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7. Appendix
7.1. Comparison on Time Complexity

The proposed LatentLasso algorithm runs significantly
faster than other methods in our experiments. For exam-
ple, on the Syn1 dataset (N=1000, D=1000, K=35), the
runtime of LatentLasso is 398s, while MCMC, Variational,
MF-Binary and BP-Means all take more than 10000s to ob-
tain their best results reported in the Figures (and the im-
plementation of Spectral Method we obtained from the au-
thors has memory requirement that restricts K¡14). On the
real data sets, we report only up to K=50 because most of
the compared methods already took one day to train.

The complexity of each algorithm can be summarized in
Table 2. The reason for the smaller runtime of LatentLasso
is due to the decoupling of factor ND from the factor re-
lated to K, where the factor O(ND) comes from the cost
of solving a MAX-CUT-like problem using the method of
(Boumal et al., 2016) or (Wang & Kolter, 2016), while the
factor O(K2D) comes from the cost of solving a least-
square problem given by (11) with the maintenance cost
of ZTZ amortized.

7.2. Proof for Theorem 1

Let L(M) be a smooth function such that ∇L(M) is
Lipschitz-continuous with parameter β, that is,

L(M ′)−L(M)− 〈∇L(M),M ′−M〉 ≤ β

2
‖M ′−M‖2F .

Then

∇jf(c) = zTj ∇L(M)zj

is Lipschitz-continuous with parameter γ, which is of or-
der O(1) when loss function L(.) is an empirical average
normalized by ND.

Let A be the active set before adding ĵ. Consider the de-
scent amount produced by minimizing F (c) w.r.t. the cĵ
given that 0 ∈ ∂jF (c) for all j ∈ A due to the subproblem
solved in the previous iteration. Let j = ĵ, for any ηj we
have

F (c+ ηjej)− F (c) ≤ ∇jf(c)ηj + λ|ηj |+
γ

2
η2
j

≤ µ∇j∗f(c)ηj + λ|ηj |+
γ

2
η2
j

Minimize w.r.t ηj gives

min
ηj

F (c+ ηjej)− F (c)

≤ min
ηj

µ∇j∗f(c)ηj + λ|ηj |+
γ

2
η2
j

= min
ηk:k/∈A

∑
k/∈A

(
µ∇kf(c)ηk + λ|ηk|

)
+
γ

2

(∑
k/∈A

|ηk|

)2

≤ min
ηk:k/∈A

µ
∑
k/∈A

(
∇kf(c)ηk + λ|ηk|

)
+
γ

2

(∑
k/∈A

|ηk|

)2

+ (1− µ)λ
∑
k/∈A

|ηk|

where the last equality is justified later in Lemma 1. For
k ∈ A, we have

0 = min
ηk:k∈A

µ
∑
k∈A

(∇kf(c)ηk + λ|ck + ηk| − λ|ck|)

Combining cases for k /∈ A and k ∈ A, we can obtain a
global estimate of descent amount compared to some opti-
mal solution x∗ as follows

min
ηĵ

F (c+ ηĵeĵ)− F (c)

≤ min
η

µ

(
〈∇f(c), η〉+ λ‖c+ η‖1 − λ‖c‖1

)

+
γ

2

(∑
k/∈A

|ηk|

)2

+ (1− µ)λ
∑
k/∈A

|ηk|

≤ min
η

µ

(
F (c+ η)− F (c)

)
+
γ

2

(∑
k/∈A

|ηk|

)2

+ (1− µ)λ
∑
k/∈A

|ηk|

≤ min
α∈[0,1]

µ

(
F (c+ α(c∗ − c))− F (c)

)
+
αγ

2
‖c∗‖21

+ α(1− µ)λ‖c∗‖1

≤ min
α∈[0,1]

−αµ
(
F (c)− F (c∗)

)
+
α2γ

2
‖c∗‖21

+ α(1− µ)λ‖c∗‖1.

