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Abstract

Imposing sparse + group-sparse superposition
structures in high-dimensional parameter estima-
tion is known to provide flexible regularization
that is more realistic for many real-world prob-
lems. For example, such a superposition en-
ables partially-shared support sets in multi-task
learning, thereby striking the right balance be-
tween parameter overlap across tasks and task
specificity. Existing theoretical results on esti-
mation consistency, however, are problematic as
they require too stringent an assumption: the in-
coherence between sparse and group-sparse su-
perposed components. In this paper, we fill the
gap between the practical success and subopti-
mal analysis of sparse + group-sparse models,
by providing the first consistency results that do
not require unrealistic assumptions. We also
study non-convex counterparts of sparse + group-
sparse models. Interestingly, we show that these
are guaranteed to recover the true support set
under much milder conditions and with smaller
sample size than convex models, which might be
critical in practical applications as illustrated by
our experiments.

1. Introduction

We consider high-dimensional statistical models where the
ambient dimension p is much larger than the number of
observations n. Under such high-dimensional scaling, it
is still possible to obtain consistent estimators by impos-
ing low-dimensional structural constraints upon the statis-
tical models, such as sparsity (e.g. in compressed sens-
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ing (Baraniuk, 2007) and Lasso (Tibshirani, 1996)), low-
rank structure (Recht et al., 2007; Negahban & Wainwright,
2010), sparse graphical model structure (Friedman et al.,
2007; Ravikumar et al., 2008), and sparse additive struc-
ture for non-parametric models (Ravikumar et al., 2009). A
widely used approach to structured learning is via specific
regularization functions. For instance, ¢;-regularization
is employed for sparse models (Tibshirani, 1996), ¢1/¢,
norms for group sparsity (Yuan & Lin, 2006), and nuclear
norm for low-rank matrix-structured models (Candes &
Tao, 2010). Much attention has been devoted to the study
of these structured norms and their theoretical properties.

Such a “clean” regularization approach, however, might be
too stringent in practice. For instance in linear regression,
a blend of element-wise sparsity and group-sparsity might
be more appropriate than a purely sparse or purely group-
sparse solution. In multitask learning, while some parame-
ters might be shared across tasks, others might only be rel-
evant to a subset of tasks or a single task. To overcome
this limitation, a line of work on so-called dirty models
has emerged, which addresses this caveat by “mixing and
matching” different structures. One basic approach con-
sists in decomposing the model parameters as a sum of
two components, each penalized separately: one compo-
nent captures the common structure across tasks and the
other task-specific characteristics (Jalali et al., 2010; Gong
et al., 2012). For instance the dirty model in Jalali et al.
(2010) employs ¢; 1 and ¢; o regularizers to the two com-
ponents. Chandrasekaran et al. (2011) consider the prob-
lem of recovering unknown low-rank and sparse matrices,
given the sum of their sum, with application such as opti-
cal imaging systems. Robust principal component analysis
and related extensions (Candes et al., 2011; Agarwal et al.,
2012; Hsu et al., 2011) estimate a covariance matrix that is
the sum of a low-rank matrix and a structured (e.g. sparse,
column sparse) matrix.

A general framework for studying dirty models was re-
cently proposed in Yang & Ravikumar (2013), which
bridges and extends several analyses for specific pairs
of superposition structures and specific statistical mod-
els (e.g., Jalali et al. (2010); Chandrasekaran et al. (2011);
Candes et al. (2011); Agarwal et al. (2012); Hsu et al.
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(2011)) Specifically, this framework applies to a general
class of M-estimators employing a so-called hybrid reg-
ularization function, which is the infimal convolution of
weighted regularization functions, one for each structural
component. This formulation is equivalent to an M-
estimator that combines a loss function applied to the sum
of multiple parameter vectors (one per structural compo-
nent) and a weighted sum of regularization functions (one
per parameter vector).

For the sparse + group sparse decomposition, however
existing analyses are highly problematic. The key weak-
ness is that they require some form of structural incoher-
ence condition which captures the interaction between the
different structured components. While such a structural
incoherence is a reasonable assumption for e.g. sparse
+ low rank superposition, it is what too stringent for the
sparse+group sparse case because the two structures are
completely coherent for this case! This yields a key mo-
tivating question for this paper: Under the sparse + group
sparse setting, can we bypass structural incoherence con-
ditions and yet obtain tight error bounds?

