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1. Proof of Theorem 1
Theorem 1. Suppose Assumption 1 holds and F (w) obeys

the LGC (6). Given � 2 (0, 1), let

˜� = �/K, K =

dlog
2

(

✏0
✏ )e, D

1

� c✏0
✏1�✓ and t be the smallest integer

such that t � max{9, 1728 log(1/˜�)}G2D2
1

✏20
. Then ASSG-c

guarantees that, with a probability 1� �, F (wK)� F⇤ 
2✏. As a result, the iteration complexity of ASSG-c for

achieving an 2✏-optimal solution with a high probabil-

ity 1� � is O(c2G2dlog
2

(

✏0
✏ )e log(1/�)/✏

2(1�✓)
) provided

D
1

= O(

c✏0
✏(1�✓) ).

Proof. Let w†
k,✏ denote the closest point to wk in S✏. De-

fine ✏k =

✏0
2

k . Note that Dk =

D1

2

k�1 � c✏k�1

✏1�✓ and ⌘k =

✏k�1

3G2 . We will show by induction that F (wk)�F⇤  ✏k+✏
for k = 0, 1, . . . with a high probability, which leads to our
conclusion when k = K. The inequality holds obviously
for k = 0. Conditioned on F (wk�1

)� F⇤  ✏k�1

+ ✏, we
will show that F (wk)�F⇤  ✏k+✏ with a high probability.
By Lemma 1, we have

kw†
k�1,✏ �wk�1

k
2

 c

✏1�✓
(F (wk�1

)� F (w

†
k�1,✏))

 c✏k�1

✏1�✓
 Dk. (1)

We apply Lemma 2 to the k-th stage of Algorithm 1 condi-
tioned on randomness in previous stages. With a probabil-
ity 1� ˜� we have

F (wk)� F (w

†
k�1,✏) 

⌘kG
2

2

+

kwk�1

�w

†
k�1,✏k22

2⌘kt

+

4GDk

q
3 log(1/˜�)
p
t

. (2)

We now consider two cases for wk�1

. First, we assume
F (wk�1

) � F⇤  ✏, i.e. wk�1

2 S✏. Then we have
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w

†
k�1,✏ = wk�1

and

F (wk)� F (w

†
k�1,✏) 

⌘kG
2

2

+

4GDk

q
3 log(1/˜�)
p
t

 ✏k
3

+

✏k�1

6

=

2✏k
3

.

The second inequality using the fact that ⌘k =

2✏k
3G2 and

t � 1728 log(1/˜�)
G2D2

1

✏20
. As a result,

F (wk)� F⇤  F (w

†
k�1,✏)� F⇤ +

2✏k
3

 ✏+ ✏k.

Next, we consider F (wk�1

) � F⇤ > ✏, i.e. wk�1

/2 S✏.
Then we have F (w

†
k�1,✏) � F⇤ = ✏. Combining (1) and

(2), we get

F (wk)� F (w

†
k�1,✏) 

⌘kG
2

2

+

D2

k

2⌘kt
+

4GDk

q
3 log(1/˜�)
p
t

.

Since ⌘k =

2✏k
3G2 and t � max{9, 1728 log(1/˜�)}G2D2

1

✏20
, we

have each term in the R.H.S of above inequality bounded
by ✏k/3. As a result,

F (wk)� F (w

†
k�1,✏)  ✏k ) F (wk)� F⇤  ✏k + ✏.

with a probability 1 � ˜�. Therefore by induction, with a
probability at least (1� ˜�)K we have

F (wK)� F⇤  ✏K + ✏  2✏.

Since ˜� = �/K, then (1 � ˜�)K � 1 � � and we complete
the proof.

2. Proof of Lemma 3
Lemma 3. For any t � 1, we have kbw⇤ � wtk2  3�G
and kwt �w

1

k
2

 2�G.

