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Abstract
We propose a generic framework based on a
new stochastic variance-reduced gradient descent
algorithm for accelerating nonconvex low-rank
matrix recovery. Starting from an appropriate
initial estimator, our proposed algorithm per-
forms projected gradient descent based on a
novel semi-stochastic gradient specifically de-
signed for low-rank matrix recovery. Based upon
the mild restricted strong convexity and smooth-
ness conditions, we derive a projected notion of
the restricted Lipschitz continuous gradient prop-
erty, and prove that our algorithm enjoys linear
convergence rate to the unknown low-rank ma-
trix with an improved computational complex-
ity. Moreover, our algorithm can be employed to
both noiseless and noisy observations, where the
(near) optimal sample complexity and statistical
rate can be attained respectively. We further il-
lustrate the superiority of our generic framework
through several specific examples, both theoreti-
cally and experimentally.

1. Introduction
Low-rank matrix recovery problem has been extensively
studied during the past decades, due to its wide range
of applications, such as collaborative filtering (Srebro
et al., 2004; Rennie & Srebro, 2005) and multi-label learn-
ing (Cabral et al., 2011; Xu et al., 2013). The objective of
low-rank matrix recovery is to estimate the unknown low-
rank matrix X⇤ 2 Rd1⇥d2 from partial observations, such
as a set of linear measurements in matrix sensing or a subset
of its entries in matrix completion. Significant efforts have
been made to estimate low-rank matrices, among which
one of the most prevalent approaches is nuclear norm re-
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laxation based optimization (Srebro et al., 2004; Candès &
Tao, 2010; Rohde et al., 2011; Recht et al., 2010; Negah-
ban & Wainwright, 2011; 2012; Gui & Gu, 2015). While
such convex relaxation based methods enjoy a rigorous the-
oretical guarantee to recover the unknown low-rank matrix,
due to the nuclear norm regularization/minimization, these
algorithms involve a singular value decomposition at each
iteration, whose time complexity is O(d3) to recover a d⇥d
matrix. Hence, they are computationally very expensive.

In order to address the aforementioned computational is-
sue, recent studies (Keshavan et al., 2009; 2010; Jain et al.,
2013a; Jain & Netrapalli, 2014; Hardt, 2014; Hardt &
Wootters, 2014; Hardt et al., 2014; Zhao et al., 2015; Chen
& Wainwright, 2015; Sun & Luo, 2015; Zheng & Lafferty,
2015; 2016; Tu et al., 2015; Bhojanapalli et al., 2015; Park
et al., 2016b; Wang et al., 2016) have been carried out to
perform factorization on the matrix space, which naturally
ensures the low-rankness of the produced estimator. Al-
though this matrix factorization technique converts the pre-
vious optimization problem into a nonconvex one, which is
more difficult to analyze, it significantly improves the com-
putational efficiency.

However, for large-scale matrix recovery, such nonconvex
optimization approaches are still computationally expen-
sive, because they are based on gradient descent or alter-
nating minimization, which involve the time-consuming
calculation of full gradient at each iteration. De Sa et al.
(2014) developed a stochastic gradient descent approach
for Gaussian ensembles, but the sample complexity (i.e.,
number of measurements or observations required for exact
recovery) of their algorithm is not optimal. Recently, Jin
et al. (2016) and Zhang et al. (2017b) proposed stochastic
gradient descent algorithms for noiseless matrix comple-
tion and matrix sensing, respectively. Although these al-
gorithms achieve linear rate of convergence and improved
computational complexity over aforementioned determin-
istic optimization based approaches, they are limited to spe-
cific low-rank matrix recovery problems, and unable to be
extended to more general problems and settings.

In this paper, inspired by the idea of variance reduction
for stochastic gradient (Schmidt et al., 2013; Konečnỳ &
Richtárik, 2013; Johnson & Zhang, 2013; Defazio et al.,



A Universal Variance Reduction-Based Catalyst for Nonconvex Low-Rank Matrix Recovery

2014a;b; Mairal, 2014; Xiao & Zhang, 2014; Konečnỳ
et al., 2014; Reddi et al., 2016; Allen-Zhu & Hazan, 2016;
Chen & Gu, 2016; Zhang & Gu, 2016), we propose a uni-
fied stochastic gradient descent framework with variance
reduction for low-rank matrix recovery, which integrates
both optimization-theoretic and statistical analyses. To the
best of our knowledge, this is the first unified accelerated
stochastic gradient descent framework for low-rank matrix
recovery with strong convergence guarantees. With a de-
sired initial estimator given by a general initialization algo-
rithm, we show that our algorithm achieves linear conver-
gence rate and better computational complexity against the
state-of-the-art algorithms. The contributions of our work
are further highlighted as follows:

1. We develop a generic stochastic variance-reduced gradi-
ent descent algorithm for low-rank matrix recovery, which
can be applied to various low rank-matrix estimation prob-
lems, including matrix sensing, noisy matrix completion
and one-bit matrix completion. In particular, for noisy ma-
trix sensing, it is guaranteed to linearly converge to the un-
known low-rank matrix up to the minimax statistical preci-
sion (Negahban & Wainwright, 2011; Wang et al., 2016);
while for noiseless matrix sensing, our algorithm achieves
the optimal sample complexity (Recht et al., 2010; Tu et al.,
2015; Wang et al., 2016), and attains a linear rate of con-
vergence. Besides, for noisy matrix completion, it achieves
the best-known sample complexity required by nonconvex
matrix factorization (Zheng & Lafferty, 2016).