In this paper we provide a positive answer by developing
a novel proof technique. Prior analyses require ‘local’ re-
stricted strong convexity conditions (RSC): one condition
for the sparse component and one for the group sparse
component. The use of structural incoherence between
sparse and group sparse components in then needed to
show ‘global’ RSC for the vector concatenating sparse and
group sparse components. To avoid the need for structural
incoherence, we use RSC in the summed space directly
(namely for the summed sparse + group-sparse structure).
However, this brings in a new issue: in this case, the dirty
regularizer for the parameter vector is not decomposable.
To circumvent this issue, our key ingredient is to introduce
“surrogate” sparse and group sparse components depend-
ing on our estimators such that i) their sum equals the sum
of the true parameter components and ii) corresponding er-
ror vectors are decomposable even though the regularizer
itself is not decomposable. Using the decomposability of
error vectors, we are then able to show ¢, consistency for
general loss functions.

As an additional key contribution of this paper, we con-
sider the extension of sparse+group sparse dirty models to
non-convex regularizers, and show their ¢, consistency.
Interestingly, these models are guaranteed to recover the
true support set under much milder conditions and with
smaller sample size than convex models. In particular,
our /., consistency results require neither incoherence in
the loss function nor structural incoherence between sparse
and group sparse parameters. We illustrate the practical
impact of this superior theoretical results with simulation
experiments.

The remainder of this paper is organized as follows. In Sec-
tion 2 we review sparse+group-sparse dirty models with
convex penalties and introduce their non-convex counter-
parts. In Section 3 we discuss the incoherence assump-
tion required by prior analyses and explain why such an
assumption is unreasonable. Section 4 introduces the key
ingredient of our novel proof technique. Section 5 presents
the convergence bounds for models with convex penalties.
Those for non-convex penalties are stated in Section 6. Fi-
nally, simulation experiments are provided in Section 7 to
illustrate the remarkable practical advantage of non-convex
penalties, agreeing with their superior convergence rates.

2. Sparse + Group-Sparse Dirty Models:
Setup and Formulations

Consider a data collection Z = {Z1, ..., Z,}, where each
element is drawn independently from distribution [P, and a
loss function £(-;Z) :  — R where £(0; Z) measures
the goodness of fit of parameter 8 € ) to the given data
collection Z. Typically 2 = RP (parameters are vectors)
or RP*" (parameters are matrices). Assume there are some
known groups G = {G1, ..., G4} that partition the param-
eter index set: G; NG = ¢pand U], Gy = {1,...,p}.

We aim at recovering parameter 6* which is the

unique minimizer of the population risk: 6% =
argming., Ez[£(6; Z)] in cases where
0" =a" + 3, (1)

where a* is a sparse component and 3* is a group-sparse
component obeying the group structure G. For that purpose,
we focus on regularized M -estimators under a dirty learn-
ing setting that combines sparsity and group-sparsity. We
consider both convex and non-convex regularizers as fol-
lows.

2.1. Dirty models with convex regularizers

We focus on regularized M -estimators of the form

minirgize Lo+ B;Z)+ Mllalr + X2||Bll1,a: Q)

where the loss function L(-;Z) is possibly non-

convex. Here, given known parameter groups § =
{G1,Gs,...,G,}, the group regularizer is defined as
18Bll1,a == > i1 l1Bc.|la for a > 2, where B¢, denotes

the parameter subset in group G;. The constant a deter-
mines how the elements within each group are combined.

We provide examples for the popular settings of linear re-

gression and inverse covariance estimation.

Linear regression. Consider the standard linear model
y = X0* 4+ w where y € R" is the observation vector, 8*
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is the true regression parameter which is the sum of sparse
o and group sparse 8%, X € R"™*? is the design matrix,
and w € R" is the observation noise. The “dirty” regular-
ized least squares solves

1
AT I - \
minimize —-{ly — X (e + B)[3 + M el + 218

1,a

3)

where groups are defined within a (single) parameter vector
space via 3. The formulation can be seamlessly extended
to cover the dirty multitask learning setting of Jalali et al.
(2010):
minimize

1 2
o,BERPXM %Hy(k) _X(k)([a—’—ﬁ](',k))nz “)
’ k=1

+A1lledls + A28

where we have m related tasks in columns: a, 3 € RP*™,
and the groups can be defined across tasks in rows. E.g. for
predictor j, By, --,B(,m) belong to the same group.
Here, [« + 3]. x) indicates k-th column of matrix input
a+ (.

