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A. Theoretical Properties of Gibbs-OT
We develop quantitative concentration bounds for Gibbs-

OT in a finite number of iterations in order to understand

the relationship between the temperature schedule and the

concentration progress. The analysis also guides us to ad-

just cooling schedule on-the-fly, as will be shown. Proofs

are provided in Supplement.

Preliminaries. Before characterizing the properties of

Gibbs-OT by Definition 1, we first give the analytic ex-

pression for p(zn+1|zn). Let G(·) : [�1,1] 7! [0, 1]
be the c.d.f. of standard exponential distribution. Because

L
(t+1)

j < x by definition , 8i, g
(t)
i � Mi,j < x, the

c.d.f. of L
(t+1)

j |U(t)
reads

Pr

⇣

L
(t+1)

j <x
�

�

�

U

(t)
⌘

=

m1
Y

i=1

 

1�G

 

�x�Mi,j + U
(t)
i

T (2t)/pi

!!

.

Likewise, the c.d.f. of U
(t)
i |L(t)

reads

Pr

⇣

U
(t)
i < x

�

�

�

L

(t)
⌘

=

m2
Y

j=1

G

 

x�Mi,j � L
(t)
j

T (2t�1)/qj

!

.

With some calculation, the following can be shown. As

a note, this lemma provides an intermediate result whose

main purpose is to lay down the definition of �
(t)
j and '

(t)
i ,

which are then used in defining O(z, T ) (Eq. (21)) and rn

(Eq. (23)) and in Theorem A.2.

Lemma A.1. (i) Given 1  j  m
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and 1  t  N , let the
sorted index of {U (t)

i �Mi,j}m1
i=1

be permutation {�(i)}m1
i=1

such that sequence {U (t)
�(i)�M�(i),j}m1

i=1

are monotonically
non-increasing. Define the auxiliary quantity

�
(t)
j

def.

=

m1
X

k=1

(1� µk)
Qk�1

i=1

µi
Pk

i=1

p�(k)
, (19)

where

1 � µi
def.

= exp

(

Pk
i=1

p�(k)

T (2t)

h

�

U�(i+1)

�M�(i+1),j

�

� �U�(i) �M�(i),j

�

i

)

for i = 1, . . . ,m
1

�1, and µm1

def.

= 0 . Then, the conditional
expectation

E
h

L
(t+1)

j

�

�

�

U

(t)
i

= U
(t)
�(1) �M�(1),j � �

(t)
j T (2t) .

In particular, we denote �(1) by Itj or I(j, t) .

(ii) Given 1  i  m
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for i = 1, . . . ,m
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In particular, we denote �(1) by J t
i or J(i, t) .

We note that the calculation of Eq. (19) and Eq. (20) needs
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) time respectively. By

a few additional calculations, we introduce the notation
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Recovery of Approximate Primal Solution. An approxi-
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Concentration Bounds. We are interested in the concen-

tration bound related to V (z

n
) because it replaces the true

4

The notation of sparse(·, ·, ·) function is introduced under

the syntax of MATLAB: http://www.mathworks.com/

help/matlab/ref/sparse.html
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Wasserstein loss in WLMs. Given U

(0)

(i.e., z1 is implied),

for n = 1, . . . , 2N , we let
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This is crucial for one who wants to know whether the cool-

ing schedule is too fast to secure the suboptimality within

a finite budget of iterations. The following Theorem A.2

gives a possible route to approximately realize this goal. It
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In the practice of Gibbs-OT, choosing the proper cooling

schedule for a specific WLM needs trial-and-error. Here

we present a heuristics that the temperature T (s)
is often

chosen and adapted around ⌘T (zs), where ⌘ 2 [0.1, 0.9].
We have two concerns regarding the choice of temperature

T : First, in a WLM, the cost V (z) is to be gradually min-

imized, hence a temperature T smaller than T (z

s
) at ev-

ery iteration ensures that the cost is actually decreased by

expectation, i.e., E[V (z

n
) � V (z

1

)] < 0; second, if T is

too small, it takes many iterations to reach a highly accu-

rate equilibrium, which might not be necessary for a single

outer level step of parameter update.

Theorem A.2 (Concentration bounds for finite time Gibb-

s-OT). First, rn (by definition) is a martingale subject to
the filtration of z

1

, . . . , zn. Second, given a " 2 (0, 1), for
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where Mi,· and M·,j represents the i-th rows and j-
th columns of matrix M respectively,  (t) and �(t) are
defined in Lemma A.1, and regret function R(x;w)

def.

=
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Remark 5. The bound obtained is a quantitative Hoeffding

bound, not a bound that guarantees contraction around the

true solution of dual OT. Nevertheless, we argue that this

bound is still useful in investigating the proposed Gibbs

sampler when the temperature is not annealed to zero. Par-

ticularly, the bound is for cooling schedules in general, i.e.,
it is more applicable than a bound for a specific schedule.

There has long been a gap between the practice and theory

of SA despite of its wide usage. Our result likewise falls

short of firm theoretical guarantee from the optimization

perspective, as with the usual application of SA.

B. Proof of Lemmas and Theorem
The minimum of n independent exponential random vari-

ables with different parameters has computatable formula

for its expectation. The result immediately lays out the

proof of Lemma A.1.

Lemma B.1. Suppose we have n independent exponen-
tial random variables ei whose c.d.f. is by fi(x) =
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Therefore Lemma A.1 is proved up to trivial calculation

using the above Lemma B.1. In order to further prove

Lemma B.3, we also have (by definition of F (x)).

Lemma B.2. Subject to the setup of Lemma B.1, we also
have

max{e
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Therefore, based on the observation of Lemma B.2, the tail

probability Pr(max{e
1

, . . . , en} < x) is upper bounded

by the probability of an exponential random variable,

which lead us to the proof of Lemma B.3.

Lemma B.3. Note that Eq. (21) implies
E
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rn+1 � rn|z1, . . . , zn⇤ = 0 for t = 1, . . . , 2N .
Therefore, {rn} is a (discrete time) martingale subject to
the filtration of {zn}. (Recall the notation by Eq. (14).)
Moreover, we have the following two bounds. First, we can
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n=1

:

rn � rn+1  Cn · T (n),

where for t = 1, . . . , N

C2t�1

def.

= h (t),pi and C2t def.

= h�(t),qi. (27)
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for any 1 > " > 0, we have

Pr
⇣

9n 2 {1, . . . , 2N}, s.t. rn+1 � rn

� log

✓

2N max{m
1

,m
2

}
"

◆

·T (n)
+Dn

�

�

�

z

1, . . . , zn
⌘

 ",

(28)

where for t = 1, . . . , N
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where Mi,· and M·,j represents the i-th rows and j-th
columns of matrix M respectively.

Proof. On one hand, because for each i 2 {1, . . . ,m
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, which concludes our result.
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Given Lemma B.3, we can prove Theorem A.2 by apply-

ing the classical Azuma’s inequality for the left-hand side

bound, and applying one of its extensions (Proposition 34

in (Tao and Vu, 2015)) for the right-hand side bound. Re-

mark that Theorem A.2 is about a single OT. For multiple

different OTs, which share the same temperature sched-

ule, one can have asymptotic bounds using the Law of

Large Numbers due to the fact that their Gibbs samplers

are independent with each other. Let Rn
=

1

S

PS
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rnk ,

where rnk is defined by Eq. (23) for sample k. Since for
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.
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