHk4
F

�
✓

4r

µ
+

r

2L

◆

· krL
N

(X⇤
)k2

2

,

where X = UV>, and µ0
= min{µ, 1}.

Lemma B.2 (Local Smoothness Condition). Assume the component loss function L
i

satisfies Condition 3.7. Suppose we
randomly pick i 2 [n]. For any U 2 Rd1⇥r, V 2 Rd2⇥r and rank-r matrix eX 2 Rd1⇥d2 , we denote Z = [U;V] and
X = UV>. Let G

U

= rUF
i

(U,V)�rL
i

(

eX)V+rL
N

(

eX)V, Gt

V

= rVF
i

�

U,V)�rL
i

(

eX)

>U+rL
N

(X)

>U,
and G = [G

U

;G
V

]. Then we have

EkGk2
F

 24

�

2L02keX�X⇤k2
F

+ (2L02
+ L2

) · kX�X⇤k2
F

�

· kZk2
2

+ kU>U�V>Vk2
F

· kZk2
2

+ 12rkrL
N

(X⇤
)k2

2

· kZk2
2

.

Proof of Theorem 3.8. According to stochastic variance reduced gradient descent Algorithm 1, consider iteration t in the
inner loop, we have the following update

Ut+1

= PC1(U
t � ⌘Gt

U

), and Vt+1

= PC2(V
t � ⌘Gt

V

),

where we denote

Gt

U

= rUF
it(U

t,Vt

)�rL
it(

eX)Vt

+rL
N

(

eX)Vt,

Gt

V

= rVF
it

�

Ut,Vt

)�rL
it(

eX)

>Ut

+rL
N

(Xt

)

>Ut.

Since i
t

is uniformly picked from [n], we have E[Gt

U

] = rUF
N

(Ut,Vt

) and E[Gt

V

] = rVF
N

(Ut,Vt

), where the
expectation is taken with respect to i

t

. Recall Zt

= [Ut

;Vt

], and Rt

= argminR2Qr
kZt � Z⇤Rk

F

as the optimal
rotation with respect to Zt. Denote Ht

= Zt � Z⇤Rt and Gt

= [Gt

U

;Gt

V

]. By induction, for any t � 0, we assume
Zt 2 B(c

2

p
�
r

). Thus, by taking the expectation of Ht+1 over i
t

conditioned on Zt, we have

EkHt+1k2
F

 EkPC1(U
t � ⌘Gt

U

)�U⇤Rtk2
F

+ EkPC2(V
t � ⌘Gt

V

)�V⇤Rtk2
F

 EkUt � ⌘Gt

U

�U⇤Rtk2
F

+ EkVt � ⌘Gt

V

�V⇤Rtk2
F

= kHtk2
F

� 2⌘EhGt,Hti+ ⌘2EkGtk2
F

= kHtk2
F

� 2⌘hr eF
N

(Zt

),Hti+ ⌘2EkGtk2
F

, (B.3)

where the first inequality follows from the definition of Ht, the second inequality follows from the non-expansive property
of the projection PCi onto C

i

and the fact that U⇤ 2 C
1

,V⇤ 2 C
2

, and the last equality holds because conditioned on Zt,
EhHt,Gti = hHt,EGti = hHt,r eF

N

(Zt

)i, where eF
N

is defined in (B.1) . According to Lemma B.1, we can obtain the
lower bound of hr eF

N

(Zt

),Hti.

hr eF
N

(Zt

),Hti � µ

8

kXt �X⇤k2
F

+

µ0�
r

10

kHtk2
F

+

1

16

kUt>Ut �Vt>Vtk2
F

� 3L+ 1

8

kHtk4
F

�
✓

4r

µ
+

r

2L

◆

· krL
N

(X⇤
)k2

2

, (B.4)
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where µ0
= min{µ, 1}. According to Lemma B.2, we have

EkGtk2
F

 24

�

2L02keXt �X⇤k2
F

+ (2L02
+ L2

) · kXt �X⇤k2
F

�

· kZtk2
2

+ kUt>Ut �Vt>Vtk2
F

· kZtk2
2

+ 12rkrL
N

(X⇤
)k2

2

· kZtk2
2

. (B.5)

Note that for any Z 2 B(p�
r

/4), denote R as the optimal rotation with respect to Z, we have kZk
2

 kZ⇤k
2

+

kZ � Z⇤Rk
2

 2

p
�
1

. Thus, we have kZtk2
2

 4�
1

. Denote L
m

= max{L,L0}, and we let ⌘ = c
1

/�
1

, where
c
1

 min{1/32, µ/(1152L2

m

)}. Therefore, combining (B.4) and (B.5), we have

�2⌘hr eF
N

(Z),Hi+ ⌘2EkGtk2
F

 �⌘µ0�
r

5

kHtk2
F

+

⌘(3L+ 1)

4

kHtk4
F

+ 192⌘2�
1

L02keXt �X⇤k2
F

+ ⌘

✓

8r

µ
+

r

L

◆

· krL
N

(X⇤
)k2

2

+ 48⌘2�
1

rkrL
N

(X⇤
)k2

2

.

Note that according to our assumption, kHtk2
F

 c2
2

�
r

with c2
2

 2µ0/(5(3L+ 1)). Thus, according to Condition 3.6, we
further have

�2⌘hr eF
N

(Z),Hi+ ⌘2EkGtk2
F

 �⌘µ0�
r

10

kHtk2
F

+ 192⌘2�
1

L02keXt �X⇤k2
F

+ c
3

⌘r✏2(N, �), (B.6)

holds with probability at least 1� �, where c
3

� 48c
1

+8/µ+1/L. Therefore, plugging (B.6) into (B.3), with probability
at least 1� �, we have

EkHt+1k2
F


✓

1� ⌘µ0�
r

10

◆

· kHtk2
F

+ 192⌘2�
1

L02keXt �X⇤k2
F

+ c
3

⌘r✏2(N, �). (B.7)

Finally, for a fixed stage of s, we have eX =

eXs�1 accordingly. Denote eZs

= [

eUs

;

eVs

], for any s. According to Algorithm
1, we randomly choose eZs after all of the updates are completed. Therefore, we first take summation of the previous
inequality (B.7) over t 2 {0, 1, · · · ,m� 1}, and then take expectation with regard to all the history, we can get

EkHmk2
F

� EkH0k2
F

 �⌘µ0�
r

10

m�1

X

t=0

EkHtk2
F

+ 192⌘2�
1

L02mEkeXs�1 �X⇤k2
F

+ c
3

⌘mr✏2(N, �).