1,00

Graphical Model Estimation. Another key example is
a modified graphical Lasso where the goal is to estimate
the structure of the underlying graphs representing condi-
tional independences across variables. Assume that there
are some known set of edge groups and that the true pa-
rameter ©* has only a small number of active edge groups
plus some individual edges. To recover ©* we solve

minimize trace((S + B) X) —logdet(S + B) (5
L[S+ A2l Bll1,a

where $ is the sample covariance matrix and regulariz-
ers are applied to off-diagonal entries of S and B. As
done in (4) for the linear model, the formulation (5) can be
seamlessly extended to the multitask setting where we wish
to estimate multiple precision matrices jointly, encourag-
ing similar structure while allowing for some discrepancy
across them. This estimator is discussed in Hara & Washio
(2013).

Equivalent Program. As shown in Yang & Ravikumar
(2013), the formulation (2) can be rewritten as:

miniemize L(0;Z)+ 0] (6)
where |0 is the infimal convolution of two regularizers

18115 = inf {Msfler]s + Ael| Bl : e+ B=0f. (T

It is known that || - ||x is a norm and its dual is defined
as |03 := max{[|0||oc/A1,]|0]|c0,ax /A2} Where 1/a +
1/a* = 1sothat| - | co,q+ is the dual norm of || - ||1,4 (see

Yang & Ravikumar (2013) for details).

2.2. Dirty models with non-convex regularizers

In this paper, we introduce and study estimators of the form
mirgrgize Lo+ B)+ pr (@) + dra(B).  (B®)

Here py, (+) is any regularizer inducing sparsity beyond the
£1-norm (note that the notation encapsulates the regulariza-
tion parameter \; itself within the regularizer) satisfying
the following conditions (Loh & Wainwright, 2014):

(C1) p,(0) = 0 and is symmetric. For ¢ > 0,
P, (t) is non-decreasing but py, (¢)/t is non-increasing
in t. Besides, py,(t) is differentiable for ¢ # 0 with
lim, o+ Py, (t) = A1, and is py, (t) + 4t is convex for
some p > 0.

(C2) There exists some scalar v € (0,00) such that
Pl,\l(t) =0 whent > ~\;.

Following the notation of Loh & Wainwright (2014), we
call py,(-) p-amenable if it satisfies (C1) and (u,~y)-
amenable if it additionally satisfies (C2). The popu-
lar non-convex regularizers SCAD (Fan & Li, 2001) and
MCP (Zhang, 2010) are both (u,~)-amenable (Loh &
Wainwright, 2014).

The regularizer ¢, ,(-) a non-convex counterpart of the
group regularizer Az|| - ||1,, employed in (2) where we use
P, (+) instead of Az|| - ||1, over groups:

¢A2,a(/8) =P (g(ﬂ))

where G(8) = (|8c, - |Ba,la) - Example of
non-convex regularizers include the Group-SCAD and

Group-MCP penalties where SCAD and MCP penalties are
respectively used on the norm of each group.

Remarkably, the proof techniques developed in this paper
make it possible to provide not only ¢s-error bounds under
milder conditions than prior work on convex problem (2),
but also support set recovery guarantees for non-convex
one (8). In fact we shall see that dirty models with non-
convex regularizers (8) enjoy strictly better statistical guar-
antees than their convex counterpart (2), with practical con-
sequences.

3. Structural Incoherence: essential in prior
work, yet an unreasonable assumption

As our starting point, we focus on the case of convex
dirty models in (2) or equivalently in (6). A key ingre-
dient for showing statistical guarantees of regularized M-
estimators is the decomposability of regularizer (Negahban
et al., 2012). However, considering the form of regularizer
in (6), it is not obvious to find the model space and its or-
thogonal complement with which we could directly derive
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error bounds with optimal rates. To circumvent this prob-
lem, Yang & Ravikumar (2013) utilize the decomposability
of each component separately, but this requires restricted
strong convexity (RSC) to hold jointly for all component
parameters. In order to have the “joint” RSC property from
“local” RSC with respect to each individual component,
Yang & Ravikumar (2013) assume a structural incoherence
condition. Even if the loss function is strongly convex with
respect to each component, such incoherence across com-
ponents is essential for the joint RSC due to the linearity
across components. To see this more clearly, suppose we
have the function 22 for z € R, which is obviously strongly
convex. If we assume, however, that z is the sum of two
components x,y € R, then one can immediately see that
(x + y)? is not strongly convex jointly in = and y because
z and y are completely coherent in this one dimensional
example.