2. At the core of our algorithm, we construct a novel
semi-stochastic gradient term, which is substantially dif-
ferent from the one if following the original stochastic
variance-reduced gradient using chain rule (Johnson &
Zhang, 2013). This uniquely constructed semi-stochastic
gradient has not appeared in the literature, and is essential
for deriving the minimax optimal statistical rate.

3. Our unified framework is built upon the mild restricted
strong convexity and smoothness conditions (Negahban
et al., 2009; Negahban & Wainwright, 2011) regarding the
objective function. Based on the above mentioned condi-
tions, we derive an innovative projected notion of the re-
stricted Lipschitz continuous gradient property, which we
believe is of independent interest for other nonconvex prob-
lems to prove sharp statistical rates. We further establish
the linear convergence rate of our generic algorithm. Be-
sides, for each specific examples, we verify that the con-
ditions required in the generic setting are satisfied with
high probability, which demonstrates the applicability of
our framework.

4. Our algorithm has a lower computational complex-
ity compared with existing approaches (Jain et al., 2013a;
Zhao et al., 2015; Chen & Wainwright, 2015; Zheng & Laf-
ferty, 2015; 2016; Tu et al., 2015; Bhojanapalli et al., 2015;

Park et al., 2016b; Wang et al., 2016). More specifically,
to achieve ✏ precision, the gradient complexity1 of our al-
gorithm is O

�

(N + 2b) log(1/✏)
�

. Here N denotes the
total number of observations, d denotes the dimensionality
of the unknown low-rank matrix X⇤, b denotes the batch
size, and  denotes the condition number of X⇤ (see Sec-
tion 2 for a detailed definition). In particular, if the con-
dition number satisfies   N/b, our algorithm is com-
putationally more efficient than the state-of-the-art generic
algorithm in Wang et al. (2016).

Notation. We use [d] and I
d

to denote {1, 2, . . . , d} and
d⇥d identity matrix respectively. We write A>A = I

d2 , if
A 2 Rd1⇥d2 is orthonormal. For any matrix A 2 Rd1⇥d2 ,
we use A

i,⇤ and A⇤,j to denote the i-th row and j-th col-
umn of A, respectively. In addition, we use A

ij

to de-
note the (i, j)-th element of A. Denote the row space and
column space of A by row(A) and col(A) respectively.
Let d = max{d

1

, d
2

}, and �
`

(A) be the `-th largest sin-
gular value of A. For vector x 2 Rd, we use kxk

q

=

(⌃

d

i=1

|x
i

|q)1/q to denote its `
q

vector norm for 0 < q < 1.
Denote the spectral and Frobenius norm of A by kAk

2

and
kAk

F

respectively. We use kAk1,1 = max

i,j

|A
ij

| to
denote the element-wise infinity norm of A, and we use
kAk

2,1 to represent the largest `
2

-norm of its rows. Given
two sequences {a

n

} and {b
n

}, we write a
n

= O(b
n

) if
there exists a constant 0 < C

1

< 1 such that a
n

 C
1

b
n

.
Note that other notations are defined throughout the paper.

2. Methodology
In this section, we present our generic stochastic gradient
descent algorithm with variance reduction as well as sev-
eral illustrative examples.

2.1. Stochastic Variance-Reduced Gradient for
Low-Rank Matrix Recovery

First, we briefly introduce the general problem setup for
low-rank matrix recovery. Suppose X⇤ 2 Rd1⇥d2 is an un-
known rank-r matrix. Let the singular value decomposition
(SVD) of X⇤ be X⇤

= U
⇤
⌃⇤V

⇤>
, where U

⇤ 2 Rd1⇥r,
V

⇤ 2 Rd2⇥r are orthonormal matrices, and ⌃⇤ 2 Rr⇥r

is a diagonal matrix. Let �
1

� �
2

� · · · � �
r

� 0 be
the sorted nonzero singular values of X⇤, and denote the
condition number of X⇤ by , i.e.,  = �

1

/�
r

. Besides, let
U⇤

= U
⇤
(⌃⇤

)

1/2 and V⇤
= V

⇤
(⌃⇤

)

1/2. Recall that we
aim to recover X⇤ through a collection of N observations
or measurements. Let L

N

: Rd1⇥d2 ! R be the sample
loss function, which evaluates the fitness of any matrix X
associated with the total N observations. Then the low-rank

1Gradient complexity is defined as the number of gradients
calculated in total.
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matrix recovery problem can be formulated as follows:

minX2Rd1⇥d2 LN

(X) :=

1

N

P

N

i=1

`
i

(X),

subject to X 2 C, rank(X)  r, (2.1)

where `
i

(X) measures the fitness of X associated with the
i-th observation. Here C ✓ Rd1⇥d2 is a feasible set, such
that X⇤ 2 C. In order to more efficiently estimate the un-
known low-rank matrix, following Jain et al. (2013a); Tu
et al. (2015); Zheng & Lafferty (2016); Park et al. (2016a);
Wang et al. (2016), we decompose X as UV> and consider
the following nonconvex optimization problem via matrix
factorization:

minU2C1,V2C2 LN

(UV>
) :=

1

N

P

N

i=1

`
i

(UV>
), (2.2)

where C
1

✓ Rd1⇥r, C
2

✓ Rd2⇥r are the rotation-invariant
sets induced by C. Recall X⇤ can be factorized as X⇤

