Supplementary Material for >’Collect at Once, Use Effectively:
Making Non-interactive Locally Private Learning Possible”

1. Omitted Proofs in Section 3

Lemma 1 (Lemma 3 in Main Body). Let
T, Lo, , Ly ~ 1.6.dD with p = Eplx] and
supp(D) C B(0,1). Let G and {y;}_, defined in the
above procedure. For each of group S; fixed, we have the

Sollowing with probability 2/3:
plog(nd)
i—oul| <o) )
H‘S|Zy p < |S|> (
Proof. Apparently |571]\ Dies; T ~ N0, %I ).
So we have ||‘S—1J‘ Yies, il <O (%) with proba-

bility é. We then turn to bound the loss incurred by random
sample of data.
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Given 1, xs, - - - , , fixed under this event, we can easily
. . 1 .
derive upper bounds on entries of G(u — A > ics; Ti):

forg ~ N(0,1;) and q = p — \S%Zies x;, we have
lgTq| < 12 ll(gg(‘i with probability 1—
we have the following with probablllty 5"

1 plogd
Glp— — i <0 .
|t 51 2=, = ( |Sj|>

Putting the two inequalities together using union bound, we
get the result. O

54+ BY union bound

Lemma 2 (Lemma 6 in Main Body). Under the assump-
tions made in Section 3.2, given projection matrix ®, with

high probability over the randomness of private mecha-
nism, we have

L(w”™; X,y) — L(w*; X,y) <O (

Proof. Note, once we prove the uniform convergence of
|L(w; Z,v) — L(w; X,y)| < O (/%) forany w € C,
then the conclusion holds directly. Now, we will prove
the uniform convergence. Note Z = X + E, where
E € R™™, and each entry e;; ~ N(O,(TQ), v=y+r,
where r ~ N(0,021,,). Denote w = ®Tw

|L(w: 2,v) -~ L(w; X.y)|

1 e 1 _

= ‘anT(Q ~ X' X)w - — (v Zw — y" Xw)

1 = B 1 ~ _
<% Q- XTX|, |2+ - lv" Zw — y" Xw|
< Q- KT, sl + L 2w -y S

% 1272 —no®L, — XTX||, Hw\lg 11uT 24 — yT Xo|

1 _

7 |ETE —n0® L] | [l + — HXTEHF w3+

(Bl + X7l + BT r,)

From the property of random projection, we know
||lw|l, < 1 with high probability. Besides, as each en-
try in E is ii.d. Gaussian, and E[ETE] = no?l,,,

thus we have - ||ETE —no?L,|, < O (a\/@)

with high probability according to lemma 3, hence

5= |ETE — no?Iy||, < O(oy/ ml%) with high prob-

ability.
- 2
As 25 HXTEHF P S (T, qj Te;)?), where
gj,e; are the j-th and ¢-th column of X and E respec-
tively. For each j € [m], - > /" (q] e;)? obeys Chi-
square distribution (with some scaling), thus with high
1242

probability, n% Zznl(qj €)? <O (%) There-

fore, by union bound, we have 15 >°7", (3°7" (g7 €:)?) <

mZJ” j“202 mo?
0() = o(=2). as Xlal =
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||XHF n. Hence, there is £ HXTEHF mo?

n

with high probability. Using similar augument, we have
LB, < 0 (y2) LB, < ( =
with high probability. For -~ i
concentration inequality (Theorem 4.1.1 in (Tropp et al.,
2015)), we have L [ 77|, < 0 (&),

Combine all these results together, we obtain the desired
conclusion. O

Lemma 3 ((Vershynin, 2009)). Suppose x € R4 be a ran-
dom vector satisfies Elxx] = 1. Denote lzllys, = M,
where |||, represents Orlicz 11-norm. Let @1, . .., @, be
independent copies of x, then for every € € (0, 1), we have

Pr<
n:

1 n
E :BZ:BZT — 1y
i=1

Theorem 1 (Theorem 3 in Main Body). Under the assump-

tion in this section, set m = © (\/ne2 log d) for 5 >0,
then with high probability , there is

oo (2))

Proof. On one hand,

> 6) < de—7L62/4]\/12
X
2

L(w™™) — L(w’)

=L(w"®) — L(w?™) + L(w?™) — L(@")
+ L") - Lw") + L{w") - L(w")
< [Lw!) = D(w?™) + L(w") - L(w")]