Proof. By the optimality of bw⇤, we have for any w 2 K
✓
@F (

b
w⇤) +

1

�
(

b
w⇤ �w

1

)

◆>
(w � b

w⇤) � 0.
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Let w = w

1

, we have

@F (

b
w⇤)

>
(w

1

� b
w⇤) �

kbw⇤ �w

1

k2
2

�
.

Because k@F (

b
w⇤)k2  G due to k@f(w; ⇠)k

2

 G, then

kbw⇤ �w

1

k
2

 �G.

Next, we bound kwt � w

1

k
2

. According to the update of
wt+1

we have

kwt+1

�w

1

k
2

kw0
t+1

�w

1

k
2

=k � ⌘t@f(wt; ⇠t) + (1� ⌘t/�)(wt �w

1

)k
2

.

We prove kwt � w

1

k
2

 2�G by induction. First, we
consider t = 1, where ⌘t = 2�, then

kw
2

�w

1

k
2

 k2�@f(wt; ⇠t)k
2

 2�G.

Then we consider any t � 2, where ⌘t/�  1. Then

kwt+1

�w

1

k
2


�����

⌘t
�
�@f(wt; ⇠t) +

✓
1� ⌘t

�

◆
(wt �w

1

)

����
2

⌘t
�
�G+

✓
1� ⌘t

�

◆
2�G  2�G.

Therefore
kbw⇤ �wtk2  3�G.

3. Proof of Theorem 2
Theorem 2. Suppose Assumption 1 holds and F (w) obeys

the LGC (6). Given � 2 (0, 1/e), let

˜� = �/K, K =

dlog
2

(

✏0
✏ )e, �

1

� 2c2✏0
✏2(1�✓) and t be the smallest inte-

ger such that t � max{3, 136�1G
2
(1+log(4 log t/˜�)+log t)

✏0
}.

Then ASSG-r guarantees that, with a probability 1 � �,

F (wK) � F⇤  2✏. As a result, the iteration complexity

of ASSG-r for achieving an 2✏-optimal solution with a high

probability 1 � � is O(c2G2

log(✏
0

/✏) log(1/�)/✏2(1�✓)
)

provided �
1

= O(

2c2✏0
✏2(1�✓) ).

To prove the theorem, we first show the following results
of high probability convergence bound.
Lemma 4. Given w

1

2 K, apply T -iterations of (9). For

any fixed w 2 K, � 2 (0, 1), and T � 3, with a probability

at least 1� �, the following inequality holds

F (

b
wT )� F (w) kw �w

1

k2
2

2�

+

34�G2

(1 + log T + log(4 log T/�))

T
,

where

b
wt =

Pt
⌧=1

wt/t.

Proof. Let gt = @f(wt; ⇠t)+(wt�w

1

)/� and @ bF (wt) =

@F (wt)+(wt�w

1

)/�. Note that kgtk2  3G. According
to the standard analysis for the stochastic gradient method
we have

g

>
t (wt � b

w⇤) 
1

2⌘t
kwt � b

w⇤k2
2

� 1

2⌘t
kwt+1

� b
w⇤k2

2

+

⌘t
2

kgtk2
2

.

Then

@ bF (wt)
>
(wt � b

w⇤) 
1

2⌘t
kwt � b

w⇤k2
2

� 1

2⌘t
kwt+1

� b
w⇤k2

2

+

⌘t
2

kgtk2
2

+ (@ bF (wt)� gt)
>
(wt � b

w⇤).

By strong convexity of bF we have

bF (

b
w⇤)� bF (wt) � @ bF (wt)

>
(

b
w⇤�wt)+

1

2�
kbw⇤�wtk2

2

.

Then

bF (wt)� bF (

b
w⇤)

 1

2⌘t
kwt � b

w⇤k2
2

� 1

2⌘t
kwt+1

� b
w⇤k2

2

+

⌘t
2

kgtk2
2

+ (@ bF (wt)� gt)
>
(wt � b

w⇤)�
1

2�
kbw⇤ �wtk2

2

 1

2⌘t
kwt � b

w⇤k2
2

� 1

2⌘t
kwt+1

� b
w⇤k2

2

+

⌘t
2

kgtk2
2

+ (@F (wt)� @f(wt; ⇠t))
>
(wt � b

w⇤)| {z }
⇣t

� 1

2�
kbw⇤ �wtk2

2

.

