
Projection-free Distributed Online Learning in Networks

Wenpeng Zhang 1 Peilin Zhao 2 Wenwu Zhu 1 Steven C. H. Hoi 3 Tong Zhang 4

Abstract
The conditional gradient algorithm has regained
a surge of research interest in recent years due
to its high efficiency in handling large-scale ma-
chine learning problems. However, none of ex-
isting studies has explored it in the distributed
online learning setting, where locally light com-
putation is assumed. In this paper, we fill this gap
by proposing the distributed online conditional
gradient algorithm, which eschews the expensive
projection operation needed in its counterpart al-
gorithms by exploiting much simpler linear op-
timization steps. We give a regret bound for
the proposed algorithm as a function of the net-
work size and topology, which will be smaller on
smaller graphs or ”well-connected” graphs. Ex-
periments on two large-scale real-world datasets
for a multiclass classification task confirm the
computational benefit of the proposed algorithm
and also verify the theoretical regret bound.

1. Introduction
The conditional gradient algorithm (Frank & Wolfe,
1956) (also known as Frank-Wolfe) is historically the ear-
liest algorithm for solving general constrained convex op-
timization problems. Due to its projection-free property
and ability to handle structural constraints, it has regained
a significant amount of interest in recent years. Different
properties concerning the algorithm, such as the sparsity
property (Clarkson, 2010) and the primal-dual convergence
rate (Jaggi, 2013), have been analyzed in details. Many
different algorithm variants, such as the composite vari-
ant (Harchaoui et al., 2015), the online and stochastic vari-
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ants (Hazan & Kale, 2012) (Hazan, 2016) (Hazan & Luo,
2016), faster variants over special types of convex domains,
i.e. spectrahedron (Garber, 2016) and polytope (Garber &
Hazan, 2016), have also been proposed.

However, despite this great flourish of research on condi-
tional gradient, its distributed online variant over networks
has rarely been investigated. In comparison to this situation
is the popularity of the variants of its gradient descent and
dual averaging counterparts—distributed online gradient
descent (D-OGD) (Ram et al., 2010) (Yan et al., 2013) and
distributed online dual averaging (D-ODA) (Duchi et al.,
2012) (Hosseini et al., 2013) (Lee et al., 2015), which have
been successfully applied in handling large-scale stream-
ing data in decentralized computational architectures (e.g.,
sensor networks and smart phones). Despite the success of
these algorithms, the projection operation required in them
still limits their further applicability in many settings of
practical interests. For example, in matrix learning (Dudı́k
et al., 2012), multiclass classification (Hazan & Luo, 2016)
and many other related problems, where the convex domain
is the set of all matrices with bounded nuclear norm, the
projection operation amounts to computing the full singu-
lar value decomposition (SVD) of a matrix, too expensive
an operation that does not meet the need of locally light
computation in distributed online learning. To avoid this
kind of expensive operation, the distributed online variant
of conditional gradient is desired since it is expected to be
able to eschew the projection operation by using a linear
minimization step instead. In the aforementioned case, the
linear step amounts to finding the top singular vector of a
matrix, which is at least one order of magnitude simpler.
However, how to design and analyze this variant remains
an open problem.

To fill this gap, in this work, we present the distributed on-
line conditional gradient (D-OCG) algorithm as the desired
variant. This algorithm is a novel extension of the previous
online variant (Hazan, 2016), in which each local learner
communicates its dual variables with its neighbors to coop-
erate with each other. We present highly non-trivial anal-
ysis of the regret bound for the proposed algorithm, which
can capture the intuition that the algorithm’s regret bound
should be larger on graphs with more nodes and should be
smaller on ”well-connected” graphs (e.g., complete graphs)
than on ”poorly connected” graphs (e.g., cycle graphs). We
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evaluate the performance of the D-OCG algorithm on two
large-scale real-world datasets for a multiclass classifica-
tion task. The experimental results show that D-OCG runs
significantly faster than both D-OGD and D-ODA. This il-
lustrates that although the regret bound for D-OCG is in
higher order O(T 3/4) than those in order O(T 1/2) for D-
OGD and D-ODA, its lower computational cost per itera-
tion outweighs the increased number of iterations, making
it overall a faster algorithm. The theoretical results regard-
ing the algorithm’s regret bound for different graphs are
also well confirmed.

2. Preliminaries
In this section, we first give a formal definition of the dis-
tributed online convex optimization problem, and then re-
view the two algorithms that our algorithm are built upon.