+ E(wprzv) _ I/(’LZJ*)
<Glmax{| <w”””, a:z> - <<I>T'wp””, <I>T:1:i> [}
+ max{| (w*, x;) — <<I>Tw*, @Twi> [}]

+ [L(wP™) — L(w*)] 4)
(where G is the Lipschitz constant)
On the other hand, for Vw € C,Va € D, there is
(27w, o"z) |

_|leT cora)|S-[[eT w-a)|[;  juwtw]i—fw-z|3

|<w’x> -

4 4

T 2 2
|07 (w—2)||%—|lw—a|3

| @7 (w+a) |2 —|lwta|?
< 4

N

4

According to the results of random projection w.r.t. ad-
ditive error (Dirksen, 2016), we know with high probabil-

ity, there is | (w, ) — (®Tw, ®"Tx)| < O (1 / longld), for

Vw € C,Vax € D. Therefore, the first term in equation (4)

is less than O (y/bffi)

From lemma 2, we know L(w?"™) — L(w*) < O (/%)
holds with high probability. Combine these two inequali-
ties, it is easy to determine the optimal m, then obtain the
conclusion. O

Corollary 1 (Corollary 2 in Main Body). Algorithm LDP
kernel mechanism satisfies (¢, 0)-LDP, and with high prob-

ability, there is
} d \ /4
*) el
La(f) <0 ((n) )

e A — (b(@) T < O ((TZQ)ug)

LH(wpriv) o
sup |®(z)" f*

Proof. Algorithm satisfies local privacy is obvious. For
excess risk, as Ly (wP™™) — Ly(f*) = Lg(wP™) —
Ly(g*) + Ly(g*) — Lu(f*), follow nearly the same
proof of lemma 5 of sparse linear regression, we have
L (wP™™) — Ly (g*) <O (\/ i”z) On the other hand,
nearly borrow the proof of Lemma 17 in (Rubinstein et al.,
2012) and property of RRF , we have

Ly(g") — Lu(f) <0 ( j)

Combine above two inequalities, and choose optimal d,, as

0 (\/ dne2> , we obtain the first inequality of the conclu-
sion. Then combine lemma 7 in this paper, it is easy to

obtaint the second inequality. O

2. Omitted contents and proofs in Section 4

2.1. Relations between smooth generalized linear losses
(SGLL) and generalized linear models (GLM)

Note that a model is called GLM, if for , w* € R?, label
y with respect to x is given by a distribution which belongs
to the exponential family:

. y6 — b(6
pleo) = o (P e m) o
where 6, ® are parameters, and b(6), c(y, ®) are known
functions. Besides, there is an one-to-one continuous dif-

ferentiable transformation g(-) such that g(b'(9)) = =T w*.

According to the key equality g(b'(0)) = xTw*, usually

we can obtain smooth function § = hy(zTw*),b(0) =
ho(zTw*), and what's more, univariate function
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hi(x)(i = 1,2) satisfies the absolutely smooth prop-
erty.

For such GLM, if we consider optimizing the expected neg-
ative logarithmic probability —E, ,y.p logp(z,y; w),
once discarding unrelated terms to w, we obtain the new
population loss, L(w) := E ,)~pl(w;x,y), where
l(w;x,y) = —yhi(xTw)+ho(zT w), exactly the form of
smooth generalized linear loss defined in section 4. Hence
our SGLL is a natural loss defined by GLM with additional
smoothness assumptions.

2.2. Omitted proofs
Lemma 4 (Lemma 8 in Main Body). Given any o > 0,
by setting k = clnf,p = (k: + eua(k; r)], where ¢ is a

constant, we have H fola H

Proof. As f,f',---, f*=1 are absolutely continuous
over [—1,1], and || f®|| . < pa (k;7)p2(k; 7)¥, according
to the results in (Trefethen, 2008), we have

2|/,
o STh(p— k)F
2u1 (k;m)
ke

It is easy to see there exists ¢ > 0, such that the term (6) is
less than o with chosen k, hence the conclusion holds. [

-~ @)

< (6)

Lemma 5 (Lemma 9 in Main Body). For any v > 0,
setting k = cln—,p = [k 4 2u2(k;r)], then algo-
rithm 7 outputs a (’y, B,0) stochastic oracle, where ¢ =

2p+1 (g p+1
O (O’o +v+ pi{p(ig) )