For any s, we denote eRs

= argminR2Qr
keZs � Z⇤Rk

F

and eHs

=

eZs � Z⇤
eRs. According to the choice of eZs in

Algorithm 1, we have

Ek eHsk2
F

=

1

m

m�1

X

t=0

EkHtk2
F

.

Note that according to Algorithm 1, we have H0

=

eHs�1, thus we further obtain

EkHmk2
F

� Ek eHs�1k2
F

 �⌘mµ0�
r

10

Ek eHsk2
F

+ 192⌘2�
1

L02mEkeXs�1 �X⇤k2
F

+ c
3

⌘mr✏2(N, �).

Note that eZs�1 2 B(p�
r

/4), thus according to Lemma F.3, we have

keXs�1 �X⇤k2
F

 3kZ⇤k2
2

· d2(eZs�1,Z⇤
) = 6�

1

k eHs�1k2
F

.

where the first inequality follows from Lemma F.3 and the second inequality holds because kZ⇤k
2

=

p
2�

r

. Therefore,
we obtain

⌘mµ0�
r

10

Ek eHsk2
F

 (1152⌘2�2

1

L02m+ 1) · Ek eHs�1k2
F

+ c
3

⌘mr✏2(N, �),

holds with probability at least 1� �, which gives us following contraction parameter

⇢ =

10

µ0

✓

1

⌘m�
1

+ 1152⌘L02
◆

.

Note that ⌘ = c
1

/�
1

, hence we can let ⇢ 2 (0, 1) by choosing sufficiently small constant c
1

and sufficiently large number
of iterations m. Therefore, with probability at least 1� �, we can get

Ek eHsk2
F

 ⇢Ek eHs�1k2
F

+

10c
3

µ0�
r

· r✏2(N, �).
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C. Proofs of Specific Models
C.1. Proof of Corollary 3.12

In order to prove the theoretical guarantees for matrix sensing, we only need to verify the restricted strong convexity
and smoothness conditions for sample loss function L

N

, the restricted strong smoothness condition for each component
function LSi and the upper bound of krL

N

(X⇤
)k

2

. In the following discussions, we use kAk⇤ =

P

r

i=1

�
i

(A) to denote
the nuclear norm of matrix A, where r is the rank of A.

First, we briefly introduce the definition of ⌃-ensemble which has been used in (Negahban & Wainwright, 2011) to verify
the similar property of random sensing matrix A

i

with dependent elements. Let vec(A
i

) 2 Rd1d2 be the vectorization of
sensing matrix A

i

. If vec(A
i

) ⇠ N(0,⌃), we say that the sensing matrix A
i

is sampled from ⌃-ensemble. In addition, we
define ⇡2

(⌃) = supkuk2=1,kvk2=1

Var(u>Av). Specifically, in classical matrix sensing, we have ⌃ = I and ⇡(I) = 1.

Recall that we have linear measurement operators A
N

(X) = (hA
1

,Xi, hA
2

,Xi, . . . , hA
N

,Xi)>, and ASi(X) =

(hA
i1 ,Xi, hA

i2 ,Xi, . . . , hA
ib ,Xi)> for i = 1, . . . , n. In order to prove the restricted strongly convex and smooth con-

ditions of our objective function, we need to ultilize the following lemma, which has been used in (Agarwal et al., 2010;
Negahban & Wainwright, 2011).
Lemma C.1. Suppose each sensing matrix A

i

of the linear measurement operator A
M

is sampled from ⌃-ensemble,
where M is the number of sensing matrices. Then there exist constants C

0

and C
1

, such that the following inequalities
hold for all � 2 Rd1⇥d2 with probability at least 1� exp(�C

0

M)

kA(�)k2
2

M
� 1

2

�

�

p
⌃vec(�)

�

�

2

2

� C
1

⇡2

(⌃)

d

M

�

��
�

�

2

⇤, (C.1)

kA(�)k2
2

M
 1

2

�

�

p
⌃vec(�)

�

�

2

2

+ C
1

⇡2

(⌃)

d

M

�

��
�

�

2

⇤, (C.2)

where d = max{d
1

, d
2

}.

In order to bound the gradient of sample loss function rL
M

(X⇤
) with respect to M observations, we need to ultilize the

following lemma, which has been used in (Negahban & Wainwright, 2011).
Lemma C.2. Suppose each sensing matrix A

i

of the linear measurement operator A
M

is sampled from ⌃-ensemble,
where M is the number of sensing matrices. Furthermore, suppose the noise vector ✏ satisfies that k✏k

2

 2⌫
p
M . Then

we have the following inequality
�

�

�

�

1

M

M

X

i=1

✏
i

A
i

�

�

�

�

2

 C⌫

r

d

M
,

holds with probability at least 1� C
1

exp(�C
2

d), where C,C
1

and C
2

are universal constants.

Note that Lemma C.2 requires the noise vector ✏ satisfies k✏k
2

 2⌫
p
M for some constant ⌫. For any bounded noise

vector, this condition obviously holds. And if the noise vector follows sub-Gaussian distribution with parameter ⌫, it has
been proved in (Vershynin, 2010) that this condition holds with high probability.

Proof of Corollary 3.12. First, we prove the restricted strong convexity condition for sample loss function L
N

. First, we
have

L
N

(X) =

1

2N

N

X

i=1

�

hA
i

,Xi � y
i

�

2

=

1

2N

N

X

i=1

�

hA
i

,X�X⇤i � ✏
i

�

2

.

Consider two rank-r matrices X,Y 2 Rd1⇥d2 . Let � = Y �X, then we have the following equality

L
N

(Y)� L
N

(X)� hrL
N

(X),�i

=

1

2N

N

X

i=1

✓

hA
i

,Y �X⇤i2 � hA
i

,X�X⇤i2 � 2hA
i

,X�X⇤ihA
i

,�i
◆

=

kA(�)k2
2

2N
. (C.3)
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Therefore, according to (C.3), in order to establish the restricted strongly convex and smooth conditions for L
N

, we need
to bound the term kA(�)k2

2

/N . According to (C.1) in Lemma C.1, we get

kA(�)k2
2

N
� 1

2

�

�

p
⌃vec(�)

�

�

2

2

� C
1

⇡2

(⌃)

d

N

�

��
�

�

2

⇤.

