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Abstract
Recurrent neural networks, such as long-short
term memory (LSTM) networks, are power-
ful tools for modeling sequential data like user
browsing history (Tan et al., 2016; Korpusik
et al., 2016) or natural language text (Mikolov
et al., 2010). However, to generalize across dif-
ferent user types, LSTMs require a large num-
ber of parameters, notwithstanding the simplic-
ity of the underlying dynamics, rendering it un-
interpretable, which is highly undesirable in user
modeling. The increase in complexity and pa-
rameters arises due to a large action space in
which many of the actions have similar intent or
topic. In this paper, we introduce Latent LSTM
Allocation (LLA) for user modeling combining
hierarchical Bayesian models with LSTMs. In
LLA, each user is modeled as a sequence of ac-
tions, and the model jointly groups actions into
topics and learns the temporal dynamics over the
topic sequence, instead of action space directly.
This leads to a model that is highly interpretable,
concise, and can capture intricate dynamics. We
present an efficient Stochastic EM inference al-
gorithm for our model that scales to millions of
users/documents. Our experimental evaluations
show that the proposed model compares favor-
ably with several state-of-the-art baselines.

1. Introduction
Sequential data prediction is an important problem in ma-
chine learning spanning over a diverse set of applications
ranging from text (Mikolov et al., 2010) to user behavior
(Köck & Paramythis, 2011). For example, when applied to
statistical language modeling, the goal is to predict the next
word in textual data given context, very similar to that in
user activity modeling where the aim is to predict the next
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Figure 1. LLA has better perplexity (lower is better) than LDA
but much fewer parameters than LSTMs, as shown in a language
modeling task on Wikipedia.

activity of the user given the history. Accurate user activity
modeling is very important for serving relevant, personal-
ized, and useful contents to the user. A good model of se-
quential data should be accurate, sparse, and interpretable.
Unfortunately, none of the existing techniques for user or
language modeling satisfy all of these requirements.

The state-of-the-art for modeling sequential data is to em-
ploy recurrent neural networks (RNN) (Lipton et al., 2015),
such as LSTMs (Long-Short Term Memory) (Hochreiter
& Schmidhuber, 1997). Such RNNs have been shown to
be effective at capturing long and short patterns in data,
e.g. token-level semantic as well as syntactic regularities
in language (Jozefowicz et al., 2016). However, the neural
network representations are generally uninterpretable and
inaccessible to humans (Strobelt et al., 2016). Moreover,
the number of parameters of the model is proportional to
the number of observed word types or action types, which
can grow to tens or hundreds of millions. Note that for user
modeling task, character level RNN is not feasible because
user actions are often not words but hash indices or URLs.

On the other hand of the spectrum, latent variable models
with multi-task learning, such as LDA (Blei et al., 2002)
and other topic model variants, which are strictly not se-
quence models, proved to be powerful tools for uncovering
latent structure in both text and user data (Aly et al., 2012)
with good commercial success (Hu et al., 2014). Topic
models are popular for their ability to organize the data into
a smaller set of prominent themes or topics through statisti-
cal strength sharing across users or documents. These topic
representations are generally accessible to humans and eas-
ily lend themselves to being interpreted.

In this paper, we propose Latent LSTM Allocation (LLA),
a model that bridges the gap between the sequential
RNN’s and the non-sequential LDA. LLA borrows graph-
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ical model techniques to infer topics (groups of related
word or user activities) by sharing statistical strength across
users/documents and recurrent deep networks to model the
dynamics of topic evolution inside each sequence (doc-
ument or user activities) rather than at user action/word
level (Sec. 3.1). LLA inherits sparsity and interpretabil-
ity from LDA, while borrowing accuracy from LSTM. We
provide various variants of LLA that trade model size vs.
accuracy without sacrificing interpretability (Sec. 3.3). As
shown in Figure 1, for the task of language modeling on
the Wikipedia dataset, LLA achieves comparable accuracy
to LSTM while being as sparse as LDA in terms of models
size. We give an efficient inference algorithm for parame-
ter inference in LLA (Sec. 3.2) and show is efficacy and
interpretability over several datasets (Sec. 4).