It means we can always choose an α small enough to guar-
antee descent if

F (c)− F (c∗) >
(1− µ)

µ
λ‖c∗‖1. (23)

In addition, for

F (c)− F (c∗) ≥ 2(1− µ)

µ
λ‖c∗‖1, (24)
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Table 2: Comparison of Time Complexity. (T denotes number of iterations)

Methods MCMC Variational MF-Binary BP-Means Spectral LatentLasso
Time Complexity (NK2D)T (NK2D)T (NK)2K (NK3D)T ND +K5log(K) (ND +K2D)T

we have

min
ηĵ

F (c+ ηĵeĵ)− F (c)

≤ min
α∈[0,1]

−αµ
2

(
F (c)− F (c∗)

)
+
α2γ

2
‖c∗‖21.

Minimizing w.r.t. to α gives the convergence guarantee

F (ct)− F (c∗) ≤ 2γ‖c∗‖21
µ2

1

t
.

for any iterate with F (ct)− F (c∗) ≥ 2(1−µ)
µ λ‖c∗‖1.

Lemma 1.

min
ηj

µ∇j∗f(c)ηj + λ|ηj |+
γ

2
η2
j (25)

= min
ηk:k/∈A

∑
k/∈A

(
µ∇kf(c)ηk + λ|ηk|

)
+
γ

2

(∑
k/∈A

|ηk|

)2

(26)

Proof. The minimization (34) is equivalent to

min
ηk:k/∈A

∑
k/∈A

(
µ∇kf(c)ηk

)

s.t.

(∑
k/∈A

|ηk|

)2

≤ C1∑
k/∈A

|ηk| ≤ C2

and therefore is equivalent to

min
ηk:k/∈A

µ
∑
k/∈A

∇kf(c)ηk

s.t.
∑
k/∈A

|ηk| ≤ min{
√
C1, C2}

which is a linear objective subject to a convex set and thus
always has solution that lies on the corner point with only
one non-zero coordinate ηj∗ , which then gives the same
minimum as (33).

7.3. Proof of Theorem 2

Lemma 2. Let A∗ ∈ [K̄] be a support set and c∗ :=
argminc:supp(c)=A∗ F (c∗). Suppose F (c) is strongly con-
vex on A∗ with parameter β. We have

‖c∗‖1 ≤

√
2‖c∗‖0(F (0)− F (c∗))

β
. (27)

Proof. Since supp(c∗) = A∗, and c∗ is optimal when
restricted on the support, we have 〈, c∗〉 = 0 for some
∈ ∂F (c∗). And since F (c) is strongly convex on the sup-
port A∗ with parameter β, we have

F (0)− F (c∗) = F (0)− F (c∗)− 〈, 0− c∗〉

≥ β

2
‖c∗ − 0‖22,

which gives us

‖c∗‖22 ≤
2(F (0)− F (c∗))

β
.

Combining above with the fact for any c, ‖c‖21 ≤ ‖c‖0‖c‖22,
we obtain the result.

Since F (0) − F (c∗) ≤ 1
2N

∑N
i=1 y

2
i ≤ 1 , from Theorem

(1) and (27), we have

F (cT )−F (c∗) ≤ 4γ‖c∗‖0
βµ2

(
1

T

)
+

2(1− µ)λ

µ

√
2‖c∗‖0
β

.

(28)
for any c∗ := argminc:supp(c)=A∗ F (c).

7.4. Proof of Theorem 3

Before delving into the analysis of the Latent Feature Lasso
method, we first investigate what one can achieve in terms
of the risk defined in (1) if the combinatorial version of
objective is solved. Let

f(x;W ) := min
z∈{0,1}K

1

2
‖x−WT z‖2.

Suppose we can obtain solution Ŵ to the following empir-
ical risk minimization problem:

Ŵ := argmin
W∈RK×D:‖W‖F≤R

1

N

N∑
i=1

f(xi;W ). (29)

Then the following theorem holds.

Theorem 7. LetW ∗ be the minimizer of risk (1) and Ŵ be
the empirical risk minimizer (29). Then

E[f(x; Ŵ )]− E[f(x;W ∗)]

≤ 3

N
+

√
DK log(4R2KN)

2N
+

1

2N
log(

1

ρ
)

with probability 1− ρ.
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Proof Sketch. Let EN [f(x,W )] denote the empirical risk.
We have

E[f(x; Ŵ )]− E[f(x;W ∗)]

≤ 2

(
sup

W∈RK×D:‖W‖F≤R
|E[f(x;W )]− EN [f(x;W )]|

)
(30)

from error decomposition and EN [f(x, Ŵ )] ≤
EN [f(x,W ∗)]. Then by introducing a δ-net N (δ)

with covering number |N (δ)| =
(

4R
δ

)DK
, we have

‖W̃ −W‖F ≤ δ for some W̃ ∈ N (δ) and

P

(
sup

W̃∈N (δ)

∣∣∣∣E[f(x; W̃ )]− EN [f(x; W̃ )]

∣∣∣∣ ≤ ε
)

≥ 1−
(

4R

δ

)DK
exp(−2Nε2).

