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1. Proof of Theorem 1

Theorem 1. Suppose Assumption 1 holds and F(w) obeys
the LGC (6). Given 6 € (0,1), let 6§ = 0/K, K =
[loga(<2)], D1 > 5% and t be the smallest integer
such that t > max{9,17281og(1/8)} <
guarantees that, with a probability 1 — 0, F(wg ) — F, <
2e. As a result, the iteration complexity of ASSG-c for
achieving an 2e-optimal solution with a high probabil-
ity 1 — 6 is O(c*G*[logy(<2)] log(1/6) /€21~ provided
Dy = O(:5%)-

Proof. Let w,TC denote the closest point to wy in S¢. De-

ﬁne er = 2. Note that Dy, = Qk > “k=land g, =
3G2 We w111 show by induction that F’ (wk) F < e€pte
for k = 0,1,... with a high probability, which leads to our

conclusion when £ = K. The inequality holds obviously
for k = 0. Conditioned on F(wj_1) — Fi < €1 +¢€, we
will show that F'(wy,) — F, < €x+e€ with a high probability.
By Lemma 1, we have

¢ T

||Wlt71,e - Wk_1||2 S 1 Q(F(Wk—l) - F(kal,e))
CEL
< = < Dy )

€
We apply Lemma 2 to the k-th stage of Algorithm 1 condi-

tioned on randomness in previous stages. With a probabil-
ity 1 — & we have

1 2
G2 wi—1 — w5
F — F(w] < ’
(We) = F(wiq, ) < 95—+ 20yt
4G Dy+/31og(1/6)
. 2)
Vit

We now consider two cases for wy_y. First, we assume
F(wi_1) — F. < ¢ ie. w1 € S.. Then we have
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W;;_Le = wyj_1 and
G2 AGDyy/3log(1/0)
F — F(wl <
(W) (Wk71,5) =5 + NG
€k €k—1 26k
<z =F
-3 + 6 3
The second inequality using the fact that n, = ??5’3 and

t> 1728 log(l/g) G;D%. As a result,
-0

2
F(wy) — Fo < F(wj_, )~ F + % < e+ en

Next, we consider F'(wg_1) — Fi > ¢, ie. wi_1 ¢ S..

Then we have F(W};_Le) — F, = e. Combining (1) and

(2), we get
G2 D2 4GDyy/3log(1/6)
Fwi) = F(wl_y ) < ‘ .
) 2 oyt Vi
. 2 a2 p?
Since nx = 34 and t > max{9, 1728 log(1/6)} -1, we

have each term in the R.H.S of above inequality bounded
by €x/3. As aresult,

F(wyg) — F(WLLE) <e = F(wg)— Fu <ep+e.

with a probability 1 — 61. Therefore by induction, with a
probability at least (1 — )% we have

F(wg)—F, <ex+e<2e

Since & = 6/K, then (1 — §)X > 1 — § and we complete
the proof. O
2. Proof of Lemma 3

Lemma 3. For any t > 1, we have ||w. — w¢||2 < 38G

and |wy — will2 < 28G.

Proof. By the optimality of W, we have for any w € K

(or () + (s wl>)T (W) >0,
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Let w = wy, we have

[[W. = wll3
g
)|l < G dueto ||0f(w;&)|l2 < G, then

OF (W) (wy —w,) >

Because ||OF (w
[W. —wil[2 < BG.

Next, we bound ||w; —
w41 we have

w1 ||2. According to the update of

—W1||2
<[ Wit — will2

=[| =m0 f (we; &) + (1 — e/ B) (we

We prove ||w; — will2 < 208G by induction. First, we
consider ¢ = 1, where 7, = 24, then

[wa —will2 < [280f (we; &)l < 2BG.

Then we consider any ¢ > 2, where 7; /3 < 1. Then

Wit

—wi)lf2.

[[Wer1 —wil2

H —BOf (W &) + (1 - Tg) (Wi —w)

<™+ (1 - B) 286G < 26G.

2

B

Therefore
W — we]l2 < 38G.

3. Proof of Theorem 2

Theorem 2. Suppose Assumption 1 holds and F'(w) obeys
the LGC (6). Given 6 € (0,1/e), let 6 = §/K, K =
[logo ()], A1 =
ger such that t > max{3,
Then ASSG-r guarantees that, with a probablllty 1 -9,
F(wg) — F. < 2e. As a result, the iteration complexity
of ASSG-r for achieving an 2e-optimal solution with a high
probability 1 — § is O(c?G?log(eg/¢) log(1/5)/e>(1=9)

2
O(265%).

To prove the theorem, we first show the following results
of high probability convergence bound.