2. Background
In this section, we provide a brief review of user/language
modeling and LSTMs.

2.1. User/Language Modeling

User activity modeling and language modeling amounts
to learning a function that computes the log probabil-
ity, log p(w|model), of a user activity or sentence w =
(w1, . . . , wn). Subsequently, this function can be used
to predict the next set of actions or words. This func-
tion can be decomposed and learned in different ways
under various assumptions. Imposing a bag of words
assumption - as used in LDA - leads to ignoring the
sequence information and yields

∑n
i=1 log p(wi|model).

Alternatively, one could decompose according to the
chain rule into sum of the conditional log probabilities∑n
i=1 log p(wi | w1, . . . , wi−1,model), thereby preserv-

ing temporal information and use some RNN to model
log p(wi | w1, . . . , wi−1,model) (Mikolov et al., 2010;
Sundermeyer et al., 2012).

2.2. Long Short-Term Memories

Temporal aspect is very important for user activity model-
ing. LSTM, a type of RNN, is well suited for the task as
it can learn from experience to classify, process, and pre-
dict time series when there are very long time lags of un-
known size between important events. LSTM is designed to
cope with the vanishing gradient problem inherent in sim-
ple RNNs (Hochreiter & Schmidhuber, 1997). This is one
of the main reasons why LSTMs outperform simple RNNs,
hidden Markov models, and other sequence learning meth-
ods in numerous application.

In general, a RNN is a triplet (Σ, S, δ):
• Σ ⊆ RD is the input alphabet
• S ⊆ RH is the set of states
• δ : S × Σ → S is the state transition function made

up of a neural network.
RNN maintains an internal state and at each time step take

an input xt and updates its state st by applying the tran-
sition function made up of neural network δ the previous
time step’s state st−1 and the input.

Often the input is not available directly as elements of Σ
and the output desired is not the state of the RNN. In such
cases, input is appropriately transformed and desired output
is produced at each time step from the state st:

yt = g(st),

where g is an arbitrary differentiable function.

For example, in a regular recurrent language model
(RRLM) (Mikolov et al., 2010) a document is treated as
a sequence and an LSTM is trained to predict directly the
next word conditioned on the sequence of words before
it, i.e. maximize p(wt|wt−1|, wt−2, ..., w0; model). In this
case, the input transformation is done by using a word
lookup table from word to a vector in Σ. This word rep-
resentation is used to update the state of the LSTM. The
output transformation is the projection of st into a vector of
size of the vocabulary V followed by a softmax. However,
this method will require two large matrices of dimension
V ×H and cannot handle out of vocabulary words.

To overcome above mentioned shortcomings, another input
transformation has been proposed, which looks at charac-
ters directly instead of words (Ling et al., 2015). On the
spelling of the words another LSTM is run having charac-
ters as the input and the final state is used as the word repre-
sentation. In this case, the memory requirement is reduced
to half and the model can handle out-of-vocabulary words
like typographical errors or new words made from com-
posing existing ones. To use character level embedding, we
can simply replace the word lookup table with the repre-
sentation obtained from character-level LSTM. In case of
natural languages, a similar trick of using a character-level
LSTM to emit words can be applied as the output transfor-
mation as well. However, user modeling outputs (hash in-
dices and URLs) lack morphological structure, and hence
cannot leverage the technique.

3. Latent LSTM Allocation
In this section, we provide a detailed description of the pro-
posed LLA model and its variant for performing joint clus-
tering and modeling non-linear dynamics. An ideal model
for such a task should have three characteristics. First, it
should have a low number of parameters. Second, it should
be interpretable, allowing human analysis of the compo-
nents. Lastly and most importantly, the model should be
accurate in terms of predicting future events. We show how
LLA satisfies all of these requirements.

3.1. Generative model

In this model, we try to marry LDA with its strong inter-
pretability capabilities with LSTM having excellent track
record in capturing temporal information. In this regard,
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Figure 2. Graphical models for LDA and variants of proposed la-
tent LSTM Allocation (LLA). In a slight abuse of plate notation,
we do not imply exchangibility by the dashed plate diagram and
-1 on an edge means the dependence is from one time step back.

we propose a factored model, i.e. we use the LSTM
to model sequence of topics p(zt|zt−1, zt−2, ..., z1) and
multinomial-Dirichlet to model word emissions p(wi|zi),
similar to LDA. Suppose we have K topics, vocabulary
size V , and a document collectionD where each document
d ∈ D is composed of Nd words. With these notations, the
complete generative process can be illustrated as in Fig-
ure 2a and can be described as:

1. for k = 1 to K
(a) Choose topic φk ∼ Dir(β)