=

U⇤V⇤>, then we need to make sure that U⇤ 2 C
1

and
V⇤ 2 C

2

. Besides, it can be seen from (2.2) that the optimal
solution is not unique in terms of rotation. In order to deal
with such identifiability issue, following Tu et al. (2015);
Zheng & Lafferty (2016); Park et al. (2016b), we consider
the following regularized optimization problem:

minU2C1,V2C2 FN

(U,V) := L
N

(UV>
) +R(U,V),

where the regularization term is defined as R(U,V) =

kU>U�V>Vk2
F

/8. We further decompose the objective
function F

N

(U,V) into n components to apply stochastic
variance-reduced gradient descent:

F
N

(U,V) :=

1

n

P

n

i=1

F
i

(U,V), (2.3)

where we assume N = nb, and b denotes batch size, i.e.,
the number of observations associated with each F

i

. More
specifically, we have

F
i

(U,V) = L
i

(UV>
) +R(U,V),

L
i

(UV>
) =

1

b

P

b

j=1

`
ij (UV>

). (2.4)

Therefore, based on (2.3) and (2.4), we are able to apply the
stochastic variance-reduced gradient, which is displayed as
Algorithm 1. As will be seen in later theoretical analysis,
the variance of the proposed stochastic gradient indeed de-
creases as the iteration number increases, which leads to a
faster convergence rate. Let PCi be the projection operator
onto the feasible set C

i

in Algorithm 1, where i 2 {1, 2}.

Note that our proposed Algorithm 1 is different from the
standard stochastic variance-reduced gradient algorithm
(Johnson & Zhang, 2013) in several aspects. First, instead
of conducting gradient descent directly on X, our algorithm
performs alternating stochastic gradient descent on the fac-
torized matrices U and V, which leads to a better computa-
tional complexity but a more challenging analysis. Second,

we construct a novel semi-stochastic gradient term for U
(resp. V) as rUF

it(U,V) � rL
it(

eX)V +rL
N

(

eX)V,
which is different from rUF

it(U,V)�rUF
it(

eU, eV) +

rUF
N

(

eU, eV) if following the original stochastic variance
reduced gradient descent (Johnson & Zhang, 2013). This
uniquely devised semi-stochastic gradient is essential for
deriving the minimax optimal statistical rate. Last but not
least, we introduce a projection step to ensure that the esti-
mator produced at each iteration belongs to a feasible set,
which is necessary for various low-rank matrix recovery
problems. We also note that Reddi et al. (2016); Allen-Zhu
& Hazan (2016) recently developed SVRG algorithms for
general nonconvex finite-sum optimization problem. How-
ever, their algorithms only guarantee a sublinear rate of
convergence to a stationary point, and cannot exploit the
special structure of low-rank matrix factorization. In stark
contrast, our algorithm is able to leverage the structure of
the problem and guaranteed to linearly converge to the un-
known low-rank matrix instead of a stationary point.
Algorithm 1 Low-Rank Stochastic Variance-Reduced Gra-
dient Descent (LRSVRG)
Input: loss function L

N

; step size ⌘; number of iterations
S,m; initial solution (

eU0, eV0

).
for: s = 1, 2, . . . , S do

eU =

eUs�1, eV =

eVs�1, eX =

eUeV>

U0

=

eU, V0

=

eV
for: t = 0, 1, 2, . . . ,m� 1 do

Randomly pick i
t

2 {1, 2, . . . , n}
Ut+1

= PC1

�

Ut � ⌘(rUF
it(U

t,Vt

)

�rL
it(

eX)Vt

+rL
N

(

eX)Vt

)

�

Vt+1

= PC2

�

Vt � ⌘(rVF
it(U

t,Vt

)

�rL
it(

eX)

>Ut

+rL
N

(

eX)

>Ut

)

�

end for
(

eUs, eVs

) = (Ut,Vt

), random t 2 {0, . . . ,m� 1}
end for

Output: (

eUS , eVS

).

Algorithm 2 Initialization
Input: loss function L

N

; step size ⌧ ; iteration number T .
initialize: X

0

= 0
for: t = 1, 2, 3, . . . , T do
X

t

= P
r

�

X
t�1

� ⌧rL
N

(X
t�1

)

�

end for
[U

0

,⌃0,V
0

] = SVD
r

(X
T

)

eU0

= U
0

(⌃0

)

1/2, eV0

= V
0

(⌃0

)

1/2

Output: (

eU0, eV0

)

As will be seen in later analysis, Algorithm 1 requires a
good initial solution to guarantee the linear convergence
rate. To obtain such an initial solution, we employ the ini-
tialization algorithm in Algorithm 2, which is originally
proposed in Wang et al. (2016). For any rank-r matrix
X 2 Rd1⇥d2 , we use SVD

r

(X) to denote its singular
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value decomposition. If SVD
r

(X) = [U,⌃,V], we use
P
r

(X) = U⌃V> to denote the best rank-r approximation
of X, or in other words, P

r

denotes the projection operator
such that P

r

(X) = argmin

rank(Y)r

kX�Yk
F

.

2.2. Applications to Specific Models

In this subsection, we introduce two examples, which in-
clude matrix sensing and matrix completion, to illustrate
the applicability of our proposed algorithm (Algorithm 1).
The application of our algorithm to one-bit matrix comple-
tion can be found in Appendix A. To apply the proposed
method, we only need to specify the form of F

N

(U,V)

for each specific model, as defined in (2.3).