The problem is that the structural incoherence condition for
the ¢1 41 , setting is way too restrictive because the sparse
and the group-sparse structures essentially share the same
model and its orthogonal spaces'. In order to see this, we
consider the popular linear model setting (3) for example.
Let s* (and b*) be the support set of true sparse (group-
sparse) component and s¢ be its complement. Further-
more, [+ X" X](serp) denotes the projection of the sam-
ple covariance onto s N b*-coordinate space (j-th coordi-
nate becomes zero if j ¢ s¢ N b*). Projections on other
spaces are defined similarly. Then, the structural incoher-
ence condition for joint RSC can be reduced as: for all
(37 b) € {(Sca b*)v (3*’ bc)? (307 bc)}’

Umax([%XTX](sﬁb)) < Cﬁl (9)

where opax(+) is the maximum singular value of a ma-
trix, 1 is the curvature of (restricted) eigenvalue condi-
tion, and C' is some fixed constant. Informally, this con-
dition requires the maximum singular value of sample co-
variance (modulo the projection onto the true model and
its orthogonal space) to be smaller than its minimum sin-
gular value (Note that for linear models, the curvature pa-
rameter of the eigenvalue condition is related to the mini-
mum singular value of the sample covariance). This con-
dition can be easily shown to fail in many cases. For in-
stance consider the popular setting where the design ma-
trix X is a set of samples from Gaussian ensemble with
covariance Y, and the true parameter is the sum of group
sparse + a single nonzero component as depicted in Fig-
ure 1. Then, the incoherence condition in (9) implies
max; ; [ X T X];;| < 1/1280in (), which can be easily
violated in many natural setting of X because the minimum
eigenvalue of X is smaller than the maximum element of X

"Note that the sparse + group sparse setting is outstanding.
The structural incohence assumption makes sense in other dirty
models settings, e.g. sparse + low rank dirty models.

©O O O = O
o = O N =
O O O = =

Figure 1. Example illustrating why the incoherence condition re-
quired by previous work fails to hold.

by the Rayleigh quotient.
This naturally leads to the following question:

Can we provide tight error bounds for the problem (2) not
requiring the joint RSC across individual structures and
hence bypassing the incoherence condition?

4. Our key strategy: Constructing surrogate
components that are always decomposable.

In order to address the above question, our key proof tech-
nique is to establish the decomposability between two com-
ponents of error vectors, by making the target components
dependent of our estimation. Consider arbitrary target pa-
rameter 8* such that 8* = a* 4+ 3*. Note that we do not
impose additional constraints on defining the sparse com-
ponent o* and the group sparse component 3*, hence the
possible combination of (a*,3*) is not unique. As we
will see later, we provide estimation error bounds that de-
pend on the selection of (a*, 3*)-more precisely on the
sparsity level of a® and the group sparsity level of 3*. In
that sense our theorems provide sets of estimation bounds.
However, it is important to note that we still do not need to
worry about the identifiability between structures, because
we only care about the ¢ and ¢, error rates of the final
or “summed” estimator (we do not recover (nor care about)
the individual components).

Suppose we compute 6 from the program (6) where & and
B are minimizing its dirty regularizer (7). Then, rather than
directly deriving error bounds of 6 — 6* from & — a* and
,@ — B*, which are not decomposable, we introduce an ad-
ditional set of vectors, &, ,@ and 6 from the following rules:

L. Ifa; = 37 =0, then & :Bj = 0.

2. If o # 0and B} = 0, then 3; := B;, and &; =
0 — ;.
3. Ifﬁ; 7& 0, then &j = &j and /Bj = 0% — &j'

J

4. @ is defined as the sum of & and 8.
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Figure 2. Example of constructing surrogate target parameters given (b) a*, (c) 8%, (d) & and (e) ,§ via transformation 7 (-). Error

vectors based on surrogates are decomposable (see text for details).

By construction, 0 is same as 0*, but & has different spar-
sity pattern and values from a*, depending on cx. The same
holds for B as well. We denote the above transformation as
(@, B) :==T(a", 8%, B).