2.1. Distributed Online Convex Optimization

Let G = (V,E) denote an undirected graph with vertex
set V = {1, · · · , n} and edge set E ⊂ V × V . In dis-
tributed online convex optimization defined overG (see the
book (Sayed et al., 2014) and the survey (Hazan, 2016) for
more details), each node i ∈ V is associated with a sep-
arate agent or learner. At each round t = 1, · · · , T , each
learner i ∈ V is required to generate a decision point xi(t)
from a convex compact set K ⊆ Rm. Then the adversary
replies each learner’s decision with a convex loss function
ft,i : K → R and each learner suffers the loss ft,i(xi(t)).
The communication between learners is specified by the
graph G: learner i can only communicate directly with its
immediate neighbors N(i) = {j ∈ V |(i, j) ∈ E}. The
goal of the learners is to generate a sequence of decision
points xi(t), i ∈ V so that the regret with respect to each
learner i regarding any fixed decision x ∈ K in hindsight,

RT (xi,x) =

n∑
j=1

T∑
t=1

(ft,j(xi(t))− ft,j(x)),

is sublinear in T .

We make the following assumptions: (1) each function
ft,i(x) is L-Lipschitz with respect to the L2 norm ‖·‖ on
K, i.e. ∀ x,y ∈ K, |ft,i(x)− ft,i(y)| ≤ L ‖x− y‖ . Note
that the Lipschitz condition implies that for any x ∈ K and
any∇ft,i(x) ∈ ∂ft,i(x), we have ‖∇ft,i(x)‖ ≤ L. (2) the
Euclidean diameter of K is bounded by D, i.e. ∀x,y ∈ K,
‖x− y‖ ≤ D.

Two definitions are important for deriving useful proper-
ties. We say that a function f is β-smooth if ∀x,y ∈ K,
we have

f(y) ≤ f(x) + 〈∇f(x) , y − x〉+
β

2
‖y − x‖2.

We say that a function f is σ-strongly convex if ∀x,y ∈
K, we have

f(y) ≥ f(x) + 〈∇f(x) , y − x〉+
σ

2
‖y − x‖2.

A σ-strongly convex function f has a very important prop-
erty: if x∗ = arg minx∈Kf(x), then for any x ∈ K, we
have

f(x)− f(x∗) ≥ σ

2
‖x− x∗‖2.

2.2. Distributed Online Dual Averaging

In the distributed online dual averaging algorithm (Duchi
et al., 2012) (Hosseini et al., 2013), each learner i ∈ V
maintains a sequence of iterates xi(t) and a sequence
of dual variables zi(t). At each round t = 1, · · · , T ,
each learner i first computes the new dual variable zi(t +
1) from a weighted combination of its new subgradient
gi(t) and other dual variables {zj(t), j ∈ N(i)} received
from its neighbors, then updates the iterate xi(t + 1)

via a proximal projection
∏ψ
K(zi(t + 1), αi(t)), where

αi(t) is a positive number from a non-increasing se-
quence, ψ(x) : K → R is a proximal function and∏ψ
K(z, α) = arg minx∈K

{
〈z , x〉+ 1

αψ(x)
}

denotes
the projection onto K operator specified by z, α and
ψ(x) (see (Nesterov, 2009) (Xiao, 2010) for more details).
The communication between learners is modeled by a dou-
bly stochastic symmetric matrix P , which satisfies (1)
Pij > 0 only if (i, j) ∈ E (i 6= j) or i = j; (2)
∀ i ∈ V ,

∑n
j=1 Pij =

∑
j∈N(i) Pij = 1 and ∀ j ∈ V ,∑n

i=1 Pij =
∑
i∈N(j) Pij = 1.

Algorithm 1 Distributed Online Dual Averaging (D-ODA)
1: Input: convex set K, maximum round number T ,
2: parameters {αi(t)}, ∀ i ∈ V
3: Initialize: xi(1) ∈ K, zi(1) = 0, ∀ i ∈ V
4: for t = 1, · · · , T do
5: The adversary reveals ft,i, ∀ i ∈ V
6: Compute subgradients gi(t) ∈ ∂ft,i(xi(t)), ∀ i ∈ V
7: for Each Learner i ∈ V do
8: zi(t+ 1) =

∑
j∈N(i) pijzj(t)+gi(t)

9: xi(t+ 1) =
∏ψ
K(zi(t+ 1), αi(t))