Furthermore, note that � = Y � X has rank at most 2r. Thus, we conclude that k�k⇤ 
p
2rk�k

F

, which further
implies

kA(�)k2
2

N
�
⇢

�
min

(⌃)

2

� 2C
1

r⇡2

(⌃)

d

N

�

�

��
�

�

2

F

.

Therefore, as long as N � C
3

⇡2

(⌃)rd/�
min

(⌃) for some sufficiently large constant C
3

, we get

kA(�)k2
2

N
� 4�

min

(⌃)

9

k�k2
F

.

Since ⌃ = I in matrix sensing, we obtain the restricted strongly convex parameter µ = 4/9.

Second, we prove the restricted strong smoothness condition for L
N

using (C.2) in Lemma C.1. Similar to the proof of the
restricted strong convexity condition, we get

kA(�)k2
2

N
 5�

max

(⌃)

9

k�k2
F

,

as long as N � C
3

⇡2

(⌃)rd/�
min

(⌃) for some sufficiently large constant C
3

. Therefore, because ⌃ = I in matrix
sensing, we accordingly obtain L = 5/9.

Next, we prove each component loss function LSi is restricted strongly smooth, for i = 1, . . . , n. Recall that we have

LSi(X) =

1

2b
kySi �ASi(UV>

)k2
2

=

1

2b

X

j2⌦Si

�

hA
j

,X�X⇤i � ✏
j

�

2

.

Thus, for each component loss function LSi , where i = 1, . . . , n, we have

LSi(Y)� LSi(X)� hrLSi(X),�i = kASi(�)k2
2

2b
. (C.4)

Following the same steps as in the proof of restricted strong smoothness condition for L
N

, for each component function
LSi , we get

kASi(�)k2
2

b
 C

5

�
max

(⌃)k�k2
F

,

if b � C
4

⇡2

(⌃)rd/�
min

(⌃) for some sufficiently large constant C
4

. Therefore we have L0
= C

5

since ⌃ = I.

Finally, we bound the statistical error term krL
N

(X⇤
)k2

2

. According to the definition of L
N

, we have

rL
N

(X⇤
) =

1

N

N

X

i=1

✏
i

A
i

.

Based on Lemma C.2, we have the following inequality holds with probability at least 1� C 0
1

exp(�C 0
2

d)

�

�

�

�

1

N

N

X

i=1

✏
i

A
i

�

�

�

�

2

 C⌫

r

d

N
,

which implies that

krL
N

(X⇤
)k2

2

 C2⌫2
d

N
.
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C.2. Proof of Corollary 3.14

In order to prove the theoretical guarantees for matrix completion we only need to verify the restricted strong convexity
and smoothness conditions for sample loss function L

⌦

, the restricted strong smoothness condition for each component
function L

⌦Si
and the upper bound of krL

⌦

(X⇤
)k

2

.

To establish the restricted strong convexity and smoothness conditions for L
⌦

, and the restricted strong smoothness condi-
tion for L

⌦Si
we need to ultilize the following lemma, which used in (Negahban & Wainwright, 2012).

Lemma C.3. Suppose the number of observations M satisfying M > c
1

rd log d. Furthermore, if for all � 2 Rd1⇥d2 , we
have

r

d
1

d
2

r

k�k1,1
k�k

F

· k�k⇤
k�k

F

 1

c
2

p

n/(d log d), (C.5)

then the following inequality holds with probability at least 1� c
3

/d

�

�

�

�

kA(�)k
2p

n
� k�k

Fp
d
1

d
2

�

�

�

�

 c
4

k�k
Fp

d
1

d
2

✓

1 +

c
5

p
d
1

d
2

k�k1,1p
nk�k

F

◆

.

where c
1

, c
2

, c
3

, c
4

, c
5

are universal constants .

Moreover, in order to upper bound of the gradient rL
⌦

at X⇤, we need to use the following lemma.
Lemma C.4. (Negahban & Wainwright, 2012) Suppose A

i

is uniformly distributed over X . In addition, each noise
✏
i

follows i.i.d. zero mean distribution with variance ⌫2. Then the following inequality holds with probability at least
1� c

1

/d

�

�

�

�

1

M

M

X

i=1

✏
i

A
i

�

�

�

�

2

 c
2

⌫

r

d log d

d
1

d
2

M
,

where M is the number of observations, and c
1

, c
2

are universal constants.

Proof of Corollary 3.14. Let |⌦| = N , |⌦Si | = b. For any (j, k) 2 ⌦, we denote A
jk

= e
j

e>
k

, where e
j

, e
k

are unit
vectors with dimensionality d

1

and d
2

respectively. Similarly, for any (j, k) 2 ⌦Si , we let Ai

jk

= ei
j

ei>
k

. Thus, we can
rewrite the sample loss function as follows (here for simplicity, we use L

N

and LSi to denote L
⌦

and L
⌦Si

respectively)

L
N

(X) :=

1

2p

X

(j,k)2⌦

�

hA
jk

,Xi � Y
jk

�

2

,

where p = N/(d
1

d
2

). In addition, we can rewrite each component loss function as follows

LSi(X) :=

1

2p0

X

(j,k)2⌦Si

�

hAi

jk

,Xi � Y
jk

�

2

,

where p0 = b/(d
1

d
2

). For simplicity we let A and ASi be the corresponding transformation operator with respect to L
N

and LSi , respectively. First, we prove the restricted strong convexity and smoothness conditions for L
N

. Consider any two
rank-r matrices X,Y, which satisfy the incoherence condition. In the following discussion, denote � = Y �X.