2.2.1. MATRIX SENSING

In matrix sensing (Recht et al., 2010; Negahban & Wain-
wright, 2011), we intend to recover the unknown matrix
X⇤ 2 Rd1⇥d2 with rank-r from a set of noisy linear mea-
surements such that y = A(X⇤

) + ✏, where the linear
measurement operator A : Rd1⇥d2 ! RN is defined
as A(X) = (hA

1

,Xi, hA
2

,Xi, . . . , hA
N

,Xi)>, for any
X 2 Rd1⇥d2 . Here N denotes the number of observations,
and ✏ represents a sub-Gaussian noise vector with i.i.d. el-
ements and parameter ⌫. In addition, for each sensing ma-
trix A

i

2 Rd1⇥d2 , it has i.i.d. standard Gaussian entries.
Therefore, we formulate F

N

(U,V) for matrix sensing as
follows F

N

(U,V) = n�1

P

n

i=1

FSi(U,V), where for
each component function, we have FSi(U,V) = kySi �
ASi(UV>

)k2
2

/(2b) + R(U,V). Note that R(U,V) de-
notes the regularizer, which is defined in Section 2.1. In
addition, {S

i

}n
i=1

denote the mutually disjoint subsets such
that [n

i=1

S
i

= [N ], and ASi is defined as a linear measure-
ment operator ASi : Rd1⇥d2 ! Rb, satisfying ASi(X) =

(hA
i1 ,Xi, hA

i2 ,Xi, . . . , hA
ib ,Xi)>, with corresponding

observations ySi = (y
i1 , yi2 , . . . , yib)

>.

2.2.2. MATRIX COMPLETION

For matrix completion with noisy observations (Rohde
et al., 2011; Koltchinskii et al., 2011; Negahban & Wain-
wright, 2012), our primary goal is to recover the unknown
low-rank matrix X⇤ 2 Rd1⇥d2 from a set of randomly ob-
served noisy elements. For example, one commonly-used
model is the uniform observation model, which is defined
as follows:

Y
jk

:=

⇢

X⇤
jk

+ Z
jk

, with probability p,

⇤, otherwise,

where Z 2 Rd1⇥d2 is a noise matrix such that each
element Z

jk

follows i.i.d. Gaussian distribution with
variance ⌫2/(d

1

d
2

), and we call Y 2 Rd1⇥d2 the ob-
servation matrix. In particular, we observe each ele-
ments independently with probability p 2 (0, 1). We

denote ⌦ ✓ [d
1

] ⇥ [d
2

] by the index set of the ob-
served entries, then F

⌦

(U,V) for matrix completion is
formulated as F

⌦

(U,V) = n�1

P

n

i=1

F
⌦Si

(U,V), where
each component function is defined as F

⌦Si
(U,V) =

P

(j,k)2⌦Si
(U

j⇤V
>
k⇤ � Y

jk

)

2/(2b) +R(U,V). Note that
{⌦Si}n

i=1

denote the mutually disjoint subsets such that
[n

i=1

⌦Si = ⌦. In addition, we have |⌦Si | = b for
i = 1, . . . , n such that |⌦| = nb.

3. Main Theory
In this section, we present our main theoretical results
for Algorithms 1 and 2. We first introduce several defi-
nitions for simplicity. Recall that the singular value de-
composition of X⇤ is X⇤

= U
⇤
⌃⇤V

⇤>
, then follow-

ing Tu et al. (2015); Zheng & Lafferty (2016), we define
Y⇤ 2 R(d1+d2)⇥(d1+d2) as the corresponding lifted posi-
tive semidefinite matrix of X⇤ 2 Rd1⇥d2 in higher dimen-
sion

Y⇤
=



U⇤U⇤> U⇤V⇤>

V⇤U⇤> V⇤V⇤>

�

= Z⇤Z⇤>,

where U⇤
= U

⇤
(⌃⇤

)

1/2, V⇤
= V

⇤
(⌃⇤

)

1/2, and Z⇤ is
defined as Z⇤

= [U⇤
;V⇤

] 2 R(d1+d2)⇥r. Besides, we
define the solution set in terms of the true parameter Z⇤ as
follows:

Z =

n

Z 2 R(d1+d2)⇥r

�

� Z = Z⇤R for some R 2 Q
r

o

,

where Q
r

denotes the set of r ⇥ r orthonormal matrices.
According to this definition, for any Z 2 Z , we can obtain
X⇤

= Z
U

Z>
V

, where Z
U

and Z
V

denote the top d
1

⇥ r and
bottom d

2

⇥ r matrices of Z 2 R(d1+d2)⇥r respectively.
Definition 3.1. Define the distance between Z and Z⇤ in
terms of the optimal rotation as d(Z,Z⇤

) such that

d(Z,Z⇤
) = min

eZ2Z
kZ� eZk

F

= min

R2Qr

kZ� Z⇤Rk
F

.

Note that if d(Z,Z⇤
)  p

�
1

, we have kX � X⇤k
F


c
p
�
1

d(Z,Z⇤
), where c is a constant (Yi et al., 2016).

Definition 3.2. Define the neighbourhood of Z⇤ with ra-
dius R as

B(R) =

n

Z 2 R(d1+d2)⇥r

�

�

�

d(Z,Z⇤
)  R

o

.