2. for each document d in corpus D
(a) Initialize LSTM with s0 = 0
(b) for each word index t from 1 to Nd

i. Update st = LSTM(zd,t−1, st−1)
ii. Get topic proportions at time t from the

LSTM state, θ = softmaxK(Wpst + bp)
iii. Choose a topic zd,t ∼ Categorical(θ)
iv. Choose word wd,t ∼ Categorical(φzd,t)

Under this model, the marginal probability of observing a
given document d can be written as:

p(wd|LSTM,φ) =
∑
zd

p(wd, zd|LSTM,φ)

=
∑
zd

∏
t

p(wd,t|zd,t;φ)p(zd,t|zd,1:t−1; LSTM).

Here p(zd,t|zd,1:t−1; LSTM) is the probability of gener-
ating topic for the next word in the document given top-
ics of previous words and p(wd,t|zd,t;φ) is the probability
of generating word given the topic, illustrating the simple
modification of LSTM and LDA based language models.

The advantage of this modification is two fold. Firstly, we
obtain a factored model as shown in Figure 3, thereby the
number of parameters is reduced significantly compared to
RRLM. This is because, unlike RRLM we operate at topic
level instead of words directly and the number of topics
is much smaller than the vocabulary size, i.e., K << V .

This allows us to get rid of large V ×H word embedding
look-up table and V × H matrix used in softmax over the
entire vocabulary. Instead we map from hidden to state to
topics first using a K ×H matrix, which will be dense and
then from topics to words using a V ×K matrix under the
Dirichlet-multinomial model similar to LDA which will be
very sparse. Secondly, this model is highly interpretable.
We recover global themes present in the documents as φ.
The LSTM output represents topic proportions for docu-
ment/user at time t. The LSTM input over topics can cap-
ture semantic notion of topics.

3.2. Inference

As the computation of the true posterior of LLA as de-
scribed above is intractable, we have to resort to an ap-
proximate inference technique like mean field variational
inference (Wainwright & Jordan, 2008) or stochastic EM
(SEM) (Zaheer et al., 2016). Below we describe the generic
aspects of the inference algorithm for LLA. Model specific
aspects are relegated to the appendix. 1

Given a document collection, the inference task is to find
the LSTM weights and word|topic probability matrix φ.
This can be carried out using SEM. We begin by writing
out the likelihood and lower bounding it as,∑

d

log p(wd|LSTM,φ)

≥
∑
d

∑
zd

q(zd) log
p(zd; LSTM)

∏
t p(wd,t|zd,t;φ)

q(zd)
,

(1)
for any distribution q. Then the goal is to ensure an increase
in this evidence lower bound (ELBO) with each iteration in
expectation. Following the suit of most EM based inference
methods, each iteration involves two phases, each of which
is described below:

SE-step: For fixed LSTM parameters andφ, we sample the
topic assignments z. This acts as an unbiased sample esti-
mate of the expectation with respect to the conditional dis-
tribution of z required in traditional EM. This sampled es-
timate not only enjoys similar statistical convergence guar-
antees (Nielsen, 2000) but also provides many computa-
tional benefits like speed-up and reduced memory band-
width requirements (Zaheer et al., 2016).

Under LLA, the conditional probability for topic at time
step t given word at time t and past history of topics is,
p(zd,t = k|wd,t, zd,1:t−1; LSTM,φ)

∝ p(zd,t = k|zd,1:t−1; LSTM)p(wd,t|zd.t = k;φ)
(2)

The first term represents probability of various topics pre-
dicted by LSTM dynamics after final softmax and sec-
ond term comes from multinomial-Dirichlet word emission
model given the topic. Naı̈vely sampling from this distribu-
tion would cost O(KH +H2) per word.

1Available at http://manzil.ml/lla.html

http://manzil.ml/lla.html
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Figure 3. Different parameters employed by LDA, LSTM and LLA. K is number of topics, V, is vocabulary size, and H is the dimension
of LSTM state. (a) Topics of LDA, (b) word embedding of LSTM (c) factored topic embedding of LLA.