Case 1: If condition (C.5) is violated. Then we obtain

k�k2
F

 C
0

�

p

d
1

d
2

k�k1
�

· k�k⇤

r

d log d

rN
 2C

0

↵
p

d
1

d
2

k�k⇤

r

d log d

rN
,

where ↵ = �r�
1

/
p
d
1

d
2

. Furthermore, we get

k�k2
F

 2C
0

p
2↵
p

d
1

d
2

k�k
F

r

d log d

N
,
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where the inequality holds because rank(�)  2r, which implies the following bound
1

d
1

d
2

k�k2
F

 C↵2

d log d

N
. (C.6)

Case 2: If condition (C.5) is satisfied. We first establish the restricted strongly convex condition for L
N

. In particular, we
have

L
N

(Y)� L
N

(X)� hrL
N

(X),�i

=

1

2p

X

(j,k)2⌦

�

hA
jk

,Y �X⇤i2 + hA
jk

,X�X⇤i2 � 2hA
jk

,X�X⇤ihA
jk

,�i
�

=

kA(�)k2
2

2p
, (C.7)

Thus, as long as c
5

p
d
1

d
2

k�k1,1/k�k
F

�
p
N , by the definition of spikiness ration ↵

sp

(�), we get
1

d
1

d
2

k�k2
F

 c0↵2

1

N
. (C.8)

If c
5

p
d
1

d
2

k�k1,1/k�k
F


p
N , according to Lemma C.3, we obtain

kA(�)k2
2

p
� 8

9

k�k2
F

,

which implies the restricted strong convexity parameter µ = 8/9.

Next, for sample loss function L
N

, we establish the restricted strong smoothness condition by similar proof. According to
(C.7) and Lemma C.3, as long as c

5

p
d
1

d
2

k�k1,1/k�k
F


p
N , we have

kA(�)k2
2

p
 10

9

k�k2
F

,

which gives us the restricted strong smoothness parameter L = 10/9.

Similarly, we show the restricted strong smoothness condition for each component loss function LSi , where i = 1, . . . , n.
Since we have

LSi(Y)� LSi(X)� hrLSi(X),�i = kASi(�)k2
2

2p0
,

thus according to Lemma C.3, as long as c
5

p
d
1

d
2

k�k1,1/k�k
F

/
p
b  c

6

, we have

kASi(�)k2
2

p0
 c

7

k�k2
F

,

which implies that L0
= c

7

. Otherwise, it is sufficient to ensure ↵ = O(1/
p
n).

Finally, for the statistical error term krL
N

(X⇤
)k2

2

, according to the definition of L
N

, we have

rL
N

(X⇤
) =

1

p

X

(j,k)2⌦

✏
jk

A
jk

.

Remember that each elements of the noise matrix follows i.i.d. Gaussian distribution with variance ⌫2/d
1

d
2

. Therefore,
according to Lemma C.4, we obtain

�

�

�

�

1

p

X

(j,k)2⌦

✏
jk

A
jk

�

�

�

�

2

 C⌫

r

d log d

N
,

holds with probability at least 1� C 0/d, which implies that

krL
N

(X⇤
)k2

2

 C2⌫2
d log d

N
, (C.9)

holds with probability at least 1�C 0/d. Combining error bounds (C.6), (C.8) and (C.9), we conclude the following upper
bound in Condition 3.6 as C

1

max{r�2�
1

, ⌫2}d log d/|⌦|.
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C.3. Proof of Corollary A.1

In order to prove the theoretical guarantees for one-bit matrix completion, we only need to verify the restricted strong
convexity and smoothness conditions for the sample loss function L

⌦

, the restricted strong smoothness condition for each
component function L

⌦Si
, and the upper bound of krL

⌦

(X⇤
)k

2

. Note that we have the estimator X satisfies incoherence
condition such that kXk1,1  r��

1

/
p
d
1

d
2

. Thus we should consider the twice differentiable function f(x) = g(x/⌧),
where ⌧ is a scale parameter with order O(⌫/

p
d
1

d
2

).

Proof of Corollary A.1. Let |⌦| = N , |⌦Si | = b. For any (j, k) 2 ⌦, we denote A
jk

= e
j

e>
k

, where e
i

, e
j

are unit vectors
with d

1

and d
2

dimensions. Similarly, for any (j, k) 2 ⌦Si , we let Ai

jk

= ei
j

ei>
k

. Note that for simplicity we use A and
ASi to denote the corresponding transformation operator with respect to L

N

and LSi , respectively. We can rewrite the
sample loss function as follows (here for simplicity, we use L

N

and LSi to denote L
⌦

and L
⌦Si

respectively)

L
N

(X) := � 1

N

X

(j,k)2⌦

⇢

1
�

Y
jk

= 1

 

log

�

g(hA
jk

,Xi/⌧)
�

+ 1
�

Y
jk

= �1

 

log

�

1� g(hA
jk

,Xi/⌧)
�

�

,

Therefore, we have each component loss function LSi as

LSi(X) := �1

b

X

(j,k)2⌦Si

⇢

1
�

Y
jk

= 1

 

log

�

g(hAi

jk

,Xi/⌧)
�

+ 1
�

Y
jk

= �1

 

log

�

1� g(hAi

jk

,Xi/⌧)
�

�

,

Therefore, we get

rL
N

(X) =

p
d
1

d
2

N⌫

X

(j,k)2⌦

✓

� g0(hA
jk

,Xi/⌧)
g(hA

jk

,Xi/⌧) 1
�

Y
jk

= 1

 

+

g0(hA
jk

,Xi/⌧)
1� g(hA

jk

,Xi/⌧)1
�

Y
jk

= �1

 

◆

A
jk

. (C.10)

Furthermore, we obtain

r2L
N

(X) =

1

p⌫2

X

(j,k)2⌦

B
jk

(X)vec(A
jk

)vec(A
jk

)

>, (C.11)

where we have

B
jk

(X) =

✓

g02(hA
jk

,Xi/⌧)
g2(hA

jk

,Xi/⌧) � f 00
(hA

jk

,Xi)
g(hA

jk

,Xi/⌧)

◆

1
�

Y
jk

= 1

 

+

✓

f 00
(hA

jk

,Xi)
1� g(hA

jk

,Xi/⌧) �
g02(hA

jk

,Xi/⌧)
(1� g(hA

jk

,Xi/⌧)2

◆

1
�

Y
jk

= �1

 

�

.