10: end for
11: end for

2.3. Online Conditional Gradient

The standard online conditional gradient algorithm (Hazan
& Kale, 2012) (Hazan, 2016) eschews the computational
expensive projection operation by using a simple linear op-
timization step instead and is thus much more efficient for
many computationally intensive tasks.
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Algorithm 2 Online Conditional Gradient (OCG)
1: Input: convex set K, maximum round number T ,
2: parameters η and {σt}
3: Initialize: x1 ∈ K
4: for t = 1, · · · , T do
5: The adversary reveals ft
6: Compute a subgradient gt ∈ ∂ft(xt)
7: Ft(x) = η

∑t−1
i=1 〈gi , x〉+ ‖x− x1‖2

8: vt = arg minx∈K {〈∇Ft(xt) , x〉}
9: xt+1 = xt + σt(vt − xt)

10: end for

3. Distributed Online Conditional Gradient
In this section, we first present the proposed distributed on-
line conditional gradient algorithm, and then give the theo-
retical analysis of its regret bound.

3.1. Algorithm

Algorithm 3 Distributed Online Conditional Gradient (D-
OCG)

1: Input: convex set K, maximum round number T ,
2: parameters {ηi} and{σt,i}, ∀ i ∈ V
3: Initialize: xi(1) ∈ K, zi(1) = 0, ∀ i ∈ V
4: for t = 1, · · · , T do
5: The adversary reveals ft,i, ∀ i ∈ V
6: Compute subgradients gi(t) ∈ ∂ft,i(xi(t)), ∀ i ∈ V
7: for Each Learner i ∈ V do
8: Ft,i(x) = ηi 〈zi(t) , x〉+ ‖x− x1(1)‖2
9: vi(t) = arg minx∈K {〈∇Ft,i(xi(t)) , x〉}

10: xi(t+ 1) = xi(t) + σt,i(vi(t)− xi(t))
11: zi(t+ 1) =

∑
j∈N(i) pijzj(t)+gi(t)

12: end for
13: end for

3.2. Analysis

Theorem 1. The D-OCG algorithm with parameters ηi =
(1−σ2(P ))D

2(
√
n+1+(

√
n−1)σ2(P ))LT 3/4 and σt,i = 1√

t
for any i ∈ V

and any t = 1, · · · , T attains the following regret bound

RT (xi,x) ≤ 8nLDT 3/4

+
6
√
n+ 1− σ2(P )

4(
√
n+ 1 + (

√
n− 1)σ2(P ))

LDT 1/4

+
2(
√
n+ 1 + (

√
n− 1)σ2(P ))

1− σ2(P )
LDT 3/4,

where σ2(P ) denotes the second largest eigenvalue of ma-
trix P and 1 − σ2(P ) denotes the corresponding spectral
gap value.

Remark. (1) The regret bound for D-OCG is in the
similar order O(T 3/4) to that of its centralized variant

OCG (Hazan, 2016). (2) Since the connectivity of a graph
is captured by its spectral gap value 1−σ2(P ) (Duchi et al.,
2012) (Colin et al., 2016): the better the connectivity of a
graph is, the larger the spectral gap value will be, it is easy
to verify that this theorem captures the intuition that the
D-OCG’s regret bound will be larger on larger graphs (the
regret bound will be larger when the node size n is larger
for all T ) and will be smaller on ”well-connected” graphs
than on ”poorly connected” graphs (the regret bound will
be smaller when the spectral gap value is larger for certain
large T ).

To analyze the regret bound for D-OCG, we first establish
its connection to D-ODA. To this end, we consider the fol-
lowing points

x∗i (t) = arg min
x∈K

Ft,i(x),

where Ft,i(x) are the functions defined in line 8 in D-OCG.
Actually, these points are exactly the iterates of D-ODA
with regularization ψ(x) = ‖x− x1(1)‖2 applied to the
following loss functions

f̃t,i(x) = ft,i(x + (xi(t)− x∗i (t))).

Note that these loss functions are not the same as the orig-
inal ft,i(x) in D-OCG. The reason is that the subgradients
used in the aforementioned D-ODA are ∂ft,i(xi(t)) rather
than ∂ft,i(x∗i (t)). Indeed, in this algorithm, the subgradi-
ents are evaluated at the points x∗i (t), thus the correspond-
ing loss functions f̃t,i(x) should satisfy

∂f̃t,i(x
∗
i (t)) = ∂ft,i(xi(t)).

This clearly holds by definition of f̃t,i(x).

Based on the above preparation, we can now present the
following lemma.

Lemma 1. For any fixed i ∈ V , the following bound holds
for any j ∈ V and any x ∈ K

T∑
t=1

(ft,j(x
∗
i (t))− ft,j(x))

≤ 2L

T∑
t=1

∥∥xj(t)− x∗j (t)
∥∥+

T∑
t=1

(f̃t,j(x
∗
i (t))− f̃t,j(x)).