Proof. According to lemma 4, we know the approximation
error, |m(w;x,y) — m(w;x,y)| < 5. For any fixed
(z,y), from the construction of stochastic inexact gradi-
ent oracle, there is E[G(w; b) |z, y] = G(w; x, ). Denote
§(w) = E(g,y)~p [G/(w; @, y)], thus we have

3[Jerwn -] - mmw;w—mw;w,wm
[

For above two terms, combined with results given in lemma
6, we we obtain

E {Hé(w;b) -

) = L(w) — g(w)" (v — w) = L(v) — L(w) —
g(w)T' (v — w) + (g(w) — §(w))T (v — w), and from the

o] <o( ("4 e rva) )

approximation error, we know |(g(w)—g(w)) (v—w)| <
. What’s more, as L(w) is convex and S-smooth, that

is 0 < L(v) — L(w) — g(w) (v — w) < & |lv—w|?

Combined these inequalities, we obtain

< L(v) = L(w) - 5l —w|*+3
L

g(w)' (v —w) <
(v) = (L(w) = 3) -

g(w)" (v — w)

X
2
<0<

Note the function value oracles in the stochastic oracle
definition (either F, g3 ,(-) or f, 3,.,(-)) do not play any
role in the optimization algorithm, hence we can set it as
L(w) — 3, though we do not know how to calculate. [

Lemma 6. Based on above statements, we have

e (|t - Gtue.n|] <0 (P

[HGwazy H} (7 + 00)?

Proof. First, we calculate the variance of each iy,

HJ(J+1)/2 (var(w”z;) + (Elw”2])?) <

var(t;) < J(G—1)/2+1

O ((p(pjl))zg)'

Next, we upper bound the coefficient ¢, (as it is the same
for ¢ and coi, hence we use ¢ for short). Note ¢, =
qu:k ambmi, where a,, is the coefficient of original
function represented by Chebyshev basis, b, is the co-
efficient of order £ monomial in Chebyshev basis T, (x),
where 0 < k& < m. According to the formula of 7,,(x)

given in (Qazi & Rahman, 2007) and well-known Stirling’s
approximation, after some translation, we have

<,m5,0 (v [ gm] )
<O (Vm2™)

Besides, from the absolutely smooth property of i} (z)(i €
{1,2}) and the convergence results in (Trefethen, 2008),
we have am, < O(73), thus ¢p = Y0 ambps <
O (2P). Hence, there is

‘ bm,k |

var [(02;.C — clkzy)tkrk"‘l] <r? 2R [((CQk — clkzy)tk)z}

4k+2 2p+2
O
<O ( 2k+2

Aseach (cop—c1x2,)txr* 1 is independent with each other
(for different k), which leads to

P
var [Z(C% — clkzy)lfkrk'*'1

4dp+2 2p+2
<0 (p (4r) )
k=0

62p+2

<5l —w|*+5
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Moreover, var(zg) < O (% ). Therefore,

E Mé(w;b) - G(w;wvy)m <0 <W>

For second inequality in the conclusion, there is

d

N 2
<8 [|Gtwie.9) — Gws )+ Giws )~ afw) + 9tw) ~ o)

Gl ,) — glow)|

<24 02 + 2007 = (7 + 0p)?
O

Proposition 1. f(z) = In(1 + e™*) is absolutely smooth

with puy (ks ) = rvV/Akm3, po(kyr) = &

Proof. For any r,k > 0, the absolutely continuous of
%) (rz) is obvious, now consider ||f(k+1)(rx) ||T:

(k+1)H _
71,

<7r‘

LSRR ()
/ s

s,

<42 [ () A (L £

k+1

k42
<mrht E Apy1,j-1
=1

<m(k + 1)l
< /47T3’I“k+2(k’+1>k+3/26_k_1

Vi ()

—1

oo

O

Theorem 2 (Theorem 6 in Main Body). For any a > 0,
set v = §,k = cln%’”,p = [k + 2u2(k;r)], if n >

0 (e (42 OV () ), wsin al

gorithms 6,7,8, then we have L(wP"") — L(w*) < o

Proof. According to lemma 10 in main body, with
a (v,8,0) stochastic oracle, SIGM algorithm con-

In order to have

O (% + 7) < q, it suffices if n > O (%)

r\4rIn In(8r/a r\ 2cr In(8r/a)+2
O((%)zul(s/)(i) (=2

€ ale? )) » a8 0 =
0] (%) according to lemma 5 (ignoring negligi-

ble oq, 7). O

verges with rate O (% —i—v).
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