First, we establish the strong convexity and smoothness conditions for L
N

. For any X,M 2 Rd1⇥d2 , let W = M+a(X�
M) for a 2 [0, 1], x = vec(X) and m = vec(M). According to the mean value theorem, we get

L
N

(X) = L
N

(M) + hrL
N

(M),X�Mi+ 1

2

(x�m)

>r2L
N

(W)(x�m),

Moreover, according to (C.11), we further obtain

(x�m)

>r2L
N

(W)(x�m) =

1

p⌫2

X

(j,k)2⌦

B
jk

(W)hvec(A
jk

)

>
(x�m), vec(A

jk

)

>
(x�m)i

=

1

p⌫2

X

(j,k)2⌦

B
jk

(W)hA
jk

,�i2,

where � = X�M. Thus, according to the definition of µ
↵

in (A.3), we obtain

1

p⌫2

X

(j,k)2⌦

B
jk

(W)hA
jk

,�i2 � µ
↵

kA(�)k2
2

p⌫2
,
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Therefore, following the same steps in the proof of matrix completion, we have

µ
↵

kA(�)k2
2

p⌫2
� C

1

µ
↵

k�k2
F

,

which implies

L
N

(X) � L
N

(M) + hrL
N

(M),X�Mi+ 1

2

C
1

µ
↵

k�k2
F

.

Therefore it gives us the restricted strong convexity parameter µ = C
1

µ
↵

. On the other hand, according to the definition
of L

↵

in (A.4), we obtain

1

p⌫2

X

(j,k)2⌦

B
jk

(W)hA
jk

,�i2  L
↵

kA(�)k2
2

p⌫2
,

Therefore, following the same steps in the proof of the restricted strong smoothness condition in matrix completion, we get

L
N

(X)  L
N

(M) + hrL
N

(M),X�Mi+ 1

2

C
2

L
↵

k�k2
F

,

which implies the restricted strong smoothness parameter L = C
2

L
↵

. By the similar procedure, for each component
function, we can derive that

LSi(X)  LSi(M) + hrLSi(M),X�Mi+ 1

2

C
3

L
↵

k�k2
F

.

Finally, for the term krL
N

(X⇤
)k2

2

, according to Lemma C.4, we have

krL
N

(X⇤
)k

2

 C�
↵

s

d log d

|⌦| , (C.12)

where �
↵

is defined in (A.5). In addition, we also have the following bounds, which have been shown in proofs of matrix
completion when condition (C.5) is not satisfied

1

d
1

d
2

k�k2
F

 max

⇢

C↵2

1

|⌦| , C
0↵2

rd log d

|⌦|

�

. (C.13)

Therefore, combining error bounds (C.13) and (C.12), we have the following bound in Condition 3.6
Cmax{r�2�

1

, �2

↵

}d log d/|⌦|.

D. Proofs of Technical Lemmas
In this section, we present the proofs of several technical lemmas. Before proceeding to the theoretical proof, we first
introduce the following notations and definitions, which are essential for proving the following lemmas. For any Z 2
R(d1+d2)⇥r, we denote Z = [U;V], where U 2 Rd1⇥r and V 2 Rd2⇥r. Denote X = UV>. Let R = argmineR2Qr

kZ�
Z⇤

eRk
F

be the optimal rotation with respect to Z, and H = Z� Z⇤R = [H
U

;H
V

], where H
U

2 Rd1⇥r, H
V

2 Rd2⇥r.

Moreover, let U
1

,U
2

,U
3

be the left singular matrices of X,U,H
U

, respectively. Define eU as the matrix spanned by the
column of U

1

,U
2

and U
3

such that

col(eU) = span
�

U
1

,U
2

,U
3

 

= col(U
1

) + col(U
2

) + col(U
3

). (D.1)

Note that for the above subspace, each column vector of eU is a basis vector. In addition, we define the sum of two subspaces
U

1

,U
2

as U
1

+U
2

= {u
1

+ u
2

| u
1

2 U
1

,u
2

2 U
2

}. Obviously, eU is an orthonormal matrix with at most 3r columns.

Similarly, let V
1

,V
2

,V
3

be the right singular matrices of X,V,H
V

, respectively. Define eV as the matrix spanned by the
column of V

1

,V
2

and V
3

such that

col(eV) = span
�

V
1

,V
2

,V
3

 

= col(V
1

) + col(V
2

) + col(V
3

), (D.2)

where eV has at most 3r columns.
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D.1. Proof of Lemma 3.5

Proof. Define reference function fY : Rd1⇥d2 ! R such that

fY(

eX) = L
N

(

eX)� L
N

(Y)� hrL
N

(Y), eX�Yi. (D.3)

Since L
N

satisfies restricted strong convexity Condition 3.3, we have fY(X) � 0, for any matrix eX with rank at most 3r.
Obviously, fY(Y) = 0. Recall the SVD of X is X = U

1

⌃
1

V
>
1

. Since col(U
1

) ✓ col(eU) and U
>
1

U
1

= I
r1 , we have

eUeU>X = X. Thus we have

0 = fY(Y)  min

⌘

fY
�

eUeU>
[X� ⌘rfY(X)]

�

= min

⌘

fY
�

X� ⌘ eUeU>rfY(X)

�

 min

⌘

⇢

L
N

�

X� ⌘ eUeU>rfY(X)

�

� L
N

(Y)� hrL
N

(Y),X� ⌘ eUeU>rfY(X)�Yi
�

, (D.4)

where the first inequality holds because rank(AB)  min{rank(A), rank(B)} and eUeU> has rank at most 3r, and the
last inequality follows from (D.3). Since L

N

satisfies restricted strong smoothness Condition 3.4, we have

L
N

�

X� ⌘ eUeU>rfY(X)

�

 L
N

(X) + hrL
N

(X),�⌘ eUeU>rfY(X)i+ L

2

k⌘ eUeU>rfY(X)k2
F

. (D.5)

Thus, plugging (D.5) into (D.4), we have

fY(Y)  min

⌘

⇢

fY(X)� ⌘hrL
N

(X)�rL
N

(Y), eUeU>rfY(X)i+ ⌘2L

2

keUeU>rfY(X)k2
F

�

= fY(X) + min

⌘

⇢

� ⌘keU>rfY(X)k2
F

+

⌘2L

2

keU>rfY(X)k2
F

�

= fY(X)� 1

2L
keU>rfY(X)k2

F

, (D.6)

where the first equality follows from (D.3), the second inequality holds because eU>
eU = I

r1 and rfY(X) = rL
N

(X)�
rL

N

(Y), and the last equality holds because the minimizer is ⌘ = 1/L. Thus, plugging the definition of fY into (D.6),
we obtain

L
N

(X)� L
N

(Y)� hrL
N

(Y),X�Yi � 1

2L
keU>

(rL
N

(X)�rL
N

(Y))k2
F

� 0. (D.7)

Since eV is orthonormal matrix with at most 3r columns and XeV eV>
= X, following the same techniques, we obtain

L
N

(X)� L
N

(Y)� hrL
N

(Y),X�Yi � 1

2L
k(rL

N

(X)�rL
N

(Y))

eVk2
F

� 0. (D.8)

Therefore, combining (D.7) and (D.8), we complete the proof.