By summing the above inequalities across t = 1, . . . , T ,
we have

TX

t=1

(

bF (wt)� bF (

b
w⇤)) (3)


T�1X

t=1

1

2

✓
1

⌘t+1

� 1

⌘t
� 1

2�

◆
kbw⇤ �wt+1

k2
2

+

TX

t=1

⇣t �
1

4�

TX

t=1

kbw⇤ �wtk2
2

� 1

4�
kbw⇤ �w

1

k2
2

+

1

2⌘
1

kbw⇤ �w

1

k2
2

+

9G2

2

TX

t=1

⌘t


TX

t=1

⇣t �
1

4�

TX

t=1

kbw⇤ �wtk2
2

+ 9�G2

(1 + log T ).

(4)

where the last inequality uses ⌘t =

2�
t . Next, we bound

R.H.S of the above inequality. We need the following
lemma.
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Lemma 5. (Lemma 3 (Kakade & Tewari, 2008)) Sup-

pose X
1

, . . . , XT is a martingale difference sequence with

|Xt|  b. Let

VartXt = Var(Xt|X1

, . . . , Xt�1

).

where Var denotes the variance. Let V =

PT
t=1

VartXt

be the sum of conditional variance of Xt’s. Further, let

� =

p
V . Then we have for any � < 1/e and T � 3,

Pr

 
TX

t=1

Xt > max{2�, 3b
p
log(1/�)}

p
log(1/�)

!

4� log T.

To proceed the proof of Lemma 4. We let Xt = ⇣t and
DT =

PT
t=1

kwt � b
w⇤k2

2

. Then X
1

, . . . , XT is a mar-
tingale difference sequence. Let D = 3�G. Note that
|⇣t|  2GD. By Lemma 5, for any � < 1/e and T � 3,
with a probability 1� � we have

TX

t=1

⇣t 

max

8
<

:2

vuut
log(

4 log T

�
)

TX

t=1

Vart⇣t, 6GD log(

4 log T

�
)

9
=

; .

(5)

Note that
TX

t=1

Vart⇣t 
TX

t=1

Et[⇣
2

t ]  4G2

TX

t=1

kwt � b
w⇤k2

2

= 4G2DT .

As a result, with a probability 1� �,

TX

t=1

⇣t 4G
p
log(4 log T/�)

p
DT + 6GD log(4 log T/�)

16�G2

log(4 log T/�) +
1

4�
DT

+ 6GD log(4 log T/�).

As a result, with a probability 1� �,

TX

t=1

⇣t �
1

4�

TX

t=1

kbw⇤ �wtk2
2

16�G2

log(4 log T/�) + 6GD log(4 log T/�)

=34�G2

log(4 log T/�).

Thus, with a probability 1� �

bF (

b
wT )� bF (

b
w⇤)

34�G2

log(4 log T/�)

T
+

9�G2

(1 + log T )

T

34�G2

(1 + log T + log(4 log T/�))

T
.

Using the facts that F (

b
wT )  bF (

b
wT ) and bF (

b
w⇤) 

bF (w) = F (w) +

kw�w1k2
2

2� , we have

F (

b
wT )� F (w)� kw �w

1

k2
2

2�

34�G2

(1 + log T + log(4 log T/�))

T
.

Next, let us start to prove Theorem 2.