Next, we lay out several conditions, which are essential for
proving our main theory. We impose restricted strong con-
vexity (RSC) and smoothness (RSS) conditions (Negahban
et al., 2009; Loh & Wainwright, 2013) on the sample loss
function L

N

.
Condition 3.3 (Restricted Strong Convexity). Assume L

N

is restricted strongly convex with parameter µ, such that for
all matrices X,Y 2 Rd1⇥d2 with rank at most 3r

L
N

(Y) � L
N

(X) + hrL
N

(X),Y �Xi+ µ

2

kY �Xk2
F

.
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Condition 3.4 (Restricted Strong Smoothness). Assume
L
N

is restricted strongly smooth with parameter L, such
that for all matrices X,Y 2 Rd1⇥d2 with rank at most 3r

L
N

(Y)  L
N

(X) + hrL
N

(X),Y �Xi+ L

2

kY �Xk2
F

.

Based on Conditions 3.3 and 3.4, we prove that the sam-
ple loss function L

N

satisfies a projected notion of the
restricted Lipschitz continuous gradient property as dis-
played in the following lemma.
Lemma 3.5. Suppose the sample loss function L

N

sat-
isfies Conditions 3.3 and 3.4. For any rank-r matrices
X,Y 2 Rd1⇥d2 , let the singular value decomposition of
X be U

1

⌃
1

V
>
1

, then we have

L
N

(X) � L
N

(Y) + hrL
N

(Y),X�Yi

+

1

4L
keU>

(rL
N

(X)�rL
N

(Y))k2
F

+

1

4L
k(rL

N

(X)�rL
N

(Y))

eVk2
F

�

,

where eU 2 Rd1⇥r1 is an orthonormal matrix with r
1

 3r
which satisfies col(U

1

) ✓ col(eU), and eV 2 Rd2⇥r2 is an
orthonormal matrix with r

2

 3r that satisfies col(V
1

) ✓
col(eV), and L is the RSS parameter.

Lemma 3.5 is essential to analyze the nonconvex optimiza-
tion for low-rank matrix recovery and derive a linear con-
vergence rate. Since the RSC and RSS conditions can
only be verified over the subspace of low-rank matrices,
the standard Lipschitz continuous gradient property could
not be derived. That is why we need such a restricted ver-
sion of Lipschitz continuous gradient property. To the best
of our knowledge, this new notion of Lipschitz continuous
gradient has never been proposed in the literature before.
We believe it can be of broader interests for other noncon-
vex optimization problems to prove tight bounds.

Moreover, we assume that the gradient of the sample loss
function rL

N

at X⇤ is upper bounded.
Condition 3.6. Recall the unknown rank-r matrix X⇤ 2
Rd1⇥d2 . Given a fixed sample size N and tolerance param-
eter � 2 (0, 1), we let ✏(N, �) be the smallest scalar such
that with probability at least 1� �, we have

krL
N

(X⇤
)k

2

 ✏(N, �),

where ✏(N, �) depends on sample size N and �.

Finally, we assume that each component loss function L
i

in
(2.4) satisfies the restricted strong smoothness condition.
Condition 3.7 (Restricted Strong Smoothness for each
Component). Given a fixed batch size b, assume L

i

is re-
stricted strongly smooth with parameter L0, such that for

all matrices X,Y 2 Rd1⇥d2 with rank at most 3r

L
i

(Y)  L
i

(X) + hrL
i

(X),Y �Xi+ L0

2

kY �Xk2
F

.

In latter analysis for generic setting, we assume that Con-
ditions 3.3-3.7 hold, while for each specific model, we will
verify these conditions respectively in the appendix.

3.1. Results for the Generic Setting

The following theorem shows that, in general, Algorithm 1
converges linearly to the unknown low-rank matrix X⇤ up
to a statistical precision.
Theorem 3.8 (LRSVRG). Suppose that Conditions 3.3,
3.4, 3.6, and 3.7 are satisfied. There exist constants
c
1

, c
2

, c
3

and c
4

such that for any eZ0

= [

eU0

;

eV0

] 2
B(c

2

p
�
r

) with c
2

 min{1/4,
p

2µ0/(5(3L+ 1))}, if
the sample size N is large enough such that ✏2(N, �) 
c2
2

(1� ⇢)µ0�2

r

/(c
3

r), where µ0
= min{µ, 1}, and the con-

traction parameter ⇢ is defined as follows:

⇢ =

10

µ0

✓

1

⌘m�
1

+ c
4

⌘�
1

L02
◆

,

then with the step size ⌘ = c
1

/�
1

and the number of iter-
ations m properly chosen, the estimator eZS

= [

eUS

;

eVS

]

outputed from Algorithm 1 satisfies

E
⇥

d2(eZS ,Z⇤
)

⇤

 ⇢Sd2(eZ0,Z⇤
) +

c
3

r✏2(N, �)

(1� ⇢)µ0�
r

, (3.1)

with probability at least 1� �.
Remark 3.9. Theorem 3.8 implies that to achieve linear
rate of convergence, it is necessary to set the step size ⌘
to be small enough and the inner loop iterations m to be
large enough such that ⇢ < 1. Here we present a specific
example to demonstrate such ⇢ is attainable. As stated in
Theorem 3.8, if we set the step size ⌘ = c0

1

/�
1

, where
c0
1

= µ0/
�

15c
4

L02�, then the contraction parameter ⇢ is
calculated as follows:

⇢ =

10

mµ0⌘�
1

+

2

3

.