D.2. Proof of Lemma B.1

In order to prove the local curvature condition, we need to make use of the following lemmas. In Lemma D.1, we denote
eZ 2 R(d1+d2)⇥r as eZ = [U;�V]. Recall Z = [U;V], then we have kU>U�V>Vk2

F

= keZ>Zk2
F

, and rZ(kU>U�
V>Vk2

F

) = 4

eZeZ>Z. We refer Wang et al. (2016) to readers for a detailed proof of Lemma D.1. Lemma D.2, proved in
Section E.1, is a variation of the regularity condition of the sample loss function L

N

(Tu et al., 2015), which is essential to
derive the linear convergence rate in our main theorem.
Lemma D.1. (Wang et al., 2016) Let Z,Z⇤ 2 R(d1+d2)⇥r. Denote the optimal rotation with respect to Z as R =

argmineR2Qr
kZ� Z⇤

eRk
F

, and H = Z� Z⇤R. Consider the gradient of the regularization term keZ>Zk2
F

, we have

heZeZ>Z,Hi � 1

2

keZ>Zk2
F

� 1

2

keZ>Zk
F

· kHk2
F

,

where eZ = [U;�V].
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Lemma D.2. Suppose the sample loss function L
N

satisfies Conditions 3.3 and 3.4. For any rank-r matrices X,Y 2
Rd1⇥d2 , let the singular value decomposition of X be U

1

⌃
1

V
>
1

, then we have

hrL
N

(X)�rL
N

(Y),X�Yi � 1

4L
keU>

(rL
N

(X)�rL
N

(Y))k2
F

+

1

4L
k(rL

N

(X)�rL
N

(Y))

eVk2
F

+

µ

2

kX�Yk2
F

,

where eU 2 Rd1⇥r1 is an orthonormal matrix with r
1

 3r satisfying col(U
1

) ✓ col(eU), and eV 2 Rd2⇥r2 is an
orthonormal matrix with r

2

 3r satisfying col(V
1

) ✓ col(eV).

Now, we are ready to prove Lemma B.1.

Proof of Lemma B.1. According to (B.2), we have

hr eF
N

(Z),Hi = hrUL
N

(UV>
),H

U

i+ hrVL
N

(UV>
),H

V

i
| {z }

I1

+

1

2

heZeZ>Z,Hi
| {z }

I2

, (D.9)

where eZ = [U;�V]. Recall that X⇤
= U⇤V⇤>, and X = UV>. Note that rUL

N

(UV>
) = rL

N

(X)V, and
rVL

N

(UV>
) = rL

N

(X)

>U. Thus, for the term I
1

in (D.9), we have

I
1

= hrL
N

(X),UV> �U⇤V⇤>
+H

U

H>
V

i
= hrL

N

(X)�rL
N

(X⇤
),X�X⇤

+H
U

H>
V

i
| {z }

I11

+ hrL
N

(X⇤
),X�X⇤

+H
U

H>
V

i
| {z }

I12

. (D.10)

First, we consider the term I
11

in (D.10). Recall the definition of eU and eV in (D.1) and (D.2), respectively. According to
Lemma D.2, we have

hrL
N

(X)�rL
N

(X⇤
),X�X⇤i � 1

4L
keU>

(rL
N

(X)�rL
N

(X⇤
))k2

F

+

1

4L
k(rL

N

(X)�rL
N

(X⇤
))

eVk2
F

+

µ

2

kX�X⇤k2
F

. (D.11)

Second, for the remaining term in I
11

, we have
�

�hrL
N

(X)�rL
N

(X⇤
),H

U

H>
V

i
�

�

=

�

�heU>
(rL

N

(X)�rL
N

(X⇤
)), eU>H

U

H>
V

i
�

�

 keU>
(rL

N

(X)�rL
N

(X⇤
))k

F

· keU>k
2

· kH
U

H>
V

k
F

 1

2

keU>
(rL

N

(X)�rL
N

(X⇤
))k

F

· kHk2
F

, (D.12)

where the equality holds because eUeU>H
U

= H
U

, the first inequality holds because |hA,Bi|  kAk
F

· kBk
F

and
kABk

F

 kAk
2

· kBk
F

, and the second inequality holds because 2kABk
F

 kAk2
F

+ kBk2
F

and eU is orthonormal.
Similarly, we have

�

�hrL
N

(X)�rL
N

(X⇤
),H

U

H>
V

i
�

�  1

2

k(rL
N

(X)�rL
N

(X⇤
))

eVk
F

· kHk2
F

. (D.13)

Thus combining (D.12) and (D.13), we have

�

�hrL
N

(X)�rL
N

(X⇤
),H

U

H>
V

i
�

�  1

4

keU>
(rL

N

(X)�rL
N

(X⇤
))k

F

· kHk2
F

+

1

4

k(rL
N

(X)�rL
N

(X⇤
))

eVk
F

· kHk2
F

. (D.14)
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Therefore, combining (D.11) and (D.14), the term I
11

can be lower bounded by

I
11

� 1

4L

�

keU>
(rL

N

(X)�rL
N

(X⇤
))k2

F

+ k(rL
N

(X)�rL
N

(X⇤
))

eVk2
F

�

+

µ

2

kX�X⇤k2
F

� 1

4

�

keU>
(rL

N

(X)�rL
N

(X⇤
))k

F

+ k(rL
N

(X)�rL
N

(X⇤
))

eVk
F

�

· kHk2
F

� µ

2

kX�X⇤k2
F

� L

8

kHk4
F

, (D.15)

where the last inequality holds because 2ab  ca2 + b2/c, for any c > 0. Next, for the term I
12

in (D.10), we have
�

�hrL
N

(X⇤
),X�X⇤i

�

�  krL
N

(X⇤
)k

2

· kX�X⇤k⇤ 
p
2rkrL

N

(X⇤
)k

2

· kX�X⇤k
F

, (D.16)

where the first inequality is due to the Von Neumann trace inequality, and the second inequality is due to the fact that
rank(X�X⇤