(31)

Then since

2(f(x, W̃ )− f(x,W )) ≤ ‖x− W̃T z∗‖2 − ‖x−WT z∗‖2

= z∗T (W − W̃ )x+ 〈W̃W̃T −WWT , z∗z∗T 〉
≤ ‖z∗‖2‖W − W̃‖F + 2R‖W̃ −W‖F ‖z∗‖22 ≤ 3RK‖W̃ −W‖F ,

we have

sup
W :‖W‖F≤R

∣∣∣∣E[f(x;W )]− EN [f(x;W )]

∣∣∣∣
≤ (3RKδ) + sup

W̃∈N (δ)

∣∣∣∣E[f(x; W̃ )]− EN [f(x; W̃ )]

∣∣∣∣
≤ 3RKδ +

√
DK

2N
log(

4R

δ
) +

1

2N
log(

1

ρ
)

(32)
with probability 1−ρ. Choosing δ = 1/(RKN) yields the
result.

Now we establish the proof of Theorem (3) for bounding
risk of the Latent Feature Lasso estimator.

Proof. Let Z∗ ∈ argminZ∈{0,1}NK
1
N ‖X−ZW

∗‖2F and
S∗ be the set of column index of Z with the same 0-1 pat-
terns to columns in Z∗. Let c∗ be indicator vector with
c∗k = 1, k ∈ S∗ and c∗k = 0, k /∈ S∗. We have

F (c̄) ≤ F (c∗) ≤ EN [f(x;W ∗)] +
τ

2
‖W ∗‖2F + λ‖c∗‖1

(33)
where c̄ ∈ argmin

c:supp(c)=S∗
F (c). Then let (c,W ) with

supp(c) = Ŝ be the output obtained from running T it-

erations of the greedy algorithm, we have

EN [f(x,DcW )] +
τ

2
‖W‖2F + λ‖c‖1

=
1

2N

N∑
i=1

min
z∈{0,1}‖c‖0

‖xi −WTDT
c z‖2 +

τ

2
‖W‖2F + λ‖c‖1

≤ F (c)
(34)

Combining (33), (34) and (28), we obtain a bound on the
bias and optimization error of the Latent Feature Lasso es-
timator

EN [f(x,DcW )] ≤ F (c) ≤ EN [f(x;W ∗)]

+
τ

2
‖W ∗‖2 + λK︸ ︷︷ ︸

regularize bias

+
2γK

β

(
1

T

)
+

√
2(1− µ)K

µβ
λ︸ ︷︷ ︸

optimization error
(35)

To bound the estimation error, notice that the matrix Ŵ :=
DcW is K̂ × D with K̂ ≤ T . Furthermore, the descent
condition F (c) ≤ F (0) guarantees that

τ

2
‖W‖2F + λ‖c‖1 ≤

1

N
‖X − 0‖2 ≤ 1

and thus ‖W‖2F ≤ 1/τ , ‖c‖1 ≤ 1/λ.

LetW(T, λ, τ) := {Ŵ ∈ (RT×D) | ‖Ŵ‖F ≤
√

1/(λτ)}.
We have

sup
(c,W )∈W(T,λ,τ)

E[f(x; Ŵ )]− EN [f(x, Ŵ )]

≤

√
DT log(4TN/(τλ))

2N
+

1

2N
log(

1

ρ
)

with probability 1 − ρ through the same argument as in
the case of combinatorial objective (32). Combining the
above estimation error with the bias and optimization error
in (35), we have

E[f(x;W )]− E[f(x;W ∗)]

≤ τ

2
R2 + λK +

2γK

βT
+

√
2(1− µ)K

µβ
λ

+

√
DT log(4TN/(τλ))

2N
+

1

2N
log(

1

ρ
)

Choosing T = 2γK
β ( 1

ε ), λ = τ = 1√
N

and N & DT
ε2 =

DK
ε3 gives the result.