Optionally, one could speed up this sampling. Note that the
second term in (2) has a sparse structure. For sampling from
(2) the computation of the normalizer is not essential. To
elaborate, let us define nwk as the number of times word w
currently assigned to topic k and nk as the number of to-
kens assigned to topic k. Explicitly writing down first term:

p(wd,t = w|zd,t = k,φ) = φwk =
nwk + β

nk + V β

=
nwk

nk + V β︸ ︷︷ ︸
sparse

+
β

nk + V β︸ ︷︷ ︸
dense

(3)

There is an inherent sparsity present in nwk, as a given
word would be typically about only a handful of topics,
Kw � K. The second term represents the global count
of tokens in the topic and will be dense, regardless of the
number of documents, words or topics.

Following (Li et al., 2014), we devise an optional fast sam-
pling strategy for exploiting this sparsity and construct a
Metropolis-Hastings sampler. The idea is to replace the low
weight dense term by a cheap approximation, while keep-
ing the high weight sparse term exact. This leads to a pro-
posal distribution that is close to (2), while at the same time
allowing us to draw from it efficiently:
• First draw a biased coin to decide whether to draw from

the sparse nwk term or from the dense term. The bias is

b =
p

p+ q
, where

p =
∑

k:nwk 6=0

nwk
nk + V β

p(zd,t = k|zd,1:t−1; LSTM)

q =
∑
k

β

nk + V β
(pre-computed).

• If we draw from the sparse term, the cost is O(KwH +
H2), else the cost is O(H2) using the alias trick.

• Finally, perform a MH accept/reject move by comparing
the approximation with the true distribution.

M-step: For fixed topic assignment z, update the φ and
LSTM so as to improve the likelihood in expectation. As

the dependence of likelihood on LSTM parameters and
φ are independent given z, we can update them indepen-
dently and in parallel. For the former, we use the closed
form expression for the maximizer,

φwk =
#{wd,t = w and zd,t = k}+ β

#{nwk = k}+ V β
=
nwk + β

nk + V β
,

and for the latter we resort to stochastic gradient ascent
which will increase the likelihood in expectation.

The execution of the whole inference and learning process
includes several iterations involving the above mentioned
two phases as outlined in Algorithm 1. This inference pro-
cedure is not an ad-hoc method, but an instantiation of the
well studied SEM method. We ensure that in each iteration
we increase the ELBO in expectation. Also, it is just a co-
incidence that for all such latent variable models the equa-
tions for SE-step looks like Gibbs sampling. (Exploiting
this coincidence, in fact, one can prove that parallel Gibbs
update will work for such models, cf (Tassarotti & Steele Jr,
2015; Zaheer et al., 2016) whereas in general parallel Gibbs
sampling fails miserably e.g. for Ising models.) Moreover,
we found empirically that augmenting the SEM inference
with a beam search improved the performance.

Automatic differentiation software packages such as Ten-
sorFlow (Abadi et al., 2015) significantly speed up devel-
opment time, but have limited control structures and in-
dexing. Whereas random sampling requires varied control
statements, thus was implemented separately on the CPU.
Furthermore, the SEM saved us precious GPU-CPU band-
width by transmitting only an integer per token instead of a
K-dimensional variational parameter.

3.3. Adding Context

Utilizing the word or user action, wd,t, directly would be
more informative to model the dynamics and predict the
next topic. For example, rather than only knowing the
previous action belonged to “electronics purchase” topic,
knowing exactly that a camera was bought, makes it easier
to predict user’s next interest, e.g. camera lenses.
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Algorithm 1 Stochastic EM for LLA
Input: Document corpus D.
1: Initialize φ and LSTM with a few iterations of LDA
2: repeat

SE-Step:
3: for all document d ∈ D in parallel do
4: for t← 1 to Nd (possibly with padding) do
5: ∀k ∈ {1, · · · ,K}, i.e., for every topic index

obtain by LSTM forward pass:
πk = φwd,tkp(zd,t = k|zd,1:t−1;LSTM).

6: Sample zd,t ∼ Categorical(π)
7: end for
8: end for

M-Step:
9: Collect sufficient statistics to obtain:

φwk =
nwk + β

nk + V β
, ∀w, k

10: for mini-batch of documents B ⊂ D do
11: Compute the gradient by LSTM backward pass

∂L
∂LSTM

=
∑
d∈B

Nd∑
t=1

∂ log p(zd,t|zd,1:t−1;LSTM)

∂LSTM

12: Update LSTM parameters by stochastic gradient
descent methods such as Adam (Kingma & Ba, 2014).