Proof. By definition of f̃t,j(x) and the Lipschitz-ness of
ft,j(x), for any x ∈ K, we have∣∣∣f̃t,j(x)− ft,j(x)

∣∣∣ ≤ L∥∥xj(t)− x∗j (t)
∥∥ .

Then by plugging in two auxiliary terms in each difference
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ft,j(x
∗
i (t))− ft,j(x), we obtain

T∑
t=1

(ft,j(x
∗
i (t))− ft,j(x))

=

T∑
t=1

(ft,j(x
∗
i (t))− f̃t,j(x∗i (t)) + f̃t,j(x)− ft,j(x)

+ f̃t,j(x
∗
i (t))− f̃t,j(x))

≤
T∑
t=1

∣∣∣ft,j(x∗i (t))− f̃t,j(x∗i (t))∣∣∣
+

T∑
t=1

∣∣∣f̃t,j(x)− ft,j(x)
∣∣∣

+

T∑
t=1

(f̃t,j(x
∗
i (t))− f̃t,j(x))

≤ 2L

T∑
t=1

∥∥xj(t)− x∗j (t)
∥∥+

T∑
t=1

(f̃t,j(x
∗
i (t))− f̃t,j(x)).

Notice that the last summation in the above bound is ex-
actly the part of the regret of D-ODA incurred by learner
j with respect to learner i. Thus, to proceed, we require
lemmas that allow us to relate the iterates xi(t) to the it-
erates x∗i (t). Let ht,i(x) = Ft,i(x) − Ft,i(x

∗
i (t)) and

ht,i = ht,i(xi(t)). In the following, we first present a
lemma that establishes the recursion between ht+1,i and
ht,i.

Lemma 2. The following recursion between ht+1,i and
ht,i holds for any i ∈ V and any t = 1, · · · , T

ht+1,i ≤ (1− σt,i)ht,i + σ2
t,iD

2

+ ηi ‖zi(t+ 1)− zi(t)‖
√
ht+1,i,

where zi(t) denotes the dual variable defined in D-OCG.

Proof. Using the definitions of ht,i(x) and xi(t + 1), the
fact that Ft,i(x) are 2-smooth and the boundedness of K,
we obtain

ht,i(xi(t+ 1)) = Ft,i(xi(t) + σt,i(vi(t)− xi(t)))

− Ft,i(x∗i (t))
≤ Ft,i(xi(t))− Ft,i(x∗i (t))

+ σt,i 〈∇Ft,i(xi(t)) , vi(t)− xi(t)〉

+ σ2
t,i ‖vi(t)− xi(t)‖2

≤ Ft,i(xi(t))− Ft,i(x∗i (t))
+ σt,i 〈∇Ft,i(xi(t)) , vi(t)− xi(t)〉
+ σ2

t,iD
2.

By the optimality of vi(t), we have

〈∇Ft,i(xi(t)) , vi(t)〉 ≤ 〈∇Ft,i(xi(t)) , x∗i (t)〉 .

By the convexity of Ft,i(x), we have

〈∇Ft,i(xi(t)) , x∗i (t)− xi(t)〉 ≤ Ft,i(x∗i (t))−Ft,i(xi(t)).

Putting the above three inequalities together, we obtain

ht,i(xi(t+ 1)) ≤ Ft,i(xi(t))− Ft,i(x∗i (t))
+ σt,i(Ft,i(x

∗
i (t))− Ft,i(xi(t)))

+ σ2
t,iD

2

= (1− σt,i)(Ft,i(xi(t))− Ft,i(x∗i (t)))
+ σ2

t,iD
2

= (1− σt,i)ht,i + σ2
t,iD

2.

Next, by definition of ht+1,i and the optimality of x∗i (t),
we have

ht+1,i = Ft+1,i(xi(t+ 1))− Ft+1,i(x
∗
i (t+ 1))

= Ft,i(xi(t+ 1))− Ft,i(x∗i (t+ 1))

+ (Ft+1,i(xi(t+ 1))− Ft,i(xi(t+ 1)))

− (Ft+1,i(x
∗
i (t+ 1))− Ft,i(x∗i (t+ 1)))

≤ Ft,i(xi(t+ 1))− Ft,i(x∗i (t))
+ (Ft+1,i(xi(t+ 1))− Ft,i(xi(t+ 1)))

− (Ft+1,i(x
∗
i (t+ 1))− Ft,i(x∗i (t+ 1))).

Then, by definition of Ft+1,i(x) and Ft,i(x), we have

Ft+1,i(x)− Ft,i(x) = ηi 〈zi(t+ 1)− zi(t),x〉 .