Proof of Theorem 2. Let w†
k,✏ denote the closest point to

wk in the ✏ sublevel set. Define ✏k , ✏0
2

k . First, we note that
�k � 2c2✏k�1

✏2(1�✓) . We will show by induction that F (wk) �
F⇤  ✏k+✏ for k = 0, 1, . . . with a high probability, which
leads to our conclusion when k = K. The inequality holds
obviously for k = 0. Conditioned on F (wk�1

) � F⇤ 
✏k�1

+ ✏, we will show that F (wk) � F⇤  ✏k + ✏ with
a high probability. We apply Lemma 4 to the k-th stage
of Algorithm 2 conditioned on the randomness in previous
stages. With a probability at least 1� ˜� we have

F (wk)� F (w

†
k�1,✏)

 1

2�k
kw†

k�1,✏ �wk�1

k2
2

+

34�kG
2

(1 + log t+ log(4 log t/˜�))

t
. (6)

We now consider two cases for wk�1

. First, we assume
F (wk�1

) � F⇤  ✏, i.e. wk�1

2 S✏. Then we have
w

†
k�1,✏ = wk�1

and

F (wk)� F (w

†
k�1,✏) 

34�kG
2

(1 + log t+ log(4 log t/˜�))

t

✏k
2

.

The last inequality uses the fact that t �
136�1G

2
(1+log(4 log t/˜�)+log t)

✏0
. As a result,

F (wk)� F⇤  F (w

†
k�1,✏)� F⇤ +

✏k
2

 ✏+ ✏k.

Next, we consider F (wk�1

) � F⇤ > ✏, i.e. wk�1

/2 S✏.
Then we have F (w

†
k�1,✏) � F⇤ = ✏. Similar to the proof

of Theorem 1, by Lemma 1, we have

kw†
k�1,✏ �wk�1

k
2

 c✏k�1

✏1�✓
. (7)

Combining (6) and (7), we have

F (wk)� F (w

†
k�1,✏)

 1

2�k

⇣c✏k�1

✏1�✓

⌘
2

+

34�kG
2

(1 + log t+ log(4 log t/˜�))

t
.
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Using the fact that �k � 2c2✏k�1

✏2(1�✓)

and t � 68�kG
2
(1+log t+log(4 log t/˜�))

✏k
=

136�1G
2
(1+log t+log(4 log t/˜�))

✏0
, we get

F (wk)� F (w

†
k�1,✏) 

✏k�1

4

+

✏k
2

= ✏k,

which together with the fact that F (w

†
k�1,✏) = F⇤ + ✏ im-

plies

F (wk)� F⇤  ✏+ ✏k.

Therefore by induction, we have with a probability at least
(1� ˜�)K ,

F (wK)� F⇤  ✏K + ✏ =
✏
0

2

K
+ ✏  2✏,

where the last inequality is due to the value of K =

dlog
2

(

✏0
✏ )e. Since ˜� = �/K, then (1� ˜�)K � 1� �.

4. Proof of Theorem 3
Theorem 3 (RASSG with unknown c). Let ✏  ✏

0

/4,

! = 1, and K = dlog
2

(

✏0
✏ )e in Algorithm 3. Suppose

D
(1)

1

is sufficiently large so that there exists ✏̂
1

2 [✏, ✏
0

/2],
with which F (·) satisfies a LGC (6) on S✏̂1 with ✓ 2 (0, 1)

and the constant c, and D
(1)

1

=

c✏0
✏̂1�✓
1

. Let

ˆ� =

�
K(K+1)

,

and t
1

= max{9, 1728 log(1/ˆ�)}
⇣
GD

(1)

1

/✏
0

⌘
2

. Then

with at most S = dlog
2

(✏̂
1

/✏)e + 1 calls of ASSG-c, Al-

gorithm 3 finds a solution w

(S)

such that F (w

(S)

)�F⇤ 
2✏. The total number of iterations of RASSG for ob-

taining 2✏-optimal solution is upper bounded by TS =

O(dlog
2

(

✏0
✏ )e log(1/�)/✏

2(1�✓)
).