2
5322176(9)) and t be the smallest inte-

1366102(1+10g(4 log t/6)+logt) }

provided 3, =

Lemma 4. Given wi € K, apply T-iterations of (9). For
any fixedw € K, 6 € (0,1), and T > 3, with a probability
at least 1 — 6, the following inequality holds

lw = w3

F(wr) - Fw) <M
n 34BG? (1 + log T + log(41og T'/4))
T )
where Wy = S0 wy/t.

Proof. Letg, = Of (wy; &) +(wy—w1)/B8 and OF (wy) =
OF (w;)+(w;—w1)/6. Note that || g ||2 < 3G. According
to the standard analysis for the stochastic gradient method
we have

1 1
T W) <— w2 - — — w2
8 (Wi — W) _277t||Wt Ww.[2 277t||Wt+1 w.[2
e 2
+ 2 el
Then
~ N 1 N .
OF(wi) T (Wi — W) <o—[lwy — W5 — 5—[[wip1 — Waf3
2n, 2n;
Ui - N
+§tllgtH§ + (OF (wi) —g0) " (Wi — W),
By strong convexity of F we have
~ —~ ~ 1
(W) = F(wi) 2 OF (we) (W WtHglleWtH%-
Then
F(w;) = F(W.)
1 N 1 ~ UL
<— - * o - * 5 iy 5
< Iwe = Wl = e =+ el
~ 1.
+ (OF (W) —gt) (Wi — W) %IIW* — w3
1 ~ ~ U
<— — Wik ~ 5 — Wik : - 2
< IWe = Wl = e =+ el
~ 1.
+ (0F (wy) — 0f (wi; &))" (w —W*)—%HW* w3
Gt
By summing the above inequalities across t = 1,...,7,
we have
T
> (F(wi) — F(w.)) 3)
t=1
T-1
1 1 1 1 9
< - ——— = Wy — W
B tzzl 2 (Ut+1 N 25) I el
T 1 X
+ZQ - 7,6’2 W, — w3
t=1 t=1
T
1, 9 1 5 9G?
- g% Wil g 19—+ 5 S

T 1 T R
<Y G = = Y W = will3 + 98G7 (1 + g T).
“)

where the last inequality uses 7y = ? Next, we bound
R.H.S of the above inequality. We need the following
lemma.
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Lemma 5. (Lemma 3 (Kakade & Tewari, 2008)) Sup-
pose X1, ..., Xr is a martingale difference sequence with
|Xt| S b. Let

VartXt = ‘/(,l}"()(”)(l7 ce 7Xt71)~

where Var denotes the variance. Let V = Zthl Var, X
be the sum of conditional variance of X;’s. Further, let
o =\V. Then we have forany 6 < 1/eand T > 3,

T
Pr (Z X: > max{20, 3b\/1og(1/5)}\/10g(1/5)>
<44 log ;1

To proceed the proof of Lemma 4. We let X; = (; and
Dr = Y1, |wi — W.|j3. Then Xi,..., Xp is a mar-
tingale difference sequence. Let D = 33G. Note that
|| < 2GD. By Lemma 5, for any § < 1/e and T > 3,
with a probability 1 — § we have

T
ZQ <
t=1

410gT)

&)

410g T
max { 2 log(Tg)g Var.(;, 6GD log(
t=1

Note that

T T T
D Var <Y B[] < 4G [lwy — W |3 = 4G®Dy.

t=1 t=1 t=1

As a result, with a probability 1 — 6,

T
> ¢ <4Gy/log(41og T/5)\/Dr + 6GD log(41og T/6)
t=1

1
<168G?log(41log T/6) + @DT

+ 6GDlog(4logT/é).

As a result, with a probability 1 — 6,

T 1z
- 2
> G- 18 D W —will3
t=1 t=1
<16BG?log(4log T/5) + 6G D log(4log T/3)
=348G?log(41og T/5).
Thus, with a probability 1 — §

~ ~

F(wr) — F(w.)

<345G2 log(4logT/8)  98G*(1+1logT)
- T T
<346G2(1 +log T + log(41logT/9))

< T :

Using the facts that F(Wy) < F(Wr) and F(W,) <
~ 2
F(w)=F(w)+ W, we have

w12
F(op) — Flw) — Wil %k i
<345G2(1 +log T + log(41logT/9))

T

Next, let us start to prove Theorem 2.