13: end for
14: until Convergence

In order to incorporate the exact context, we construct a
variant of LLA, called word LLA, where the LSTM is pro-
vided with an embedding of previous word wd,t−1 directly
instead of zd,t−1. The corresponding graphical model is
shown in Figure 2b and the joint likelihood is:∑

d

log p(wd|LSTM, φ)

=
∑
d

∑
t

log
∑
zd,t

p(wd,t|zd,t;φ)p(zd,t|wd,1:t−1; LSTM)

A SEM inference strategy can be devised similar to that of
topic LLA as presented in section 3.2.

However, this modification brings back the model to the
dense and high number of parameter regime as a large train-
able V ×H lookup table for the word embeddings is needed
for the input transformation. This problem can be mitigated
by using char-level LSTM (char LSTM for short) to con-
struct the input transformation. Such character-level LSTM
have recently shown promising results in generating struc-
tured text (Karpathy et al., 2015) as well as in producing
semantically valid word embeddings with a model we will
refer to as char-LSTM) (Ling et al., 2015). The character-
level models do not need the huge lookup table for words,
as they operate directly on the characters and the number of
distinct characters is extremely small. We chose the latter
as our input transformation and briefly describe it below.

The input word w is decomposed into a sequence of char-
acters c1, . . . , cm, where m is the length of w. Each char-
acter ci is transformed using a lookup table and fed into
a bidirectional LSTM The forward LSTM evolves on the
character sequence and produces a final state hfm. While

Model Input Tranformation Output Transformation

word LSTM Word Embedding Softmax over vocabulary
Char LSTM Char Embedding Softmax over vocabulary

Topic LLA Topic Embedding Topic based
Word LLA Word Embedding Topic based
Char LLA Char Embedding Topic based

Table 1. Enumerating different input and output representation,
leading to variants of LLA models. Note we exclude char level
output transformation due to its inapplicability to user modeling.

the backward LSTM receives as input the reverse sequence,
and yields its own final state hb0. Both LSTMs use a differ-
ent set of parameters. The representation ecw of word w is
obtained by combining forward and backward final states:

eCw = Dfsfm + Dbsb0 + bd, (4)

where Df , Db and bd are parameters that determine how
the states are combined. This ecw is provided to the topic
level LSTM as the input providing information about the
word. Thus we are able to incorporate more context infor-
mation by providing some information about the previous
word without the need to have great number of parameters.
We call this model, char LLA.

The different variants of LLA and LSTM as language
model can be unified and thought of having different in-
put and out transformations over LSTM for capturing the
dynamics. The possible combinations are listed in Table 1.
We will study each of them empirically next.

4. Experimental Results
We perform a comprehensive evaluation of our model
against several deep models, dynamic models, and topic
models. For reproducibility we focus on the task of lan-
guage modeling over the publicly available Wikipedia
dataset, and for generality, we show additional experiments
on the less-structured domain of user modeling.

4.1. Setup

For all experiments we follow the standard setup for evalu-
ating temporal models, i.e. divide each document (user his-
tory) into 60% for training and 40% for testing. The task is
to predict the remaining 40% of the document (user data)
based on the representation inferred from the first 60% of
the document. We use perplexity as our metric (lower val-
ues are better) and compare our models (topic-LLA, word-
LLA, and char-LLA) against the following baselines:
• Autoencoder: A feed forward neural network that com-

prises of encoder and decoder. The encoder projects the
input data into a low-dimensional representation and the
decoder reconstructs the input from this representation.
The model is trained to minimize reconstruction error.

• LSTMs: We consider both word-level LSTM language
model (word-LSTM) and character-level hierarchical
LSTM (char-LSTM) language model.
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(a) Wikipedia (b) User search click history
Figure 4. Test perplexity and number of parameters of various models. Bars represent
model sizes and the solid curve represents perplexity over testset (lower is better).

Wikipedia
Figure 5. The effect of the number of topics
over the performance of LDA and LLA.

• LDA: The vanilla version trained using collapsed Gibbs
sampling over the bag of word representation.

• ddLDA: Distance-dependent LDA is a variant of LDA
incorporating the word sequence. It is based on a fixed-
dimensional approximaiton of the distance-dependent
Dirichlet process (Blei & Frazier, 2011). In this model
a word is assigned to a topic based on the popularity of
the topics assigned to nearby words. Note that this model
subsumes other LDA-based temporal models such as hid-
den Markov topic Model (Andrews & Vigliocco, 2010)
and RCRP based models (Ahmed & Xing, 2008).