Therefore, under the condition that m � c
5

2, we obtain
⇢  5/6 < 1, which leads to the linear convergence rate
of Algorithm 1. Besides, our algorithm also achieves the
linear convergence in terms of reconstruction error, since
the reconstruction error keXs�X⇤k2

F

can be upper bounded
by C�

1

· d2(eZs,Z⇤
), where C is a constant.

Remark 3.10. The right hand side of (3.1) consists of two
parts, where the first one represents the optimization er-
ror and the second one denotes the statistical error. Note
that in the noiseless case, since ✏(N, �) = 0, the statis-
tical error becomes zero. As stated in Remark 3.9, with



A Universal Variance Reduction-Based Catalyst for Nonconvex Low-Rank Matrix Recovery

appropriate ⌘ and m, we are able to achieve the linear rate
of convergence. Therefore, in order to make sure the op-
timization error satisfies ⇢Sd2(eZ0,Z⇤

)  ✏, it suffices to
perform S = O

�

log(1/✏)
�

outer loop iterations. Recall
that from Remark 3.9 we have m = O(2

). Since for
each outer loop iteration, it is required to calculate m mixed
stochastic variance-reduced gradients and one full gradient,
the overall gradient complexity for our algorithm to achieve
✏ precision is

O
⇣

(N + 2b) log
⇣

1

✏

⌘⌘

.

However, the gradient complexity of the state-of-the-art
gradient descent based algorithm (Wang et al., 2016) to
achieve ✏ precision is O

�

N log(1/✏)
�

. Therefore, pro-
vided that   n, our method is computationally more ef-
ficient than the state-of-the-art gradient descent approach.
The detailed comparison of the overall computational com-
plexity among different methods for each specific model
can be found in next subsection.

To satisfy the initial condition eZ0 2 B(c
2

p
�
r

) in Theorem
3.8, according to Lemma 5.14 in Tu et al. (2015), it suffices
to guarantee that eX0 is close enough to the unknown rank-
r matrix X⇤ such that keX0 � X⇤k

F

 c�
r

, where c 
min{1/2, 2c

2

}. The following theorem shows the output
of Algorithm 2 can satisfy this condition.
Theorem 3.11. (Wang et al., 2016) Suppose the sample
loss function L

N

satisfies Conditions 3.3, 3.4 and 3.6. Let
eX0

=

eU0

eV0>, where (

eU0, eV0

) is the produced initial so-
lution in Algorithm 2. If L/µ 2 (1, 4/3), then with step
size ⌧ = 1/L, we have with probability at least 1� � that

keX0 �X⇤k
F

 ⇢T kX⇤k
F

+

2

p
3r✏(N, �)

L(1� ⇢)
,

where ⇢ = 2

p

1� µ/L is the contraction parameter.

Theorem 3.11 suggests that, in order to guarantee keX0 �
X⇤k

F

 c�
r

, we need to perform at least T =

log(c0�
r

/kX⇤k
F

)/ log(⇢) number of iterations to ensure
the optimization error is small enough, and it is also neces-
sary to make sure the sample size N is large enough such
that ✏(N, �)  c0L(1 � ⇢)�

r

/
�

2

p
3r
�

, which corresponds
to a sufficiently small statistical error.

3.2. Implications for Specific Models

In this subsection, we demonstrate the implications of our
generic theory to specific models. For each specific model,
we only need to verify Conditions 3.3-3.7. We denote d =

max{d
1

, d
2

} in the following discussions.

3.2.1. MATRIX SENSING

We provide the theoretical guarantee of our algorithm for
matrix sensing.

Corollary 3.12. Consider matrix sensing with standard
normal linear operator A and noise vector ✏, whose entries
follow i.i.d. sub-Gaussian distribution with parameter ⌫.
There exist constants {c

i

}8
i=1

such that if the number of
observations satisfies N � c

1

rd and we choose the param-
eters ⌘ = c

2

/�
1

, where c
2

= µ0/
�

c
3


�

, m � c
4

2, then
for any initial solution satisfies eZ0 2 B(c

5

p
�
r

), with prob-
ability at least 1� c

6

exp

�

� c
7

d
�

, the output of Algorithm
1 satisfies

E
⇥

d2(eZS ,Z⇤
)

⇤

 ⇢Sd2(eZ0,Z⇤
) + c

8

⌫2
rd

N
, (3.2)

where the contraction parameter ⇢ < 1.
Remark 3.13. According to (3.2), in the noisy setting,
the output of our algorithm achieves O

�

p

rd/N
�

statis-
tical error after O

�

log(N/(rd))
�

number of outer loop it-
erations. This statistical error matches the minimax lower
bound for matrix sensing (Negahban & Wainwright, 2011).
In the noiseless case, to ensure the restricted strong con-
vexity and smoothness conditions of our objective func-
tion, we require sample size N = O(rd), which attains
the optimal sample complexity for matrix sensing (Recht
et al., 2010; Tu et al., 2015; Wang et al., 2016). Most im-
portantly, from Remark 3.10 we know that for the output
eZS of our algorithm, the overall computational complexity
of our algorithm to achieve ✏ precision for matrix sensing
is O

�

(Nd2 + 2bd2) log(1/✏)
�

. Nevertheless, the overall
computational complexity for the state-of-the-art gradient
descent algorithms in both noiseless (Tu et al., 2015) and
noisy (Wang et al., 2016) cases to obtain ✏ precision is
O
�

Nd2 log(1/✏)
�

. Therefore, our algorithm is more ef-
ficient provided that   n, which is consistent with the
result obtained by (Zhang et al., 2017b). In their work,
they proposed an accelerated stochastic gradient descent
method for matrix sensing based on the restricted isome-
try property. However, since the restricted isometry prop-
erty is more restrictive than the restricted strong convex and
smoothness conditions, their results cannot be applied to
more general low-rank matrix recovery problems.