7.5. Proof of Theorem 4

Proof. Since W ∗ is of rank K, we have span(Θ∗) =
span(Z∗). Therefore, from condition 2,

span(Θ∗) ∩ {0, 1}N \ {0} = {Z∗:,j}Kj=1. (36)
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For any (Z,W ) : ZW = Θ∗, we have Z ∈ span(Θ∗)
since Z = Θ∗V Σ−1UT where UΣV T is the SVD of W
with Σ : K×K. Then by (36) we know thatZ = Z∗. Then
it follows W = W ∗ since the linear system Θ∗ = Z∗W
has unique solution for W .

7.6. Proof of Theorem 5

Proof. The solution of (21) satisfies

ZSWS = X = Z∗W ∗.

Since WS has full row-rank, we have rank(ZS) =
rank(X) = rank(Z) = K by condition 1 in Theo-
rem 4. Then let WS = UΣV T be the SVD of WS with
Σ : |S| × |S|, we have

ZS = XV Σ−1UT = Z∗W ∗V Σ−1UT ∈ span(Z∗).

Then by condition 2 in Theorem 4, the columns of ZS can
only be in {Z∗:,j}Kj=1, which implies ZS equal to Z∗ up to
a permutation. Then we know |S| = K and by Theorem 4
WS also equals W ∗ up to a permutation.

7.7. Proof of Theorem 8

Proof. By an application of Theorem1 of (Negahban et al.,
2009), for λ ≥ ‖∇f(c∗)‖∞, we have the following bound
on the `2 norm of ĉ− c∗:

‖ĉ− c∗‖2 ≤
√
K∗λ

κn
,

where ‖∇f(c∗)‖∞ is given by:

‖∇f(c∗)‖∞ = max
z∈{0,1}N

1

2N2τ
‖A∗T z‖22,

where A∗ is defined as:

A∗ = (I − ZS(ZTS ZS +NτI)−1ZTS )X

= (I − ZS(ZTS ZS +NτI)−1ZTS )(ZSW
∗ + ε)

(37)
Given P = ZS(ZTS ZS + NτI)−1ZTS , it can be seen that
A∗ can be rewritten as :

A∗ = (I − P )ε+ (I − P )(ZSW
∗).

7.8. ell2 error bounds on the coefficient vector ĉ

Theorem 8. Let c∗ be the true underlying vector, with sup-
port S and sparsity K∗. Let ĉ be the minimizer of F (c),
defined in Equation (7). Define the noise-level term

ρn := max
z∈{0,1}N

1

2N2τ
‖A∗T z‖22,

where A∗ = (I − P )ε+ (I − P )(ZSW
∗) where

P = ZS(ZTS ZS +NτI)−1ZTS .

Let κn be the restricted strong convexity term defined as :

κn := inf
∆∈C
{f(c∗ + ∆)− f(c∗)− 〈∇f(c∗),∆〉} ,

where C = {c|‖cSc‖1 ≤ 3‖cS‖1}. Then, if the regulariza-
tion parameter is set as λ ≥ ρn, we have the following
bound on the norm of the error ĉ− c∗:

‖ĉ− c∗‖2 ≤
ρn
√
K∗

κn
.

7.9. Proof of Theorem 6

Proof. Note that the optimization problem in Equation (22)
can be rewritten as:

argmin
Z∈{0,1}N

1
2N ‖E + (Z∗ − Z)‖22

= 1
2N

N∑
i=1

argmin
Zi∈{0,1}

(Ei + (Z∗i − Zi))2

(38)

So, we have the following closed form expression for Ẑ:

Ẑi =

{
1 if Z∗i + Ei ≥ 0.5

0 o.w
.

We now compute the probability that Z∗i 6= Ẑi:

P(Z∗i 6= Ẑi) = P(Ei ≥ 0.5) ∗ P(Z∗i = 0)

+P(Ei ≤ −0.5) ∗ P(Z∗i = 1)

≥ min{P(Ei ≥ 0.5),P(Ei ≤ −0.5)} ≥ c,
(39)

for some positive constant c. We now use the fact that
E((Z∗i − Ẑi)2) = P(Z∗i 6= Ẑi) to complete the proof of
the Lemma.