We trained all deep models using stochastic gradient decent
with Adam (Kingma & Ba, 2014). All LSTM and LLA
based models used the sampled softmax method for effi-
ciency (Cho et al., 2015). Finally, all hyper-parameters of
the models were tuned over a development set.

4.2. Language modeling

We used the publicly available Wikipedia dataset to eval-
uate the models on the task of sequence prediction. Ex-
tremely short documents, i.e. documents having length less
than 500 words were excluded. The dataset contains ~0.7
billion tokens and ~1 million documents. The most fre-
quent 50k word-types were retained as our vocabulary. Un-
less otherwise stated, we used 1000 topics for LLA and
LDA variants. For LSTM and LLA variants, we selected
the dimensions of the input embedding (word or topic) and
evolving latent state (over words or topics) in the range
of {50, 150, 250}. In case of character-based models, we
tuned the dimensions of the character embedding and la-
tent state (over characters) in the range of {50, 100, 150}.

Accuracy vs model size Figure 4(a) compares model
size in terms of number of parameters with model accu-
racy in terms of test perplexity. As shown in the figure,
LDA yields the smallest model size due to the sparsity
bias implicit in the Dirichlet prior over the topic|word dis-
tributions. On the other hand, word-LSTM gives the best
accuracy due to its ability to utilize word level statistics;
however, the model size is order of magnitudes larger than
LDA. Char-LSTM achieves almost 50% reduction in model
size over word-LSTM at the expense of a slightly worse
perplexity. The figure also shows that LLA variants (topic-
LLA, word-LLA, and char-LLA) can trade accuracy vs
model size while still maintaining interpretability since the
output of the LSTM component is always at the topic level.

Note that the figure depicts the smallest word-LSTM at this
perplexity level, as our goal is not to beat LSTM in terms
of accuracy, but rather to provide a tuning mechanism that
can trade-off perplexity vs model size while still maintain-
ing interpretability. Finally, compared to LDA, which is a
widely used tool, LLA variants achieve a significant per-
plexity reduction at a modest increase in model size while
still maintaining topic sparsity. As shown in Figure 1, the
autoencoder model performs poorly in terms of model size
and perplexity thus we eliminated it from Figure 4(a) and
the following figures to avoid cluttering the display.

Convergence over time At first glance, LLA seems to be
more involved than both LDA and LSTM. So, we raise the
question whether the added complexity leads to a slower
training. Figure 8 shows that compared to LSTM based
models, LLA variants achieve comparable convergence
speed. Moreover, compared to fast LDA samplers (Zaheer
et al., 2017), our LLA variants introduce only a modest in-
crease in training time. The figure also shows that charac-
ter based models (char-LSTM and char-LLA) are slightly
slower to train compared to word level variants due to their
nested nature and the need to propagate gradients over both
word and character level LSTMs.

Ablation study Since both LDA and LLA result in inter-
pretable models, we want to explore if LDA can achieve a
perplexity similar to a given LLA model by just increasing
the number of topics in LDA. Figure 5 shows the perfor-
mance of LDA and variants of LLA for different number of
topics. As can be seen from the figure, even with 250 top-
ics, all LLA based models achieve much lower perplexity
than LDA with 1000 topics. In other words, LLA improves
over LDA not because it uses a slightly larger model, but
rather because it models the sequential order in the data.

Interpretability Last but not least, we demonstrate the
interpretability of our models. Similar to LDA, the pro-
posed LLA also uncovers global themes, a.k.a topics preva-
lent in the dataset. We found qualitatively the topics pro-
duced by LLA to be cleaner. For example, in Table 2 we
show a topic about funding, charity, and campaigns recov-
ered by both. LDA includes spurious words like Iowa in
the topic just because it co-occurs in the same documents.
Whereas modeling the temporal aspect allows LLA to cor-
rectly switch topics at different parts of the sentence pro-
ducing cleaner topic regarding the same subject.



Latent LSTM Allocation

LDA foundation, iowa, charity, fund, money, campaign,
raised, donated, funds, donations, raise, support,
charitable, million, donation

LLA fund, foundation, money, funds, support, char-
ity, funding, donations, campaign, raised, donated,
trust, raising, contributions, awareness

Table 2. Cleaner topics produced by LLA vs LDA

Modeling based on only co-occurrences in LDA leads to
further issues. For example, strikes among mine workers
are common, so the two words will co-occur heavily but
it does not imply that strikes and mining should be in the
same topic. LDA assign both the words in the same topic
as shown in Table 3. Modeling sentences as an ordered se-
quence allows distinction between the subjects and objects
in the sentence. In the previous example, this leads to fac-
toring into two separate topics of strikes and mine workers.