3.2.2. MATRIX COMPLETION

We provide the theoretical guarantee of our algorithm for
matrix completion. In particular, we consider a partial ob-
servation model, which means only the elements over a
subset X ✓ [d

1

] ⇥ [d
2

] are observed. In addition, we as-
sume a uniform sampling model for X , which is defined
as 8(j, k) 2 X , j ⇠ uniform([d

1

]), k ⇠ uniform([d
2

]).
To avoid overly sparse matrices (Gross, 2011; Negahban
& Wainwright, 2012), we impose the following incoher-
ence condition (Candès & Recht, 2009). More specif-
ically, suppose the singular value decomposition of X⇤

is X⇤
= U

⇤
⌃⇤V

⇤>
, we assume the following condi-

tions hold kU⇤k
2,1 

p

�r/d
1

and kV⇤k
2,1 
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p

�r/d
2

, where r denotes the rank of X⇤, and � denotes
the incoherence parameter for X⇤.

In order to make sure our produced estimator satisfies in-
coherence constraint, we need a projection step, which is
displayed in Algorithm 1. Therefore, we construct two fea-
sible sets C

i

= {A 2 Rdi⇥r

�

� kAk
2,1  ↵

i

}, where
↵
i

=

p

�r�
1

/d
i

, and i 2 {1, 2}. Thus for any U 2 C
1

and V 2 C
2

, we have X = UV> 2 C = {A 2
Rd1⇥d2

�

� kAk1,1  ↵}, where ↵ = �r�
1

/
p
d
1

d
2

.

We have the following convergence result of our algorithm
for matrix completion.
Corollary 3.14. Consider noisy matrix completion under
uniform sampling model. Suppose X⇤ satisfies incoher-
ence condition. There exist constants {c

i

}7
i=1

such that if
we choose parameters ⌘ = c

1

/�
1

, where c
1

= µ0/
�

c
2


�

,
m � c

3

2, and the number of observations satisfies
N � c

4

r2d log d, then for any initial solution satisfies
eZ0 2 B(c

5

p
�
r

), then with probability at least 1 � c
6

/d,
the output of Algorithm 1 satisfies

E[d2(eZS ,Z⇤
)

⇤

 ⇢Sd2(eZ0,Z⇤
) + c

7

�

rd log d

N
, (3.3)

where � = max{⌫2, r�2�2

1

}, the contraction parameter
⇢ < 1.
Remark 3.15. Corollary 3.14 implies that after
O
�

log(N/(r2d log d))
�

number of outer loops, our
algorithm achieves O

�

r
p

d log d/N
�

statistical error,
which is near optimal compared with the minimax lower
bound O(

p

rd log d/N) for matrix completion proved in
Negahban & Wainwright (2012); Koltchinskii et al. (2011).
And its sample complexity is O(r2d log d), which matches
the best-known sample complexity of matrix completion
using nonconvex matrix factorization (Zheng & Lafferty,
2016). Recall that from Remark 3.10, the overall compu-
tational complexity of our algorithm to reach ✏ accuracy
for matrix completion is O

�

(N + 2b)r3d log(1/✏)
�

.
However, for the state-of-the-art gradient descent based
algorithms, the computational complexity for both noise-
less (Zheng & Lafferty, 2016) and noisy (Wang et al.,
2016) cases to obtain ✏ accuracy is O

�

Nr3d log(1/✏)
�

.
Thus the computational complexity of our algorithm is
lower than the state-of-the-art gradient descent methods
if we have   n. In addition, for the online stochastic
gradient descent algorithm (Jin et al., 2016), the overall
computational complexity is O(r44d log(1/✏)). Since
their results has a fourth power dependency on both r and
, our method can yield a significant improvement over
the online method when r, is large.

4. Experiments
In this section, we present the experimental performance
of our proposed algorithm for different models based on

numerical simulations and real data experiments.

4.1. Numerical Simulations

We first investigate the effectiveness of our proposed algo-
rithm compared with the state-of-the-art gradient descent
algorithm (Wang et al., 2016; Zheng & Lafferty, 2016).
Then, we evaluate the sample complexity required by both
methods to achieve exact recovery in the noiseless case.
Finally, we illustrate the statistical error of our method in
the noisy case. Note that both algorithms use the same ini-
tialization method (Algorithm 2) with optimal parameters
selected by cross validation. Furthermore, all results are
averaged over 30 trials. Note that due to the space limit,
we only lay out simulation results for matrix completion,
results for other models can be found in Appendix A.

For matrix completion, we consider the unknown low-rank
matrix X⇤ in the following settings: (i) d

1

= 100, d
2

=

80, r = 2; (ii) d
1

= 120, d
2

= 100, r = 3; (iii) d
1

=

140, d
2

= 120, r = 4. First, we generate the unknown low-
rank matrix X⇤ as X⇤

= U⇤V⇤>, where U⇤ 2 Rd1⇥r and
V⇤ 2 Rd2⇥r are randomly generated. Next, we use uni-
form observation model to obtain data matrix Y. Finally,
we consider two settings: (1) noisy case: the noise follows
i.i.d. normal distribution with variance �2

= 0.25 and (2)
noiseless case.