Thus,

ht+1,i ≤ ht,i(xi(t+ 1))

+ ηi 〈zi(t+ 1)− zi(t),xi(t+ 1)〉
− ηi 〈zi(t+ 1)− zi(t),x

∗
i (t+ 1)〉

= ht,i(xi(t+ 1))

+ ηi 〈zi(t+ 1)− zi(t),xi(t+ 1)− x∗i (t+ 1)〉
≤ ht,i(xi(t+ 1))

+ ηi ‖zi(t+ 1)− zi(t)‖ ‖xi(t+ 1)− x∗i (t+ 1)‖ .

The last inequality follows from the Cauchy-Schwarz in-
equality.

Now, we derive the bound for ‖xi(t+ 1)− x∗i (t+ 1)‖.
By definition, Ft,i(x) are 2-strongly convex and x∗i (t) =
arg minx∈K Ft,i(x). Thus, using the property of strongly
convex functions, for any x ∈ K, we have

‖x− x∗i (t)‖
2 ≤ Ft,i(x)− Ft,i(x∗i (t)).
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Analogously, it is easy to deduce that

‖xi(t+ 1)− x∗i (t+ 1)‖ ≤
√
ht+1,i.

Combining this bound and the above two bounds for ht+1,i

and ht,i(xi(t+ 1)) yields the stated recursion.

To make the above recursion more concrete, it remains to
bound the deviation term ‖zi(t+ 1)− zi(t)‖, which mea-
sures the stability of local dual variables over each node.

Lemma 3. For any i ∈ V and any t = 1, · · · , T , the dual
variables zi(t) and zi(t + 1) specified in D-OCG satisfy
the following bound

‖zi(t+ 1)− zi(t)‖ ≤
1 + σ2(P )

1− σ2(P )

√
nL+ L.

Proof. Let P r denote the r-th power of matrix P and P rij
denote the j-th entry of the i-th row of P r. Then, via a bit
of algebra, we can get the following generalized recursion

zi(t+ 1) =

n∑
j=1

P t+1−s
ij zj(s) +

t−1∑
r=s

n∑
j=1

P t−rij gj(r)

+ gi(t).

Clearly, this recursion reduces to the standard dual variable
update in D-OCG when s = t. Next, since zj(1) = 0, by
setting s = 1, we can obtain

zi(t+ 1) =

t−1∑
r=1

n∑
j=1

P t−rij gj(r) + gi(t).

Then by assuming P 0 to be the identity matrix In, we have

zi(t+1)−zi(t) =

t−1∑
r=1

n∑
j=1

(P t−rij − P t−r−1ij )gj(r)+gi(t).

Using the fact that ‖gi(t)‖ ≤ L, the properties of norm
functions and the symmetry of matrix P , we obtain

‖zi(t+ 1)− zi(t)‖

=

∥∥∥∥∥∥
t−1∑
r=1

n∑
j=1

(P t−rij − P t−r−1ij )gj(r) + gi(t)

∥∥∥∥∥∥
≤

t−1∑
r=1

n∑
j=1

∣∣P t−rij − P t−r−1ij

∣∣ ∥∥gj(r)∥∥+ ‖gi(t)‖

≤ L
t−1∑
r=1

∥∥P t−ri − P t−r−1i

∥∥
1

+ L,

where P ri denotes the i-th column of matrix P r.

Now we try to bound the L1 norm sum in the above in-
equality. By plugging in an all-ones column vector and
then using the properties of norm functions, we obtain

t−1∑
r=1

∥∥P t−ri − P t−r−1i

∥∥
1

=

t−1∑
r=1

∥∥(P t−ri − 1/n)− (P t−r−1i − 1/n)
∥∥
1

≤
t−1∑
r=1

(
∥∥P t−ri − 1/n

∥∥
1

+
∥∥P t−r−1i − 1/n

∥∥
1
).

To proceed, we introduce a useful property of stochas-
tic matrices (Duchi et al., 2012). Let ∆n = {x ∈
Rn |x � 0,

∑n
i=1 xi = 1} denote the n-dimensional prob-

ability simplex. Then for any positive integer s = 1, · · ·
and any x ∈ ∆n, the following inequality holds

‖P sx− 1/n‖1 ≤ σ2(P )s
√
n.

Taking x to be the i-th canonical basis vector ei in Rn, we
have

‖P sei − 1/n‖1 ≤ σ2(P )s
√
n.