It turns out that the error vectors computed based on the
surrogate & and 3 are always decomposable as described
in the following proposition, and the consequence of this
decomposability plays a key role for showing i) ¢;-error
bounds without incoherence condition and ii) support set
recovery guarantee for non-convex ¢; + ¢; , dirty regular-
izers (with faster estimation rates than for convex dirty reg-
ularizers).

Proposition 1. Consider any local optimum 6 of con-
vex or non-convex dirty models, and corresponding 0 =
T(a*, 8% a,B). Then, the error vectors for individual
components, A := a — aand T’ := B — B, are decom-
posable in the sense that HA +TJ;| = |4,| + [Ty| for all
j, and the overall Uy error ||6 — 6* |5 is lower bounded as
follows:

16 — 671 = [[A]Z + T3 (10)

Moreover, let s* := supp(a*) (the support set of o),

S =
supp(a*) U supp(@) and U = supp(a*) U supp(B*).

Similarly, we also define b* supp(B*) and b

supp(B). Then, by construction of T, s* C § C U and

b* C b C U. However, it is always guaranteed that

Ag=Az=Ay and Tp=T5=Ty (11)
where Ag« represents the projection of A onto the s*-
coordinate space; that is, [Ag+]; is Aj if j € s*, and 0
otherwise.

Hlustrative example. Figure 2 describes an example:
consider a 5 X 3 matrix parameter with 5 known groups in
rows. Suppose (i) the target parameter is given by (a), (ii)
we define (b) and (c) as the sparse and group sparse compo-
nents of 8*, and (iii) the minimizer of program (6) are com-
puted as in (d) and (e), respectively for & and E . Then, (f)
and (g) show the error vectors for sparse and group-sparse
components, which are not decomposable ((10) does not
hold for (f) and (g)). On the other hand, for & in (h) and 8
in (i) derived from 7 (-), we can verify that surrogate error
vectors (shown in (j) and (k)) are decomposable; at every
position, & — & and B — (3 are sign consistent (or at least
one of them is zero).

5. Statistical Guarantees of Models with
Convex Regularizers

Throughout our analysis, we assume that the loss function
L(+) is twice differentiable and and satisfies the restricted
strong convexity condition

(RSC) For any vector 61,0, € RP, the loss function £(-)
satisfies

g

RSC of the loss is also used to guarantee /o-consistency
(Negahban et al., 2012; Loh & Wainwright, 2015) or /.-
consistency (Loh & Wainwright, 2014) of “clean” struc-
turally constrained problems (i.e. problems with a single

<V£(91 + 02) — V£(01)7 02>

r1]|02]3 — 7'1||02Hf,, forall ||02]2 < 1, (12)

KJQHGQ”Q — T2||92Hn, for all ||92||2 2 1. (13)
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structure). Note that there are slight variations in the def-
inition of RSC conditions in the literature. Here we adopt
the form with tolerance terms in Loh & Wainwright (2014;
2015), to allow for a wide class of non quadratic and/or
non-convex loss functions. We will show that RSC with
tolerance in dirty norm holds with high probability under
the popular setting of Gaussian ensembles, as an example.

For the analysis, we consider a slight modification of the
program (6):

minimize £(0) + ||0||x (14)

61l <r

where L is possibly non-convex, but satisfies (RSC). The
additional constraint ||0||,, < r also involves the dirty norm
(7) but with a different parameter vector 7). This constraint
is a safety radius commonly used for analyzing non-convex
problems to ensure that the global minimum exists (see e.g.
Loh & Wainwright (2014; 2015)). In practice, we can dis-
regard this additional constraint.

Theorem 1. Consider the dirty model for problem
(14) where L(-) is possibly non-convex but satis-
fies the restricted strong convexity (RSC). Suppose
that 0* is feasible and the regularization parameters
are set so that \y > A4||VL(O")||x and ro >
4|\ VL(O")|o0,ax- Suppose  furthermore that r <

Ko K2 A A2 _
UL 77 5ij{>\1/n1,>\2/n2}’ 8T1m1 7 8T1m2 } Then, any lo

cal optimum 0 of (14) is guaranteed to be {5 consistent:

~ 3
16— 07, < H—lmax{)q\/g, Aay/3g}  (15)

where s is the number of nonzero elements in o* and sg is
the number of nonzero groups in 3*.

