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A. Theoretical Analysis

As we know, the final goal of the dual learning is to give
correct predictions for the unseen test data. That is to say,
we want to minimize the (expected) risk of the dual models,
which is defined as followd'}
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where F = {f(2;0.y); 00y €Ouy}, G = {g(7;0y2); 0y €
Oy}, Oy and O, are parameter spaces, and the E is tak-
en over the underlying distribution P. Besides, let D de-
note the product space of the two models satisfying prob-
abilistic duality, i.e., the constraint in Eqn.(4). For ease of
reference, define Hquy as (F x G) N D.

Define the empirical risk on the n sample as follows: for
any f € F,g €G,
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Following (Bartlett & Mendelson, 2002), we introduce
Rademacher complexity for dual supervised learning, a
measure for the complexity of the hypothesis.

Definition 1. Define the Rademacher complexity of DSL,
ROSL, as follows:

RBE = R [ sup
2L (f,9)€Hdual n i=1

where z = {21,292, -+ ,zn} ~ P", z; = (x;,y;) in which
x; € Xandy; €Y, 0 = {01, ++ ,0m} are i.i.d sampled
with P(o; = 1) = P(o; = —1) = 0.5.

Based on RDSL we have the following theorem for dual
supervised learning:
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"The parameters 0, and 0, in the dual models will be omit-
ted when the context is clear.
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Theorem 1 ((Mohri et all 2012)). Let 3¢1(f(z),y) +
102(9(y), x) be a mapping from X x Y to [0,1]. Then, for
any 6 € (0,1), with probability at least 1 — 0, the following
inequality holds for any (f,g) € Haua

DSL 1 1
R(f.9) < Ba(f,9) + 287" + 4/ 5-In(5). (1)

Similarly, we define the Rademacher complexity for the s-
tandard supervised learning 5L under our framework by
replacing the Hgya in Definition[I]by F x G. With proba-
bility at least 1 —¢, the generation error bound of supervised

V2 In(3)-
Since Haua € F X G, by the definition of Rademacher

complexity, we have SRPSE < 935L. Therefore, DSL enjoys
a smaller generation error bound than supervised learning.

learning is smaller than 2935 +

The approximation of dual supervised learning is defined
as

R(f%,97) — R )

in which

R(f7,9%) = inf R(f,g), s.t. (f,9) € Hawat;
R* =inf R(f,g).

The approximation error for supervised learning is similar-
ly defined.

Define Py\m = {P(y|a:, 91y)|9my € @xy}’
Pujy = {P(@|y; 0yz)|0ya € Oyo}. Let Py and P, de-
note the two conditional probabilities derived from P. We

have the following theorem:

Theorem 2. If P;‘m € Py, and P;‘ y € Puly, then super-

vised learning and DSL has the same approximation error.

Proof. By definition, we can verify both of the two approx-
imation errors are zero. O

B. Details about the Language Models for
Marginal Distributions

We use the LSTM language models (Sundermeyer et al.,
2012; Mikolov et al., 2010) to characterize the marginal
distribution of a sentence z, defined as H;Tril P(zi|z<;),
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where x; is the ¢-th word in x, 7T}, denotes the number of
words in xz, and the index < ¢ indicates {1,2,--- ,i — 1}.
The embedding dimension and hidden node are both 1024.
We apply 0.5 dropout to the input embedding and the last
hidden layer before softmax. The validation perplexities
of the language models are shown in Table |1} where the
validation sets are the same as those for machine translation
tasks.

Table 1. Validation Perplexities of Language Models
En<Fr En<De En<Zh
En Fr En De En Zh
88.72 | 58.90 | 101.44 | 90.54 | 70.11 | 113.43

As shown in Table([T} the perplexities of different language
models vary a lot, but out DSL can make improvements
on all the translation tasks (Please refer to Table 1 of the
main text). This shows that DSL is not very sensitive to the
qualities of the two marginal distributions.

For the marginal distributions for sentences of sentiment
classification, we choose the LSTM language model again
like those for machine translation applications. The two
differences are: (i) the vocabulary size is 10000; (ii) the
word embedding dimension is 500. The perplexity of this
language model is 58.74.
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