Note that this inequality also holds for s = 0 since∥∥P 0ei − 1/n
∥∥
1

=
2(n− 1)

n
≤
√
n,

for any n = 1, · · · . In addition, it is easy to verify that

‖P si − 1/n‖1 = ‖P sei − 1/n‖1.

Thus, we have

t−1∑
r=1

(
∥∥P t−ri − 1/n

∥∥
1

+
∥∥P t−r−1i − 1/n

∥∥
1
)

≤
t−1∑
r=1

(σ2(P )t−r + σ2(P )t−r−1)
√
n

=
1 + σ2(P )

1− σ2(P )
(1− σ2(P )t−1)

√
n

≤ 1 + σ2(P )

1− σ2(P )

√
n.

The above equation and the last inequality follow respec-
tively from the summation formula of geometric series and
the fact that σ2(P ) < 1 when P is a doubly stochastic ma-
trix (Berman & Plemmons, 1979).

Combining the above together yields the stated bound.

Combining the results in Lemma 2 and Lemma 3, we can
obtain a more concrete recursion between ht+1,i and ht,i,
and then deduce the bound for ht,i.
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Lemma 4. Assume that the parameters ηi and σt,i in D-
OCG are chosen such that ηi(

1+σ2(P )
1−σ2(P )

√
n+1)L

√
ht+1,i ≤

σ2
t,iD

2. Then the following bound for ht,i holds for any
i ∈ V and any t = 1, · · · , T

ht,i ≤ 4D2σt,i.

This lemma can be easily proved using mathematical in-
duction and we place its detailed proof in the Appendix.
Now we can deduce the bound for the deviation between
xi(t) and x∗i (t).
Lemma 5. For any fixed i ∈ V , the iterates xi(t) and
x∗i (t) satisfy the following bound

T∑
t=1

‖xi(t)− x∗i (t)‖ ≤
8

3
DT 3/4.

Proof. As is given in the proof of Lemma 2, for any x ∈ K,
we have

‖x− x∗i (t)‖
2 ≤ Ft,i(x)− Ft,i(x∗i (t)).

It then follows that

‖xi(t)− x∗i (t)‖ ≤
√
Ft,i(xi(t))− Ft,i(x∗i (t))

=
√
ht,i

≤ 2D
√
σt,i

= 2Dt−1/4.

The last inequality follows from the bound in Lemma 4 and
the last equation follows from the definition of σt,i. Thus,
summing over t = 1, · · · , T , we obtain

T∑
t=1

‖xi(t)− x∗i (t)‖ ≤ 2D

T∑
t=1

t−1/4

≤ 2D(1 +

∫ T

1

t−1/4dt)

= 2D(1 +
4

3
t3/4

∣∣∣∣T
1

)

≤ 2D(
4

3
T 3/4 − 1

3
)

=
8

3
DT 3/4.

Before proceeding with the final proof of Theorem 1, we
present the regret bound of the D-ODA algorithm applied to
the loss functions f̃t,j(x). To this end, we first introduce an
auxiliary sequence which are composed of the centralized
averages of dual variables over all nodes at each iteration

z̄(t) =
1

n

n∑
i=1

zi(t).

Note that the dual variables used in the above definition are
exactly those specified in D-OCG. Then, as for the devi-
ation between the local dual variable zi(t) and the global
dual variable z̄(t), we have the following lemma.
Lemma 6. For any i ∈ V and any t = 1, · · · , T , the dual
variable zi(t) defined in D-OCG and their averages z̄(t)
over all nodes satisfy the following bound

‖zi(t)− z̄(t)‖ ≤
√
nL

1− σ2(P )
.

Two similar bounds for ‖zi(t)− z̄(t)‖ in D-ODA are re-
ported in (Duchi et al., 2012) (Hosseini et al., 2013)1 . Our
bound is tighter than both of them. The proof is a little bit
similar to that in Lemma 3 and is presented in detail in the
Appendix.

We can now give the regret bound for the D-ODA algorithm
in the following lemma.
Lemma 7. The D-ODA algorithm with regularization
ψ(x) = ‖x− x1(1)‖2 and parameters αi(t) = η, ∀ i ∈
V , applied to the loss functions f̃t,j(x) attains the follow-
ing regret bound

RaT (xi,x) ≤ 6
√
n+ 1− σ2(P )

2(1− σ2(P ))
ηL2T +

1

η
D2.

Using our tighter bound for ‖zi(t)− z̄(t)‖, this lemma can
be easily deduced from the general regret bound for the D-
ODA algorithm (Hosseini et al., 2013). The detailed proof
is presented in the Appendix.

Now, we are ready to prove our theorem.