Proof. Since K = dlog
2

(

✏0
✏ )e � dlog

2

(

✏0
✏̂1
)e, D

(1)

1

=

c✏0
✏̂1�✓
1

, and t
1

= max{9, 1728 log(1/ˆ�)}
✓

GD(1)
1

✏0

◆
2

, fol-

lowing the proof of Theorem 1, we can show that with a
probability 1� �

K+1

,

F (w

(1)

)� F⇤  2✏̂
1

. (8)

By running ASSG-c starting from w

(1) which satis-
fies (8) with K = dlog

2

(

✏0
✏ )e � dlog

2

(

2✏̂1
✏̂1/2

)e,

D
(2)

1

=

c✏0
(✏̂1/2)1�✓ � c2✏̂1

(✏̂1/2)1�✓ , and t
2

=

max{9, 1728 log(1/ˆ�)}
⇣
GD

(2)

1

/✏
0

⌘
2

, Theorem 1 ensures
that

F (w

(2)

)� F⇤  ✏̂
1

with a probability at least (1��/(K+1))

2. By continuing
the process, with S = dlog

2

(✏̂
1

/✏)e + 1 we can prove that

with a probability at least (1��/(K+1))

S � 1�� S
K+1

�
1� �,

F (w

(S)

)� F⇤  2✏̂
1

/2S�1  2✏.

The total number of iterations for the S calls of ASSG-c is
bounded by

TS =K

SX

s=1

Ts = K

SX

s=1

t
1

2

2(s�1)(1�✓)

=Kt
1

2

2(S�1)(1�✓)
SX

s=1

⇣
1/22(1�✓)

⌘S�s

Kt
1

2

2(S�1)(1�✓) 1

1� 1/22(1�✓)

O

 
Kt

1

✓
✏̂
1

✏

◆
2(1�✓)

!
 eO(log(1/�)/✏2(1�✓)

).

5. Proof of Theorem 4
Theorem 4 (RASSG with unknown ✓). Let ✓ = 0, ✏ 
✏
0

/4 , ! = 1, and K = dlog
2

(

✏0
✏ )e in Algorithm 3. Assume

D
(1)

1

is sufficiently large so that there exists ✏̂
1

2 [✏, ✏
0

/2]

rendering that D
(1)

1

=

B✏̂1 ✏0
✏̂1

. Let

ˆ� =

�
K(K+1)

, and

t
1

= max{9, 1728 log(1/ˆ�)}
⇣
GD

(1)

1

/✏
0

⌘
2

. Then with

at most S = dlog
2

(✏̂
1

/✏)e + 1 calls of ASSG-c, Algo-

rithm 3 finds a solution w

(S)

such that F (w

(S)

) � F⇤ 
2✏. The total number of iterations of RASSG for ob-

taining 2✏-optimal solution is upper bounded by TS =

O

✓
dlog

2

(

✏0
✏ )e log(1/�)

G2B2
✏̂1

✏2

◆
.

Proof. The proof is similar to the proof of Theorem 3, and
we reprove it for completeness. It is easy to show that

t
1

� 136�(1)
1 G2

(1+log(4 log t1/ˆ�)+log t1)
✏0

. Following the proof
of Theorem 2, we then can show that with a probability
1� �

S ,

F (w

(1)

)� F⇤  2✏̂
1

(9)

with K = dlog
2

(

✏0
✏ )e � dlog

2

(

✏0
✏̂1
)e and �

(1)

1

=

2c2✏0
✏̂2(1�✓)
1

.

By running ASSG-r starting from w

(1) which satisfies (9)
with K = dlog

2

(

✏0
✏ )e � dlog

2

(

2✏̂1
✏̂1/2

)e, t
2

= t
1

2

2(1�✓) �
136�(2)

1 G2
(1+log(4 log t2/ˆ�)+log t2)

✏0
and �

(2)

1

=

2c2✏0
(✏̂1/2)2(1�✓) �

2c2 ✏̂1/2
(✏̂1/2)2(1�✓) , Theorem 2 ensures that

F (w

(2)

)� F⇤  ✏̂
1
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with a probality at least (1 � �/S)2. By continuing the
process, with S = dlog

2

(✏̂
1

/✏)e + 1, we can prove that
with a probality at least (1� �/S)S � 1� �

F (w

(S)