)  2r. Similar for the remaining term in I
12

, we have

|hrL
N

(X⇤
),H

U

H>
V

i
�

� 
p
2rkrL

N

(X⇤
)k

2

· kH
U

H>
V

k
F

. (D.17)

Thus, combining (D.16) and (D.17), the term I
12

can be lower bounded by

I
12

� �
p
2rkrL

N

(X⇤
)k

2

·
✓

kX�X⇤k
F

+

1

2

kHk2
F

◆

� �µ

8

kX�X⇤k2
F

� L

4

kHk4
F

�
✓

4r

µ
+

r

2L

◆

· krL
N

(X⇤
)k2

2

, (D.18)

where the first inequality follows from the fact that 2kABk
F

 kAk2
F

+ kBk2
F

, and the last inequality is due to 2ab 
ca2 + b2/c, for any c > 0. Therefore, plugging (D.15) and (D.18) into (D.10), we obtain the lower bound of I

1

I
1

� 3µ

8

kX�X⇤k2
F

� 3L

8

kHk4
F

�
✓

4r

µ
+

r

2L

◆

· krL
N

(X⇤
)k2

2

. (D.19)

On the other hand, for the term I
2

in (D.9), according to lemma D.1, we have

I
2

� 1

2

keZ>Zk2
F

� 1

2

keZ>Zk
F

· kHk2
F

� 1

4

keZ>Zk2
F

� 1

4

kHk4
F

, (D.20)

where the last inequality holds because 2ab  a2 + b2. By plugging (D.19) and (D.20) into (D.9), we have

hr eF
N

(Z),Hi � 3µ

8

kX�X⇤k2
F

+

1

8

keZ>Zk2
F

� 3L+ 1

8

kHk4
F

�
✓

4r

µ
+

r

2L

◆

· krL
N

(X⇤
)k2

2

. (D.21)

Furthermore, denote eZ⇤
= [U⇤

;�V⇤
], then we obtain

keZ>Zk2
F

= hZZ> � Z⇤Z⇤>, eZeZ> � eZ⇤
eZ⇤>i+ hZ⇤Z⇤>, eZeZ>i+ hZZ>, eZ⇤

eZ⇤>i

� hZZ> � Z⇤Z⇤>, eZeZ> � eZ⇤
eZ⇤>i

= kUU> �U⇤U⇤>k2
F

+ kVV> �V⇤V⇤>k2
F

� 2kUV> �U⇤V⇤>k2
F

, (D.22)

where the first equality is due to eZ⇤>Z⇤
= 0, and the inequality is due to hAA>,BB>i = kA>Bk2

F

� 0. Thus,
according to Lemma F.2, we have

4kX�X⇤k2
F

+ keZ>Zk2
F

= kZZ> � Z⇤Z⇤>k2
F

� 4(

p
2� 1)�

r

kHk2
F

, (D.23)

where the first inequality holds because of (D.22), and the second inequality is due to Lemma F.2 and the fact that �2

r

(Z⇤
) =

2�
r

. Denote µ0
= min{µ, 1}. Therefore, plugging (D.23) into (D.21), we have

hr eF
N

(Z),Hi � µ

8

kX�X⇤k2
F

+

µ0�
r

10

kHk2
F

+

1

16

keZ>Zk2
F

� 3L+ 1

8

kHk4
F

�
✓

4r

µ
+

r

2L

◆

· krL
N

(X⇤
)k2

2

,

which completes the proof.
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D.3. Proof of Lemma B.2

Proof. Consider the term G
U

first. Denote X = UV>. According to the definition of G
U

, we have

kG
U

k2
F

= krUF
i

(U,V)�rL
i

(

eX)V +rL
N

(

eX)Vk2
F

=

�

�

�

�

rL
i

(X)V �rL
i

(

eX)V +rL
N

(

eX)V +

1

2

U(U>U�V>V)

�

�

�

�

2

F

 2 krL
i

(X)V �rL
i

(

eX)V +rL
N

(

eX)Vk2
F

| {z }

I1

+

1

2

kU>U�V>Vk2
F

· kUk2
2

, (D.24)

where the second equality follows from definition of F
i

in (2.4), and the inequality holds because kA+Bk2
F

 2kAk2
F

+

2kBk2
F

and kABk
F

 kAk
2

· kBk
F

. As for the term I
1

in (D.24), we further have

I
1

= krL
i

(X)V �rL
i

(

eX)V +rL
N

(

eX)V �rL
N

(X)V +rL
N

(X)V �rL
N

(X⇤
)V +rL

N

(X⇤
)Vk2

F

 3k eG
U

k2
F

+ 3krL
N

(X)V �rL
N

(X⇤
)Vk2

F

+ 3krL
N

(X⇤
)Vk2

F

 3k eG
U

k2
F

+ 3krL
N

(X)V �rL
N

(X⇤
)Vk2

F

+ 3rkrL
N

(X⇤
)k2

2

· kVk2
2

, (D.25)

where we define eG
U

= rL
i

(X)V � rL
N

(X)V � rL
i

(

eX)V + rL
N

(

eX)V, the second inequality holds because
kA+B+Ck2

F

 3kAk2
F

+3kBk2
F

+3kCk2
F

, and the last inequality holds because kABk
F

 kAk
2

· kBk
F

and V has
rank r. Thus combining (D.24) and (D.25), we have

EkG
U

k2
F

 6Ek eG
U

k2
F

| {z }

I2

+6 krL
N

(X)V �rL
N

(X⇤
)Vk2

F

| {z }

I3

+

1

2

kU>U�V>Vk2
F

· kUk2
2

+ 6rkrL
N

(X⇤
)k2

2

· kVk2
2

, (D.26)

where the expectation is taken with respect to i. Next, we are going to upper bound I
2

and I
3

, respectively. First, let us
consider I

2

in (D.26). Since i is uniformly picked from [n], we have E[rL
i

(X)V] = rL
N

(X)V and E[rL
i

(

eX)V] =

rL
N

(

eX)V. Recall the definition of eV in (D.2), we have

Ek eG
U

k2
F

= E
�

�

[rL
i

(X)V �rL
i

(

eX)V]� E[rL
i

(X)V �rL
i

(

eX)V]