Proof of Theorem 1. By plugging in two auxiliary terms
in each difference ft,j(xi(t))− ft,j(x), we have

T∑
t=1

(ft,j(xi(t))− ft,j(x))

=

T∑
t=1

(ft,j(xi(t))− ft,j(x∗i (t)) + ft,j(x
∗
i (t))− ft,j(x))

≤
T∑
t=1

|ft,j(xi(t))− ft,j(x∗i (t))|

+

T∑
t=1

(ft,j(x
∗
i (t))− ft,j(x)).

Using the Lipschitz-ness of ft,j(x), we can obtain the fol-
lowing bound for the first summation

T∑
t=1

|ft,j(xi(t))− ft,j(x∗i (t))| ≤ L
T∑
t=1

‖xi(t)− x∗i (t)‖ .

1Strictly, the norm utilized in them is the general dual norm.
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Recall that Lemma 1 provides the bound for the second
summation. Combining these two bounds together, we
have
T∑
t=1

(ft,j(xi(t))− ft,j(x))

≤ L
T∑
t=1

‖xi(t)− x∗i (t)‖+ 2L

T∑
t=1

∥∥xj(t)− x∗j (t)
∥∥

+

T∑
t=1

(f̃t,j(x
∗
i (t))− f̃t,j(x)).

Hence,

RT (xi,x) =

n∑
j=1

T∑
t=1

(ft,j(xi(t))− ft,j(x))

≤ nL
T∑
t=1

‖xi(t)− x∗i (t)‖

+ 2L

n∑
j=1

T∑
t=1

∥∥xj(t)− x∗j (t)
∥∥

+

n∑
j=1

T∑
t=1

(f̃t,j(x
∗
i (t))− f̃t,j(x)).

Note that, as the parameters are set to be η1 = · · · = ηn =
η, the last term in the right side is exactly the regret of the
D-ODA algorithm applied to f̃t,j(x). In addition, using
the results in Lemma 5, the sum of the first and the second
terms is further bounded by 8nLDT 3/4. Thus, we have

RT (xi,x) ≤ 8nLDT 3/4 +RaT (xi,x)

≤ 8nLDT 3/4 +
6
√
n+ 1− σ2(P )

2(1− σ2(P ))
ηL2T

+
1

η
D2.

Let η = (1−σ2(P ))D
2(
√
n+1+(

√
n−1)σ2(P ))LT 3/4 . Then via a bit of

analysis, we can verify that the choice of ηi satisfies the
constraint required in Lemma 4

ηi(
1 + σ2(P )

1− σ2(P )

√
n+ 1)L

√
ht+1,i ≤ σ2

t,iD
2.

The detailed verification is presented in the Appendix.

We thus finally obtain

RT (xi,x) ≤ 8nLDT 3/4

+
6
√
n+ 1− σ2(P )

4(
√
n+ 1 + (

√
n− 1)σ2(P ))

LDT 1/4

+
2(
√
n+ 1 + (

√
n− 1)σ2(P ))

1− σ2(P )
LDT 3/4.

4. Experiments
To evaluate the performance of the proposed D-OCG al-
gorithm, we conduct simulation experiments for a popular
machine learning problem: multiclass classification.

4.1. Experimental Setup

Multiclass Classification In the distributed online learn-
ing setting, the problem is as follows. At each round
t = 1, · · · , T , each learner i is presented with a data ex-
ample ei(t) ∈ Rk which belongs to one of the classes
C = {1, · · · , h} and is required to generate a decision ma-
trix Xi(t) = [xT1 ; · · · ;xTh ] ∈ Rh×k that predicts the class
label with arg max`∈C x

T
` ei(t). Then the adversary reveals

the true class labels yi(t) and each learner i suffers a con-
vex multivariate logistic loss

ft,i(Xi(t)) = log
(

1+
∑

` 6=yi(t)

exp(xT` ei(t)− xTyi(t)ei(t))
)
.

The convex domain of the decision matrices is K = {X ∈
Rh×k| ‖X‖tr ≤ τ}, where ‖·‖tr denotes the nuclear norm
of matrices. In this case, the linear minimization required
in each iteration of D-OCG amounts to compute a ma-
trix’s top singular vector, an operation that can be done in
time near linear to the number of non-zeros in the matrix,
whereas the projection onto K operation needed in tradi-
tional distributed online algorithms amounts to perform-
ing a full SVD, an O(hkmin(h, k)) time operation that is
much more expensive.