Remarks. The error bound in (15) scales with
(n,p, s, sg) at the same rate as previous analysis (Yang &
Ravikumar, 2013) for the sparse plus group sparse setting,
which required a much stringent incoherence condition,
as we already discussed. It is also instructive to note
that Theorem 1 holds for any combination of (a*,3*)
such that o* 4+ 8* = 6*, but different views of (a*, 3*)
constructing 0* give different bounds depending on
sparsity/group sparsity levels of (a*,3*) (i.e. s and sg).
In this sense, Theorem 1 provides a set of /o estimation
upper bounds.

Linear model and modified graphical Lasso. In the fol-
lowing corollaries, we apply Theorem 1 to the linear model
(3) and the modified graphical Lasso problem (5) and de-
rive their corresponding /5 estimation bounds.

Corollary 1. Consider the linear model (3). Assume that
(i) each row X; of the observation matrix X is indepen-
dently sampled from N (0, Y), (ii) X is (group) column nor-
malized by scaling as in (Negahban et al., 2012), and (iii)

w is independent sub-Gaussian with parameter o. Now
suppose that in (14) we set a := 2 (where a is the parame-
ter for the group norm both for ||@||,, and ||@||x), r constant

(r only depends on . and o), \y = m := 8c+/logp/n
and Ao = ng := 8a(\/m/n+ +/log q/n) for q groups and
maximum group size m (maxg=1,._q|Gql). Suppose that
0* is feasible to program (14) with these settings. Then
with probability at least 1 — ¢y exp(—can?) — c3/q?, any
local optimum 6 satisfies

~ 24 /sl / /sg1
|00*||2§Jmax{ s ng’ ng+ 5g qu}'
K1 n n n

where k1 is some constant depending on 3.

Corollary 2. Consider the modified graphical Lasso (5) to
estimate inverse covariance ©*. Suppose we set the pa-
rameters of (14) as \y = 11 = 4 max;-; ’Eij — (@*);jl
A2 = My = 4dmaxgeg HEQ — (@*)9_1‘ 4 and v <
W where || - ||2 is the spectral norm of the ma-
trix and a > 2. In addition, assume that ©* is feasible for
this problem. Then, any local optimum © satisfies

16 — ©*[lr < 3(16°[l2 + 1) max {A1/5, A2y/55}
(16)

’

Remark. Since ||0||,, scales with ﬁ for the specified
values of ), the constraint [|@||,, < r gets milder as n in-
creases. It is also important to note that this constraint is
no more stringent than those of non-convex analyses with
a single regularizer (Loh & Wainwright, 2015; 2014): their
constraints can be written as 71]|0]|; < r (since 1 =<
v/log p/n for linear models for example.) in our notation,
which directly implies ||@||,, < r since ||@||,, < 11]/6]|1 by
the definition of || - |,.

6. Statistical Guarantees of Models with
Non-convex Penalties

A natural extension of (14) is to incorporate non-convex
regularizers that have some advantages such as unbiased-
ness. For that purpose, in this section we consider the fol-
lowing formulation

minimize £(0) + R(0; X) (17)

lelln<r
where R(6; ) = infq g{pr, (@) + ¢r,,0(8) : a+ 8=
6}. While the ¢> analysis in Theorem 1 can be extended
to non-convex regularizers following proof techniques re-
cently developed in Loh & Wainwright (2015), using non-
convex unbiased regularizers has no benefit in terms of
asymptotic convergence rates of ¢, estimation errors. In-
stead, we here investigate the £,,-norm bound and related
support set recovery guarantees where non-convex unbi-
ased regularizers help. To derive ¢, bounds, we use the
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primal-dual witness method described in the supplemen-
tary materials.

Theorem 2. Consider the dirty program with non-
convex penalties in (17), under (RSC). Suppose 2r(1o +
2max{%, 22 Y < 1. Also suppose that for some
S [max{”ﬁm 4”1772} 1), the strict dual feasibility
of primal-dual witness holds. Then, any stationary point
0 of (17) is supported by U (recall U := supp(a*) U
supp(B*)) if the number of samples is large enough o
satisfy max{\1/s, \2\/5g}> < c for some constant c de-

pending only on k1, 71 and 9.