�

�

2

F

 E
�

�rL
i

(X)V �rL
i

(

eX)V
�

�

2

F

 Ek(rL
i

(X)�rL
i

(

eX))

eVk2
F

· keV>Vk2
2

 1

n

n

X

i=1

�

�

�

rL
i

(X)�rL
i

(

eX)

�

eV
�

�

2

F

· kVk2
2

, (D.27)

where the first inequality holds because Ek⇠ � E⇠k2
2

 Ek⇠k2
2

for any random vector ⇠, the second inequality holds
because eV eV>V = V and kABk

F

 kAk
2

· kBk
F

, and the last inequality holds because kABk
2

 kAk
2

· kBk
2

and
keVk

2

= 1. Similarly, as for the term I
3

in (D.26), we have

I
3

=

�

�

�

rL
N

(X)�rL
N

(X⇤
)

�

eV eV>V
�

�

2

F


�

�

�

rL
N

(X)�rL
N

(X⇤
)

�

eVk2
F

· kVk2
2

, (D.28)

where the equality holds because eV eV>V = V, and the inequality holds because eV is orthonormal. Plugging (D.27) and
(D.28) into (D.26), we obtain

EkG
U

k2
F

 6

n

n

X

i=1

�

�

�

rL
i

(X)�rL
i

(

eX)

�

eV
�

�

2

F

· kVk2
2

+ 6

�

�

�

rL
N

(X)�rL
N

(X⇤
)

�

eVk2
F

· kVk2
2

+

1

2

kU>U�V>Vk2
F

· kUk2
2

+ 6rkrL
N

(X⇤
)k2

2

· kVk2
2

. (D.29)
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As for EkG
V

k2
F

, by the same techniques, we have

EkG
V

k2
F

 6

n

n

X

i=1

�

�eU>�rL
i

(X)�rL
i

(

eX)

�

�

�

2

F

· kUk2
2

+ 6

�

�eU>�rL
N

(X)�rL
N

(X⇤
)

�

k2
F

· kUk2
2

+

1

2

kU>U�V>Vk2
F

· kVk2
2

+ 6rkrL
N

(X⇤
)k2

2

· kUk2
2

, (D.30)

where eU is defined in (D.1). Recall Z = [U;V] and note that max{kUk
2

, kVk
2

}  kZk
2

. Thus combining (D.29) and
(D.30), we obtain the upper bound of EkGk2

F

EkGk2
F

 12

n

n

X

i=1

�

�

�

�

rL
i

(X)�rL
i

(

eX)

�

eV
�

�

2

F

+

�

�eU>�rL
i

(X)�rL
i

(

eX)

�

�

�

2

F

| {z }

I4

�

· kZk2
2

+ 12

�

�

�

�

rL
N

(X)�rL
N

(X⇤
)

�

eVk2
F

+

�

�eU>�rL
N

(X)�rL
N

(X⇤
)

�

k2
F

| {z }

I5

�

· kZk2
2

+ kU>U�V>Vk2
F

· kZk2
2

+ 12rkrL
N

(X⇤
)k2

2

· kZk2
2

. (D.31)

Finally, according to the Lemma 3.5 and the restricted strong smoothness Conditions 3.4 and 3.7, we obtain the upper
bound of I

4

and I
5

I
4

 4L0�L
i

(X)� L
i

(

eX)� hrL
i

(

eX),X� eXi
�

 2L02kX� eXk2
F

 4L02
(keX�X⇤k2

F

+ kX�X⇤k2
F

), (D.32)

where the last inequality holds because kA+Bk2
F

 2kAk2
F

+ 2kBk2
F

. Similarly we have

I
5

 4L
�

L
N

(X)� L
N

(X⇤
)� hrL

N

(X⇤
),X�X⇤i

�

 2L2kX�X⇤k2
F

. (D.33)

Hence, plugging (D.32) and (D.33) into (D.31), we obtain

EkGk2
F


�

48L02keX�X⇤k2
F

+ 24(2L02
+ L2

)kX�X⇤k2
F

�

· kZk2
2

+

�

kU>U�V>Vk2
F

+ 12rkrL
N

(X⇤
)k2

2

�

· kZk2
2

,

which completes the proof.

E. Proof of Technical Lemma in Appendix D
E.1. Proof of Lemma D.2

Proof. By the restricted strong convexity of L
N

in Condition 3.3, we have

L
N

(Y) � L
N

(X) + hrL
N

(X),Y �Xi+ µ

2

kX�Yk2
F

. (E.1)

Besides, according to lemma 3.5, we have

L
N

(X)� L
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(Y) � hrL
N
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4L
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(rL
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(Y))k2
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+

1

4L
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(X)�rL
N

(Y))

eVk2
F

. (E.2)

Therefore, combining (E.1) and (E.2), we have

hrL
N

(X)�rL
N
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(rL
N

(X)�rL
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+

1

4L
k(rL
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(X)�rL
N

(Y))

eVk2
F

+

µ

2

kX�Yk2
F

,

which completes the proof.
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F. Auxiliary lemmas
For the completeness of our proofs, we provide several auxiliary lemmas in this section, which are originally proved in Tu
et al. (2015).

Lemma F.1. (Tu et al., 2015) Assume X,Y 2 Rd1⇥d2 are two rank-r matrices. Suppose they have singular value
decomposition X = U

1

⌃
1

V>
1

and Y = U
2

⌃
2

V>
2

. Suppose kX�Yk
2

 �
r

(X)/2, then we have

d2
✓

[U
2

;V
2

]⌃
1/2

1

, [U
1

;V
1

]⌃
1/2

2

◆

 2p
2� 1

kY �Xk2
F

�
r

(X)

.

Lemma F.2. (Tu et al., 2015) For any matrices Z,Z0 2 R(d1+d2)⇥r, we have the following inequality

d2(Z,Z0
)  1

2(

p
2� 1)�2

r

(Z0
)

kZZ> � Z0Z0>k2
F

.

Lemma F.3. (Tu et al., 2015) For any matrices Z,Z0 2 R(d1+d2)⇥r, which satisfy d(Z,Z0
)  kZ0k

2

/4, we have the
following inequality

kZZ> � Z0Z0>k
F

 9

4

kZ0k
2

· d(Z,Z0
).