For the results of convergence rate, we show the mean
squared error kbX�X⇤k2

F

/(d
1

d
2

) in log scale versus num-
ber of effective data passes. Figures 1(a) and 1(c) illustrate
the linear rate of convergence of our algorithm (LRSVRG)
in the setting (i). The results imply that after the same num-
ber of effective data passes, our algorithm is more efficient
than the state-of-the-art gradient descent algorithm in es-
timation error. For the results of sample complexity, we
illustrate the empirical probability of exact recovery under
rescaled sample size N/(rd log d). For the estimator bX
given by different algorithms, it is considered to achieve ex-
act recovery, if the relative error kbX�X⇤k

F

/kX⇤k
F

is less
than 10

�3. Figure 1(b) shows the empirical recovery prob-
ability of different methods in the setting (i). It implies a
phase transition around N = 3rd log d. Although our the-
oretical results requires O(r2d log d) sample complexity,
the simulation results suggest that our method achieves the
optimal sample complexity N = O(rd log d). Note that
we leave out results in other settings to avoid redundancy
since we get similar patterns for these results. The results
of statistical error are displayed in Figure 1(d), which is
consistent with our main result in Corollary 3.14.

4.2. Real Data Experiments

We apply our proposed stochastic variance-reduced gradi-
ent algorithm for matrix completion to collaborative filter-
ing in recommendation system, and compare it with sev-



A Universal Variance Reduction-Based Catalyst for Nonconvex Low-Rank Matrix Recovery

Table 1. Experimental results of collaborative filtering in terms of averaged RMSE and CPU time for different algorithms.

Dataset Performance SVP SOFTIMPUTE ALTMIN TNC RIMP NUCLEAR SCAD GD LRSVRG

JESTER1 RMSE 4.7318 5.1211 4.8562 4.4803 4.3401 4.6910 4.1733 4.1832 4.1605

Time (s) 18.71 161.08 11.55 29.63 1.92 192.15 197.52 1.01 0.81

JESTER2 RMSE 4.7712 5.1523 4.8712 4.4511 4.3721 4.5597 4.2016 4.2177 4.1909

Time (s) 16.94 152.82 10.68 28.81 1.75 166.94 171.31 0.96 0.71

JESTER3 RMSE 8.7439 5.4532 9.5230 4.6712 4.9803 5.1231 4.6777 4.6867 4.6247

Time (s) 16.69 10.82 12.57 12.84 0.95 94.88 253.73 0.86 0.54
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Figure 1. Numerical results for matrix completion. (a) and (c) Rate of convergence for matrix completion in the noiseless and noisy
case, respectively: logarithm of mean squared error kbX�X⇤k2F /(d1d2) versus number of effective data passes, which demonstrates the
effectiveness of our method; (b) Empirical probability of exact recovery versus N/(rd log d); (d) Statistical error for matrix completion:
mean squared error in Frobenius norm kbX�X⇤k2F /(d1d2) versus rescaled sample size N/(rd log d).

eral state-of-the-art matrix completion algorithms, includ-
ing singular value projection (SVP) (Jain et al., 2010), trace
norm constraint (TNC) (Jaggi et al., 2010), alternating min-
imization (AltMin) (Jain et al., 2013b), spectral regulariza-
tion (SoftImpute) (Mazumder et al., 2010), rank-one ma-
trix pursuit (Wang et al., 2014), nuclear norm penalty (Ne-
gahban & Wainwright, 2011), nonconvex SCAD penalty
(Gui & Gu, 2015) and gradient descent (Zheng & Laf-
ferty, 2016). In particular, we use three large recommen-
dation datasets called Jester1, Jester2 and Jester3 (Gold-
berg et al., 2001), which contain anonymous ratings on
100 jokes from different users. The jester datasets consist
of {24983, 23500, 24938} rows and 100 columns respec-
tively, with {106, 106, 6 ⇥ 10

5} ratings correspondingly.
Besides, the rating scales take value from [�10, 10]. Our
goal is to recover the whole rating matrix based on par-
tial observations. Therefore, we randomly choose half of
the ratings as our observed data, and predict the other half
based on different matrix completion algorithms. We per-
form 10 different observed/unobserved entry splittings, and
record the averaged root mean square error (RMSE) as well
as CPU time for different algorithms. We summarize the
comparisons in Table 1, which suggests that our proposed
LRSVRG algorithm outperforms all the other baseline al-
gorithms in terms of RMSE and CPU time, which aligns
well with our theory.

5. Conclusions and Future Work
We proposed a unified stochastic variance-reduced gradi-
ent descent framework for low-rank matrix recovery that
integrates both optimization-theoretic and statistical anal-
yses. Based on the mild restricted strong convexity and
smoothness conditions, we derived a projected notion of
the restricted Lipschitz continuous gradient property, and
established the linear convergence rate of our proposed al-
gorithm. With an appropriate initialization procedure, we
proved that our algorithm enjoys improved computational
complexity compared with existing approaches. There are
still many interesting problems along this line of research.
For example, we will study accelerating the low-rank plus
sparse matrix/tensor recovery (Gu et al., 2014; 2016; Yi
et al., 2016; Zhang et al., 2017a) through variance reduc-
tion technique in the future.
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