Proof of Theorem 2. Let W;L . denote the closest point to
w, in the € sublevel set. Define €, £ 5—2 First, we note that

Br = 2:22(16 k=+. We will show by induction that F'(wy,) —
F, <er+efork =0,1,... with a high probability, which
leads to our conclusion when & = K. The inequality holds
obviously for & = 0. Conditioned on F(wy_1) — F, <
€x—1 + €, we will show that F'(wy) — F. < e + € with
a high probability. We apply Lemma 4 to the k-th stage
of Algorithm 2 conditioned on the randomness in previous
stages. With a probability at least 1 — & we have

F(wi)— F(w]_, )

1
t 2
<— — _
_25k||wk71’6 wi—1(2
. 346, G2(1 + logt + log(4log t/d))
. .

(6)

We now consider two cases for wy_. First, we assume
F(wg_1) — F. < ¢ ie. wg_1 € S.. Then we have
W;L_l .= Wg_1 and

F(wy) — F(wl_, ) _ 348G (1 + log t + log(41og /9))

k*l,e t

<%
-2
The last inequality uses the fact that ¢ >
13681 G2 (1+log(4 log t/8)+log t)

. As aresult,
€0

F(wy)— F. < F(wl_ )~ F.+ %’“ < e+t e

Next, we consider F'(wg_1) — Fi > €, ie. wip_1 ¢ S..
Then we have F(w,LLe) — F, = €. Similar to the proof
of Theorem 1, by Lemma 1, we have

C€k—1
[Wh1.e = Wil < 55 ()

Combining (6) and (7), we have
F(wy) — F(w)_, )

< 1 (cek,l)Q 348,G2(1 4 logt + log(4logt/d))
— 20 el=o t
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2
Using the fact that [y > 2:255)1
and ¢ > S0C(tlosttiog(ilost/o)
13631 G2(1+log€1;+log(4 logt/5)) we get
€k—1 €L
F(wy) = F(w]_, ) < + = =ep,
3 4 2
which together with the fact that F' (w;i_l ) = F. +¢im-

plies

F(wy) — Fi <€+ ¢

Therefore by induction, we have with a probability at least

(1-9)¥

€
—F*§6K+e=—0+e<2e,

F(wg) T

where the last inequality is due to the value of K =
[logy(<2)]. Since 6 = §/K, then (1 —6)X >1-4. O

4. Proof of Theorem 3

Theorem 3 (RASSG with unknown ¢). Let ¢ < ¢€p/4,
w =1, and K = [logy(<2)] in Algorithm 3. Suppose
Dgl) is sufficiently large so that there exists é1 € [, €0/2),
with which F(-) satisfies a LGC (6) on Se, with 6 € (0,1)

and the constant ¢, and Dgl) = S0, Let 5 =

5
el K(K+1)

. 2
and t; = max{9,1728log(1/6)} (GD?) /eo) Then
with at most S = [log,(é1/€)] + 1 calls of ASSG-c, Al-
gorithm 3 finds a solution w'S) such that F(w(®)) — F, <
2e.  The total number of iterations of RASSG for ob-
taining 2e-optimal solution is upper bounded by Ts =

O([log, ()1 log(1/8)/e21=).

Proof. Since K = [logy(%)] > [logy(£2)], DV =

2
)
G0 7)) fol-
€ €o
lowing the proof of Theorem 1, we can show that with a

probability 1 —

o and t; = max{9,17281og(1/5)}(

K+1’
F(wW) - F, <2¢. (8)

By running ASSG-c starting from w(!) which satis-

fies (8) with K = [logy(2)] > [log,(2%)],
DY = e 2 g ad b =

. 2
max{9,1728log(1/4)} (GDEZ)/E()) , Theorem 1 ensures

that
F(w®)—F, <é¢

with a probability at least (1 —&/(K +1))2. By continuing
the process, with S = [log,(é1/€)] + 1 we can prove that

with a probability at least (1—6/(K +1))°
1-4,

>1-§:5 >

F(w®)) - F, <26 /2571 < 2.

The total number of iterations for the S calls of ASSG-c is
bounded by

Ts KZT KZt 22(s=1)(1-0)

s S—s
—Kt,22(5-1)(1-0) 2(1/22(179))
s=1

1
1= 1/220-9)

£\ 20-6) B
<0 (Ktl <61> ) < O(log(1/8)/21=9),

O

<Kt,22(5-1)(1-0)

5. Proof of Theorem 4

Theorem 4 (RASSG with unknown #). Let 6 = 0, ¢ <
€0/4,w =1, and K = [logy(<2)] in Algorithm 3. Assume

Dgl) is sufficiently large so that there exists €1 € [e, €g/2]

rendering that D(l) = M Let § = and

)
RK+1)’
2
t; = max{9,1728log(1/4)} (GD /60) Then with
at most S = [logy(é1/€)] + 1 calls of ASSG-c, Algo-
rithm 3 finds a solution w'S) such that F(W(S)) —F <