The topic LLA provides embedding of the topics in a Eu-
clidean metric space. This embedding allows us to under-
stand the temporal structure learned by the model: topics
close in this space are expected to appear in close sequen-
tial proximity in documents. To understand this, we built
a topic hierarchy using the embeddings which uncovers
interesting facts about the data. For example in Figure 6,
we show a portion of the topic hierarchy discovered by
topic-LLA with 1000 topics. For each topic we list the top
few words. The theme of the figure is countries in Asia. It
groups topics relating to one country together and puts top-
ics related to neighboring countries close by. Three promi-
nent clusters are shown form top to bottom which corre-
sponds to moving from west to east on the map of Asia.
Top cluster is about Arab world, second one represent the
Indian sub-continent, and the third one starts with south-
east Asia like Philippines. (The topic abs gma cbn repre-
sents TV station in south-east Asia.) The complete hier-
archy of topic is very meaningful and can be viewed at
http://manzil.ml/lla.html.

4.3. User modeling

We use an anonymized sample of user search click history
to measure the accuracy of different models on predicting
users’ future clicks. An accurate model would enable better
user experience by presenting the user with relevant con-
tent. The dataset is anonymized by removing all items ap-
pearing less than a given threshold, this results in a dataset
of ~50 million tokens, and 40K vocabulary size. This do-
main is less structured than the language modeling task
since users’ click patterns are less predictable than the se-
quence of words which follow definite syntactic rules. We
used a setup similar to the one used in the experiments over
the Wikipedia dataset for parameters ranges and selections.

Figure 4(b) gives the same conclusion as Figure 4(a): LLA
variants achieve significantly lower perplexity compared to
LDA and at the same time they are considerably smaller
models compared to LSTM. Furthermore, even compared

LDA strike, strikes, striking, miners, strikers, workers
workers, day, began, general, called, pinkerton,
action, hour, hunger, keefe

LLA union, unions, strike, workers, labor, federation,
trade, afl, bargaining, cio, organization, relations,
strikes, national, industrial
mining, coal, mine, mines, gold, ore, miners, cop-
per, iron, rush, silver, mineral, deposits, minerals,
mined

Table 3. Factored topics produced by LLA vs LDA

to ddLDA, an improved variant of LDA, our proposed LLA
achieves better perplexity. ddLDA models time by intro-
ducing smoothness constraints that bias future actions to
be generated from recent topics; however, it does not pos-
sess a predictive action model. As a result, it can neither
model the fact that “booking a flight” topic should not be
repeated over a short course of time nor that “booking a
hotel” topic would likely follow shortly, but not necessar-
ily immediately, after “booking a flight” topic. LLA, on the
other hand, is capable of capturing this intricate dynamics
by modeling the evolution of user topics via an LSTM – an
extremely powerful dynamic model. This point is more ev-
ident if we consider the following hand-crafted2 user click
trace in context of the topics depicted in Figure 7:

theknot.com zola.com weddingwire.com
www.bridalguide.com pinterest.com food.com doity-
ourself.com .....

There are four topics represented and color-coded (best
viewed in color): wedding (sixth topic from top), social me-
dia (fourth from top), food (third form bottom) and home
improvement (second form top) – all in Figure 7. We asked
each model to predict what would be the three most likely
topics that would appear next in current user’s session.
LDA predicted wedding as the top topic followed by a tie
for the remaining topics. ddLDA, whose output is based
on exponential decay, yields wedding as most likely, fol-
lowed by doityourself topic, and then the food topic as ex-
pected. In contrast, LLA ranks the most likely three topics
as: doityourself topic, houzz topic (top topic in Figure 7),
and the wedding topic. This is indicative of LLA learning
that once a user starts in the doitourself topic, the user will
stay longer in this part of the tree for the task and wander in
the nearby topics for a while. Moreover, LLA still remem-
bers the wedding topic, and unlike other models, LLA did
not erroneously pick neighbors of the wedding topic among
the three most likely topics to follow.