)� F⇤  2✏̂
1

/2S�1  2✏

The total number of iterations for the S calls of ASSG-c is
bounded by

TS =K

SX

s=1

Ts = K

SX

s=1

t
1

2

2(s�1)(1�✓)

=Kt
1

2

2(S�1)(1�✓)
SX

s=1

⇣
1/22(1�✓)

⌘S�s

Kt
1

2

2(S�1)(1�✓) 1

1� 1/22(1�✓)

O

 
Kt

1

✓
✏̂
1

✏

◆
2(1�✓)

!
 eO(log(1/�)/✏2(1�✓)

)

6. Monotonicity of B✏/✏

Lemma 6. B✏
✏ is monotonically decreasing in ✏.

Proof. Consider ✏0 > ✏ > 0. Let x✏0 be any point on L✏0

such that dist(x✏0 ,⌦⇤) = B✏0 and x

⇤
✏0 be the closest point

to x✏0 in ⌦⇤ so that kx⇤
✏0 � x✏0k = B✏0 . We define a new

point between x✏0 and x

⇤
✏0 as

¯

x =

B✏

B✏0
x✏0 +

B✏0 �B✏

B✏0
x

⇤
✏0 .

Since 0 < B✏ < B✏0 , ¯x is strictly between x✏0 and x

⇤
✏0 and

dist(¯x,⌦⇤) = kx⇤
✏0 � ¯

xk =

B✏
B✏0

kx⇤
✏0 � x✏0k = B✏. By the

convexity of F , we have

F (

¯

x)� F⇤
dist(¯x,⌦⇤)

 F (x✏0)� F⇤
dist(x✏0 ,⌦⇤)

=

✏0

B✏0
.

Note that we must have F (

¯

x) � F⇤ � ✏ since, otherwise,
we can move ¯

x towards x✏0 until F (

¯

x) � F⇤ = ✏ but
dist(¯x,⌦⇤) > B✏, contradicting with the definition of B✏.
Then, the proof is completed by applying F (

¯

x) � F⇤ � ✏
and dist(¯x,⌦⇤) = B✏ to the previous inequality.

7. Additional Experiments
The datasets used in experiments are from libsvm1 website.
We summarize the basic statistics of datasets in Table 1.

To examine the convergence behavior of ASSG with dif-
ferent values of the iterations in per-stage, we also provide

1
https://www.csie.ntu.edu.tw/

˜

cjlin/

libsvmtools/datasets/

Table 1. Statistics of real datasets
Name #Training (n) #Features (d) Type
covtype.binary 581,012 54 Classification
real-sim 72,309 20,958 Classification
url 2,396,130 3,231,961 Classification
million songs 463,715 90 Regression
E2006-tfidf 16,087 150,360 Regression
E2006-log1p 16,087 4,272,227 Regression

the results of ASSG with very large t and add them into
Figure 1. For completeness, we replot all these results in
Figure 2. The results show that ASSG with smaller t con-
verges much faster to an ✏-level set than ASSG with larger
t, while ASSG with larger t can converge to a much smaller
objective. In some case, ASSG with larger t is not as good
as SSG in earlier stages but overall it converges faster to
a smaller objective than SSG. We also present the results
for � = 10

�2 in Figure 3, which are similar to that for
� = 10

�4 in Figure 2.

In Figures 2 and 3, we compare RASSG with SVRG++
in terms of running time (cpu time) since SVRG++ com-
putes a full gradient in each outer loop while RASSG only
goes one sample in each iteration. Following many pre-
vious studies, we also include the results in terms of the
number of full gradient pass in Figure 4 both for � = 10

�2

and � = 10

�4. Similar trend results can be found in Fig-
ure 4, indecating that RASSG converges faster than other
three algorithms.
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Figure 2. Comparison of different algorithms for solving different problems on different datasets (� = 10�4).
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Figure 3. Comparison of different algorithms for solving different problems on different datasets (� = 10�2).
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Figure 4. Comparison of different algorithms for solving different problems on different datasets by number of gradient pass.


