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A. Proof of Lemma 4
Proof. Combining Lemma 2 and Lemma 3, we can obtain
the concrete recursion

ht+1,i ≤ (1− σt,i)ht,i + σ2
t,iD

2

+ ηi(
1 + σ2(P )

1− σ2(P )
√
n+ 1)L

√
ht+1,i.

As the parameters ηi and σt,i are chosen such that
ηi(

1+σ2(P )
1−σ2(P )

√
n + 1)L

√
ht+1,i ≤ σ2

t,iD
2, we can then ob-

tain the following compact recursion

ht+1,i ≤ (1− σt,i)ht,i + 2D2σ2
t,i.

Now based on this recursion, we can prove the bound in the
lemma by induction.

First, the base case of induction is true for t = 1 since by
definition we have

h1,i = F1,i(xi(1))− F1,i(x
∗
i (1))

= ‖xi(1)− x1(1)‖2 − ‖x∗i (1)− x1(1)‖2

≤ 2D2

≤ 4D2σ1,i.

Second, assuming that the bound is true for t, we now show
that it also holds for t+ 1:

ht+1,i ≤ (1− σt,i)ht,i + 2D2σ2
t,i

≤ 4D2σt,i(1− σt,i) + 2D2σ2
t,i

= 4D2σt,i(1− σt,i +
σt,i
2

)

= 4D2σt,i(1−
σt,i
2

)

≤ 4D2σt+1,i.

The last inequality follows from the definition of σt,i,
which can be proved in the following section.

B. Proof of the last inequality in Lemma 4
For the sequence σt,i = 1√

t
, t = 1, 2, · · · , T , the following

inequality holds

σt,i(1−
σt,i
2

) ≤ σt+1,i.

Proof. The inequality we need to prove is

1√
t
(1− 1

2
√
t
) ≤ 1√

t+ 1
.

Note that, for the right side, we have the following identity

1√
t+ 1

=
1√
t

√
t√

t+ 1
.

Thus, dividing both sides by the common 1√
t
, we reach the

following equivalent inequality

1− 1

2
√
t
≤

√
t√

t+ 1
.

By rewriting, we have

1− 1

2
√
t
≤ 1−

√
t+ 1−

√
t√

t+ 1
.

It then follows that
√
t+ 1−

√
t√

t+ 1
≤ 1

2
√
t
.

Multiplying
√
t+ 1

√
t in both sides, we obtain

(
√
t+ 1−

√
t)
√
t ≤
√
t+ 1

2
,

which is equivalent to the following

√
t2 + t ≤

√
t+ 1

2
+ t.

Squaring both sides, we have

t2 + t ≤ t2 + t+ 1

4
+ t
√
t+ 1.

Clearly, this inequality holds for any t = 1, · · · , T , since

t ≤ t+ 1

4
+ t
√
t+ 1.

C. Proof of Lemma 6
Proof. We adopt the same notations used in the proof of
Lemma 3. From there, we have

zi(t) =

t−1∑
r=1

n∑
j=1

P t−r−1ij gj(r).
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To proceed, we first introduce another auxiliary sequence
which are composed of the averages of the subgradients
over all nodes i at each iteration

ḡ(t) =
1

n

n∑
i=1

gi(t).

Then we can show that the averaged dual variable z̄(t)
evolves in a quite simple way

z̄(t+ 1) =
1

n

n∑
i=1

(

n∑
j=1

Pijzj(t) + gi(t))

=
1

n

n∑
j=1

n∑
i=1

Pijzj(t) + ḡ(t)

= z̄(t) + ḡ(t).

The last equation follows from the doubly stochastic prop-
erty of matrix P . Based on the above recursion, we can
easily deduce that

z̄(t) =

t−1∑
r=1

ḡ(r) =
1

n

t−1∑
r=1

n∑
j=1

gj(r).

Hence,

zi(t)− z̄(t) =

t−1∑
r=1

n∑
j=1

(P t−r−1ij − 1

n
)gj(r).

Then using the fact that ‖gi(t)‖ ≤ L, and the properties of
norm functions and matrices, we obtain

‖zi(t)− z̄(t)‖

=

∥∥∥∥∥∥
t−1∑
r=1

n∑
j=1

(P t−r−1ij − 1

n
)gj(r)

∥∥∥∥∥∥
≤

t−1∑
r=1

n∑
j=1

∣∣∣∣P t−r−1ij − 1

n

∣∣∣∣ ∥∥gj(r)∥∥
≤ L

t−1∑
r=1

∥∥P t−r−1i − 1/n
∥∥
1

= L

t−1∑
r=1

∥∥P t−r−1ei − 1/n
∥∥
1
.

Since the following inequality holds for any non-negative
integer s

‖P sei − 1/n‖1 ≤ σ2(P )
s
√
n,

we have

‖zi(t)− z̄(t)‖ ≤ L
t−1∑
r=1

σ2(P )
t−r−1√n

=
(1− σ2(P )t−1)

√
nL

1− σ2(P )

≤
√
nL

1− σ2(P )
.

The above equation and the last inequality follow respec-
tively from the summation formula of geometric series and
the fact that σ2(P ) < 1 when P is a doubly stochastic ma-
trix (Berman & Plemmons, 1979).

D. Proof of Lemma 7
Proof. According to (Hosseini et al., 2013), the D-ODA
algorithm with parameters α(t) applied to loss functions
that are L-Lipschitz with respect to a general norm attains
the following regret bound

RaT (xi,x) ≤
L2

2

T−1∑
t=1

α(t) +
1

α(T )
ψ(x)

+ L

T∑
t=1

α(t)‖zi(t)− z̄(t)‖∗

+
2L

n

T∑
t=1

α(t)

n∑
j=1

‖zj(t)− z̄(t)‖∗,

where ‖·‖∗ denotes the corresponding dual norm.

Note that the norm we utilize is the L2 norm and its
dual norm is itself. Thus we can apply the bound for
‖zi(t)− z̄(t)‖ in Lemma 6 here. Combining it with the

fact that
T−1∑
t=1

α(t) ≤
T∑
t=1

α(t), the fact that ψ(x) =

‖x− x1(1)‖2 ≤ D2 and setting α(t) = η yields the stated
regret bound in the lemma.

E. Verification of the validity of ηi
Proof. As ηi =

(1−σ2(P ))D
2(
√
n+1+(

√
n−1)σ2(P ))LT 3/4 , we have

ηi(
1 + σ2(P )

1− σ2(P )
√
n+ 1)L

√
ht+1,i =

D
√
ht+1,i

2T 3/4
.

By Lemma 4 and definition of σt,i, we have

ht+1,i ≤ 4D2σt+1,i ≤ 4D2σt,i.

It then follows that

D
√
ht+1,i

2T 3/4
≤
σ
1/2
t,i

T 3/4
D2.



Projection-free Distributed Online Learning in Networks: Appendix

We thus only need to verify that the following inequality
holds for any t = 1, · · · , T

σ
1/2
t,i

T 3/4
D2 ≤ σ2

t,iD
2.

This clearly holds since for any t = 1, · · · , T

1

T 3/4
≤ σ3/2

t,i =
1

t3/4
.

Thus, the choice of ηi satisfies the constraint required in
Lemma 4.
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