As in Theorem 1, the decomposability in (10) and (11) with
respect to the surrogates & and 3, plays a crucial role in
establishing the support set recovery guarantee of any local
optimum in Theorem 2.

Based on Theorem 2, we can derive the /., bounds follow-
ing the standard steps in (Loh & Wainwright, 2014):
Corollary 3. Suppose the assumptions in Theorem 2 hold.
Then,

1 If B > oy (max{n /s, na, /Sg})2 holds for large
enough sample size n, the program (17) has a unique
stationary point 0, specified by the construction of the
primal dual witness.

2. Letting Q = [, V2L(0" + (8 — 67))dL, it holds
~ ~ -1
that |6 — 0*||s |(Quv) ™ VLEO U, +
. ~ -1
min{ A1, A2} (Quv) H|Oo where || - ||oo denotes a
matrix induced norm (maximum absolute row sum).
3. Moreover, if p is (u,7y)-amenable, and the mini-
mum absolute value 0%, = minj 07| is lower-

bounded by 0%, > ‘(QUU) VE 0%) H
mln{)\1,)\2}|”(QUU)_l|||oo + QmaX{Ah)\z}V-

Then, the error bound in the _statement 2 is
reduced to tighter bound as |0 — 0] <

|(@uu) " VL@l

Multi-task high-dimensional linear regression. We
consider the multi-task high-dimensional linear regression,
as a concrete example of using non-convex dirty regulariz-
ers. This is the counterpart of model (4) which uses convex
dirty regularizer. In the following corollary, we analyze the
sparsistency of dirty multi-task linear regression with non-
convex regularizers:

m

OERPX S L|O]|n<r £ 2n

minimize

ly® = xB6. |, +R(O: A)

(18)

where R(0; A) = infq g{pr, (@) + dr,0(B) :ax+ B =
©}. Now, we derive a corollary for this particular non-
convex dirty model.

Corollary 4. Consider the multitask regression model.
Suppose that for each task, design matrix X*) is a zero-
mean Gaussian ensemble and is column normalized, w'*)
is independent sub-Gaussian with parameter . Now sup-
pose we set parameters of (18) as a := oo, r constant (only
depends on ¥ and 0.), \1 = cro4/log(pm)/n, A2 =
cooy/(logp + mlog2)/n, and ©* is feasible to program
(14) with these settings. Then, for any local optimum
©, with probability at least 1 — ¢y exp(—cg log(pm)) —
czexp (— ca(log p+mlog 2)) (which is approaching to 1)
for some positive constants c1 — cy,

1. supp(©) C supp(©*),

2. if additionally the regularizer py is (u,~y)-amenable
with 1 < Amin(2) (the minimum eigenvalue of X.)
and Crin m)‘min(zg?Uk) > 0, then

supp(é) = supp(©*) and the element-wise difference
is bounded as follows:

= ming—q,.,

100log(pm)
ncmin

provided that 0%, > m/%ﬁfﬁm) + min{A1, A2}

k
maxg—1, .. (4, )" oo + 2max{Ar, Ao}y

16 = O llmax := max |[® — ©7]; 5| <o

Remark. In order to highlight the benefit of using
(1, y)-amenable regularizers, we briefly compare the re-
sult of Corollary 4 with that of ¢; + ¢;, case in
(Jalali et al., 2010). Not only the result in (Jalali
et al., 2010) requires the incoherence on X (specifically,

m k k 1 .
max;eue ) j_ ‘|25[)]k (25 ()]k) ||1 < 1), but it also
has an additional S’\l\f term in [|© — ©*[|;max bound.

Moreover, the requlred A1 and )Xo there can converge
1 .
to zero more slowly: \; = Viog(pm)

T Vn—/slog(pm)
v/ m(m+logp)
Vn— \/sm(m—&-log p)’

and Ay =

7. Experiments

To illustrate the practical consequences of the superior sta-
tistical guarantees of models with non-convex penalties,
we perform experiments on both simulated and real-world
data and compare convex and non-convex dirty models for
sparse + group-sparse structures.