Datasets We use two multiclass datasets selected from
the LIBSVM2 repository with relatively large number of
instances, which is summarized in Table 1.

dataset # features # classes # instances
news20 62,061 20 15,935

aloi 128 1,000 108,000

Table 1. Summary of the multiclass datasets

Network Topology To investigate the influence of net-
work topology, we conduct our experiments on three types
of graphs, which represent different levels of connectivity.

• Complete graph. This represents the highest level of
connectivity in our experiments: all nodes are con-
nected to each other.

• Cycle graph. This represents the lowest level of con-
nectivity in our experiments: each node has only two
immediate neighbors.

• Watts-Strogatz. This random graph generation tech-
nique (Watts & Strogatz, 1998) has two tunable pa-

2https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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Figure 1. Comparison of D-OCG, D-OGD and D-ODA on two
multiclass datasets on a complete graph with 9 nodes

rameters: the average degree of the graph k and the
rewiring probability p. In general, the higher the
rewiring probability, the better the connectivity of the
graph (Colin et al., 2016). We tune the parameters
k = 4 and p = 0.3 to achieve an intermediate level of
connectivity in our experiments.

Compared Algorithms To evaluate the performance
benefit of D-OCG over its counterparts with projection op-
eration, we compare it with two classic algorithms: D-
OGD (Yan et al., 2013) and D-ODA (Hosseini et al., 2013).
To verify that performing online conditional gradient in the
distributed setting does not lose much quality compared
with that in the centralized setting, we also compare D-
OCG with OCG, i.e. D-OCG with 1 node.

Parameter Settings We set most of the parameters in
these algorithms as what their corresponding theories sug-
gest. For instance, the parameters σt,i in D-OCG are
strictly set to be 1√

t
and the learning rates in D-OGD are

set to be the typical decaying sequence 1√
t
. We use the

method utilized in (Duchi et al., 2012) to generate the dou-
bly stochastic matrices and fix the nuclear norm bound τ to
50 throughout.

4.2. Experimental Results

We measure the running time of the D-OGD, D-ODA and
D-OCG algorithms run on a complete graph with 9 nodes
and see how fast the average losses decrease. From the
results shown in Figure 1, we can clearly observe that D-
OCG is significantly faster than both D-OGD and D-ODA,
which illustrates the necessity and usefulness of using con-
ditional gradient in distributed online learning.

We then investigate how the number of nodes affects the
performance of D-OCG by running experiments on com-
plete graphs with varying number of nodes. From the re-
sults shown in Figure 2(a), we can make the following
two main observations. First, the average losses decrease

Figure 2. (a): Comparison of D-OCG on graphs with different
sizes; (b): Comparison of D-OCG on graphs with different topol-
ogy and fixed 16 nodes (both on the aloi dataset)

more slowly on larger graphs than on smaller graphs, which
nicely confirms our theoretical results. Second, D-OCG is
able to yield comparable results to the centralized OCG.

We finally test the influence of network topology on the al-
gorithm’s performance. We run experiments on the afore-
mentioned three types of graphs with 16 nodes using the
aloi dataset. As shown in Figure 2(b), graphs with better
connectivity lead to slightly faster convergence, which il-
lustrates good agreement of empirical results with our the-
oretical predictions.

5. Conclusion
In this paper, we propose the distributed online condi-
tional gradient algorithm for projection-free distributed on-
line learning in networks. We give detailed analysis of the
regret bound for the proposed algorithm, which depends on
both the network size and the network topology. We evalu-
ate the efficacy of the proposed algorithm on two real-world
datasets for a multiclass classification task and find that
it runs significantly faster than the counterpart algorithms
with projection. The theoretical results regarding the regret
bound for different graphs have also been verified.
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Ram, S Sundhar, Nedić, Angelia, and Veeravalli, Venu-
gopal V. Distributed stochastic subgradient projection
algorithms for convex optimization. Journal of optimiza-
tion theory and applications, 147(3):516–545, 2010.

Sayed, Ali H et al. Adaptation, learning, and optimization
over networks. Foundations and Trends R© in Machine
Learning, 7(4-5):311–801, 2014.

Watts, Duncan J and Strogatz, Steven H. Collective dy-
namics of small-worldnetworks. nature, 393(6684):440–
442, 1998.

Xiao, Lin. Dual averaging methods for regularized stochas-
tic learning and online optimization. Journal of Machine
Learning Research, 11(Oct):2543–2596, 2010.

Yan, Feng, Sundaram, Shreyas, Vishwanathan, SVN, and
Qi, Yuan. Distributed autonomous online learning: Re-
grets and intrinsic privacy-preserving properties. IEEE
Transactions on Knowledge and Data Engineering, 25
(11):2483–2493, 2013.