Finally, to demonstrate the interpretability of our model,
in Figure 7, we show a portion of the topic hierarchy dis-
covered by topic-LLA with 250 topics. For each topic we
list the top few clicked items. The theme of the figure is
wedding and various house chores. Three prominent clus-
ters are shown from top to bottom. The top cluster is about
house renovations and wedding. Second cluster captures

2For privacy concerns, we construct an artificial example
manually for illustration purposes.

http://manzil.ml/lla.html
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Figure 6. Topic embedding discovered form the
Wikipedia dataset

Figure 7. Topic embedding discovered form the
user search click history

Figure 8. Convergence
speed for various models.

makeup, designer shoes, and fashion. The bottom cluster
capture kitchen, cooking and gardening. It is clear form the
hierarchy that LLA groups topics into the embedding space
based on sequential proximity in the search click history.

4.4. Effect of Joint Training

One might wonder what would happen if we first train
LDA and then simply train LSTM over the topic assign-
ments from the LDA. We refer to this baseline as “inde-
pendent learner” since LDA and LSTM are trained inde-
pendently. In Table 4, we compare its performance against
LLA, which jointly learns the topics and the evolution dy-
namics. As we can see, joint training is significantly better,
since the LSTM will fit the random errors introduced by the
topic assignments inferred form the LDA model, and in fact
LSTM will learn to be as good as the sequence produced by
an LDA model (which is time-oblivious to start with). The
effect is more pronounced in the user history data due to
the unstructured nature of this domain.

Dataset Independent learner Joint learner

Wikipedia 2119 1785
User Click 1572 927

Table 4. Advantage in terms of perplexity for joint learning.

5. Related Works & Discussions
In this paper we present LLA: Latent LSTM allocation.
LLA leverages the powerful dynamic modeling capability
of LSTM without blowing up the number of parameters
while adding interpretability to the model. We achieve this
by shifting from modeling the temporal dynamics at the
observed word level to modeling the dynamics at a higher
level of abstraction: topics. As the number of topics K is
much smaller than the number of words V , it can act as a
knob that can trade-off accuracy vs model size. In the ex-
treme case, if we allow K → V in LLA then we recover
LSTM. Furthermore, the topics provide an informative em-
bedding that can reveal interesting temporal relationship as
shown in Figure 6 and 7 – which is a novel contribution to
the best of our knowledge.

Our work is related to various dynamic topic models, how-
ever, previous works like ddLDA (ddCRP in general) or
hidden Markov topic models provide only limited model-
ing capabilities of the temporal dynamics. Specifically, they
impose smoothness constraints: i.e. topic of a word is bi-
ased toward nearby topics. This constraint cannot learn a
predictive action model, e.g. after “booking a flight” topic,
the “booking a hotel” topic is likely to follow. Moreover,
Internet users often wander between related activities, e.g
“booking a hotel” topic will happen shortly after “booking
a flight”, but not necessarily immediately as the user might
have been interrupted by something else. Thus we need a
much richer temporal model such as an LSTM. Our quan-
titative results against ddLDA confirm this claim.

Another similar work would be lda2vec (Moody, 2016),
where LDA is combined with local context in a fixed win-
dow size. This provides a sparse, interpretable model but
lacks modeling the temporal aspect. The model cannot be
used in a predictive-action setting. Also the sparsity is only
in terms of per document parameters, whereas it suffers
from huge dense of size vocabulary times embedding size.

Another relevant recent work is Sentence Level Recurrent
Topic Model (SLRTM) (Tian et al., 2016). However, this
model cannot capture long-range temporal dependencies,
as the topic for each sentence is still decided using an ex-
changeable (non-sequential) Dirichlet-multinomial scheme
similar to the LDA. It might be able to preserve local sen-
tence structure or grammar, but that is particularly not very
useful for the task of user modeling. Furthermore, as it con-
tains RNN that operates on the entire vocabulary (not topic
as in our case), the SLTRM has lots of parameters.

Finally our work is related to recent work in recurrent latent
variable models (Chung et al., 2015; Gemici et al., 2017)
where a recurrent model is endowed with latent variables to
model variability in the input data. However, they mainly
focused on continuous input space such as images and
speech data which enables the use of variational autoen-
coder techniques to learn the model parameters. Whereas in
this paper, we focus on discrete data that are not amenable
to the standard variational autoencoder techniques and as
such we developed an efficient SEM algorithm instead.
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