Simulated data. We consider multitask regression prob-
lems with m = 10 tasks and p = 260 variables for settings
of parameters (s, sg) € {(2p/10,p/20), (p/10,p/10)} with
respectively less / more support overlap across tasks (recall
s and sg are the number of nonzero elements in a* and
the number of nonzero groups in 3*, respectively). The
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Figure 3. {-error for comparison methods for varying sample size n.

rows of the design matrices X are sampled i.i.d. from a
zero-mean Gaussian distribution with correlation of 0.2 be-
tween feature pairs. For each set of parameters (s, sg),
we generate 100 instances of the problem where for each
instance the non-zero entries of the true model parame-
ter matrix are i.i.d. zero-mean Gaussian to agree with s
and sg. Gaussian error with standard deviation of 4 is
added to each observation. For varying sample size n we
measure the /., error of parameters estimated by (i) con-
vex dirty model (Jalali et al., 2010), (ii) non-convex dirty
model with SCAD + Group-SCAD penalty, and (iii) non-
convex dirty model with MCP + Group-MCP penalty. We
also evaluate the following baselines: Lasso, MCP, SCAD,
Group-Lasso, Group-MCP and Group-SCAD 2. The regu-
larization parameters of each method are tuned via 5-folds
cross-validation. The results are presented in Figure 3 (To
avoid cluttering the graphs, we do not display standard er-
rors as these are much lower than the gaps between the
pertinent groups of methods, and we only display the best
group of baselines for each setting). As can be seen from
the figure, dirty models with non-convex penalties enjoy
superior performance over their counterparts with convex
penalties as a function of the sample size. In terms of
computational cost, (Group) coordinate descent steps for
(group) lasso, (group) MCP and (group) SCAD all have
simple closed-form expressions (Huang et al., 2012), sim-
ilarly for proximal-based approaches. We noticed that for
a wide range of (A1, A2), non-convex procedures took less
time and converged faster (See supplements). As future
work it would be interesting to study their theoretical nu-
merical convergence rates.

Real data analysis. We consider the problem of pre-
dicting biological activities of molecules given features
extracted from their chemical structures. We ana-
lyze three biological activity datasets from the “molec-

2Qur theorem on £, consistency requires the sample size to
be larger than the maximum of fwo terms, which precludes from
presenting graphs with curve alignment across p (by rescaling the
x-axis with a control parameter as in Jalali et al. (2010)).

1 -o- GlLasso
© : -4~ GSCAD
S “ +- GMCP
VN -X- Convex DM (Lasso/GLasso)
W -0~ Non-convex DM ESCAD/G—SCAD)
b [N -¥- Non-convex DM (MCP/G-MCP)
©
=9
o O
=
(] 4
<
o
N
o T T T T T
0.2 0.4 0.6 0.8 1.0
n/p

Left: less sharing across tasks. Right: more sharing across tasks

ular activity challenge” (http://www.kaggle.com/
c/MerckActivity). Specifically we consider multitask
regression with three tasks corresponding to predicting the
raw value (— log(Z1C50)) of three different types of biolog-
ical activities : ‘binding to cannabinoid receptor 1°, ‘inhi-
bition of dipeptidyl peptidase 4’ and ‘time dependent 3A4
inhibitions’. For each task we used n = 200 observations
with p = 3000 molecular features. We consider 20 random
data splits into training and validation sets, using 2/3 of the
data for tranining and 1/3 for validation, and report the av-
erage R? over these random splits. As shown in tablel,
dirty models outperformed “clean” models suggesting the
importance to strike a balanc e between task specificity and
sharing for this data. Non-convex dirty models achieved
the best B2, which illustrate their capability as a valuable
tool for high-dimensional data analysis.

Table 1. Average R? for comparison methods on molecular activ-

ity data

Method R?
Lasso 0.36 £ 0.03
SCAD 0.37 £ 0.03
MCP 0.36 + 0.04
GLasso 0.35+£0.03
GSCAD 0.37 £0.03
GMCP 0.38 = 0.03
Convex DM (Lasso/GLasso0) 0.43 £0.04
Nonconvex DM (SCAD/GSCAD) | 0.49 + 0.04
Nonconvex DM (MCP/GMCP) 0.49 + 0.03

8. Concluding Remarks

This paper finally resolved the outstanding case of sparse +
group-sparse dirty models with convex penalties: we pro-
vided the first satisfactory consistency results that do not
require implausible assumptions, thereby fully justifying
their practical success. In addition we proposed and stud-
ied dirty models with non-convex penalties and showed that
they enjoy superior theoretical guarantees that translate into
significant practical impact. An interesting direction for
future work is to investigate whether our proof technique
might be applicable to other dirty models and beyond.
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