2e.  The total number of iterations of RASSG for ob-
taining 2e-optimal solution is upper bounded by Ts =

0 ( Mloga ()] log(1/8) 25 )

Proof. The proof is similar to the proof of Theorem 3, and
we reprove it for completeness. It is easy to show that
136ﬂ<1>c2(1+1og(

t; > Alogt1/9)+log t1) . Following the proof
of Theorem 2, we then can show that with a probability
s
1- £,
F(wW) - F, <2¢ )
ith K = [l «)] > 1 < d g = 22
wit {0g2( € )] = ’VOgQ(gl )—I an 51 é?(179)-

By running ASSG-r starting from w(!) which satisfies (9)

with K = [logy(2)] > [logy(2%)], t2 = 122079 >
13682 G2 (1+log(4log t2 /8)+1o 2 e
e e ge(o 812/0)H10812) yng 5( ) = (51/22)210179) >
2 A
(éf/g;%, Theorem 2 ensures that

F(w®)—F, <&
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. . _ 2 . .
with a probality at least (1 — §/5)?. By continuing the Table 1. Statistics of real datasets

process, with S = [log,(é1/€)] + 1, we can prove that

. . Name #Training (n #Features (d Type
with a probality at least (1 — 5/5)5 =1-9 covtype.binary 581,0%2( ] 54 Q Classi}g::ation
P(wi?) = F. <28/2°7 <2 o 2596130 3231961 Clasification
The total number of iterations for the .S calls of ASSG-c is Egt)?:ﬁo;fgs 41663”078175 1 53,%60 Ezgz:z;gﬁ
bounded by E2006-log1p 16,087 4,272,227 Regression
5 5 the results of ASSG with very large ¢ and add them into
Ts =K Z Ts = KZ ;2% ~D0=0) Figure 1. For completeness, \Zze regplot all these results in
s=1 s=1 Figure 2. The results show that ASSG with smaller ¢ con-
B 2(S—1)(1-0) S 2(1-6) S—s verges much faster to an e-level set than ASSG with larger
=Kt12 Z (1/ 2 ) t, while ASSG with larger ¢ can converge to a much smaller
s=1 objective. In some case, ASSG with larger ¢ is not as good
< KtIQQ(S—l)(l—Q); as SSG in earlier stages but overall it converges faster to
1-1/220-9) a smaller objective than SSG. We also present the results
¢ 2(1-9) ~ » for A\ = 1072 in Figure 3, which are similar to that for
<o(mn (%)) <0os//) 3\ i s

In Figures 2 and 3, we compare RASSG with SVRG++
in terms of running time (cpu time) since SVRG++ com-
putes a full gradient in each outer loop while RASSG only
6. Monotonicity of B, /¢ goes one sample in each iteration. Following many pre-
vious studies, we also include the results in terms of the
number of full gradient pass in Figure 4 both for A = 1072
and A = 10~%. Similar trend results can be found in Fig-

Proof. Consider € > e > 0. Let xc be any pointon Lo yre 4, indecating that RASSG converges faster than other
such that dist(xe,(2,) = Be and x7, be the closest point three algorithms.

to X in €, so that |x*, — x| = B.. We define a new
point between x.- and X7, as

O

Be
€

Lemma 6.

is monotonically decreasing in e.

References
_ B B — B, . .
X=—Xo+ ——XJ. Kakade, Sham M. and Tewari, Ambuj. On the general-
Be Be ization ability of online strongly convex programming
Since 0 < Be < B, X is strictly between x. and x7, and algorithms. In NIPS, pp. 801-808, 2003.
dist(x, Q) = ||x5 — x| = g:/ x!, — X¢|| = Be. By the

convexity of F', we have

F(x)—F. _ F(xo)=F. _ ¢

dist(x,Q,) ~ dist(xc,) B’

Note that we must have F'(X) — F, > e since, otherwise,
we can move X towards x. until F(X) — F, = ¢ but
dist(x,Q.) > B, contradicting with the definition of B..
Then, the proof is completed by applying F'(X) — F,. > ¢
and dist(x, Q) = B, to the previous inequality. O

7. Additional Experiments

The datasets used in experiments are from libsvm' website.
We summarize the basic statistics of datasets in Table 1.

To examine the convergence behavior of ASSG with dif-
ferent values of the iterations in per-stage, we also provide

'https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/
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Figure 2. Comparison of different algorithms for solving different problems on different datasets (A = 10™%).
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Figure 3. Comparison of different algorithms for solving different problems on different datasets (A = 10™2).
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Figure 4. Comparison of different algorithms for solving different problems on different datasets by number of gradient pass.



