Supplementary Material for "Collect at Once, Use Effectively: Making Non-interactive Locally Private Learning Possible"

1. Omitted Proofs in Section 3

Lemma 1 (Lemma 3 in Main Body). Let $x_1, x_2, \dots, x_n \sim i.i.d.\mathcal{D}$ with $\mu = \mathbb{E}_{\mathcal{D}}[x]$ and $supp(\mathcal{D}) \subseteq \mathcal{B}(0,1)$. Let G and $\{y_i\}_{i=1}^n$ defined in the above procedure. For each of group S_j fixed, we have the following with probability 2/3:

$$\left\|\frac{1}{|S_j|}\sum_{\boldsymbol{y}_i\in S_j}\boldsymbol{y}_i - G\boldsymbol{\mu}\right\|_1 \le O\left(\frac{p\log(nd)}{\epsilon\sqrt{|S_j|}}\right) \qquad (1)$$

Proof. Apparently $\frac{1}{|S_j|} \sum_{i \in S_j} \mathbf{r}_i \sim \mathcal{N}(0, \frac{2\log(1.25/\delta)}{|S_j|\epsilon^2} I_d)$. So we have $\|\frac{1}{|S_j|} \sum_{i \in S_j} \mathbf{r}_i\|_1 \leq O\left(\frac{p\log n}{\epsilon\sqrt{|S_j|}}\right)$ with probability $\frac{1}{9}$. We then turn to bound the loss incurred by random sample of data.

$$\mathbb{E} \left\| \boldsymbol{\mu} - \frac{1}{|S_j|} \sum_{i \in S_j} \boldsymbol{x}_i \right\|^2 = \frac{1}{|S_j|} \sum_{l=1}^d \operatorname{var}(x_{1l})$$

$$\leq \frac{1}{|S_j|} \sum_{l=1}^d \mathbb{E}[x_{1l}^2] \leq \frac{1}{|S_j|}.$$
(2)

According to Markov Inequality, we have

$$\mathcal{P}\left\{\left\|oldsymbol{\mu}-rac{1}{|S_j|}\sum_{i\in S_j}oldsymbol{x}_i
ight\|^2\geq rac{9}{|S_j|}
ight\}\leq rac{1}{9}$$

Given x_1, x_2, \dots, x_n fixed under this event, we can easily derive upper bounds on entries of $G(\boldsymbol{\mu} - \frac{1}{|S_j|} \sum_{i \in S_j} \boldsymbol{x}_i)$: for $\boldsymbol{g} \sim \mathcal{N}(0, I_d)$ and $\boldsymbol{q} = \boldsymbol{\mu} - \frac{1}{|S_j|} \sum_{i \in S_j} \boldsymbol{x}_i$, we have $|\boldsymbol{g}^T \boldsymbol{q}| \leq 12 \sqrt{\frac{\log d}{|S_j|}}$ with probability $1 - \frac{1}{9d}$. By union bound we have the following with probability $\frac{2}{9}$:

$$\left\|G(\boldsymbol{\mu} - \frac{1}{|S_j|}\sum_{i \in S_j} \boldsymbol{x}_i)\right\|_1 \le O\left(\sqrt{\frac{p\log d}{|S_j|}}\right).$$

Putting the two inequalities together using union bound, we get the result. $\hfill \Box$

Lemma 2 (Lemma 6 in Main Body). Under the assumptions made in Section 3.2, given projection matrix Φ , with

high probability over the randomness of private mechanism, we have

$$\bar{L}(\boldsymbol{w}^{priv}; \bar{X}, \boldsymbol{y}) - \bar{L}(\hat{\boldsymbol{w}}^*; \bar{X}, \boldsymbol{y}) \leqslant \tilde{O}\left(\sqrt{\frac{m}{n\epsilon^2}}\right) \quad (3)$$

Proof. Note, once we prove the uniform convergence of $|\hat{L}(\boldsymbol{w}; \boldsymbol{Z}, \boldsymbol{v}) - \bar{L}(\boldsymbol{w}; \bar{\boldsymbol{X}}, \boldsymbol{y})| \leq O\left(\sqrt{\frac{m}{n\epsilon^2}}\right)$ for any $\boldsymbol{w} \in \mathcal{C}$, then the conclusion holds directly. Now, we will prove the uniform convergence. Note $\boldsymbol{Z} = \bar{\boldsymbol{X}} + E$, where $\boldsymbol{E} \in \mathbb{R}^{n \times m}$, and each entry $e_{ij} \sim \mathcal{N}(0, \sigma^2), \boldsymbol{v} = \boldsymbol{y} + \boldsymbol{r}$, where $\boldsymbol{r} \sim \mathcal{N}(0, \sigma^2 I_n)$. Denote $\bar{\boldsymbol{w}} = \Phi^T \boldsymbol{w}$.

$$\begin{aligned} \left| \hat{L}(\boldsymbol{w}; Z, \boldsymbol{v}) - \bar{L}(\boldsymbol{w}; \bar{X}, \boldsymbol{y}) \right| \\ &= \left| \frac{1}{2n} \bar{\boldsymbol{w}}^T (Q - \bar{X}^T \bar{X}) \bar{\boldsymbol{w}} - \frac{1}{n} \left(\boldsymbol{v}^T Z \bar{\boldsymbol{w}} - \boldsymbol{y}^T \bar{X} \bar{\boldsymbol{w}} \right) \right| \\ &\leq \frac{1}{2n} \left\| Q - \bar{X}^T \bar{X} \right\|_2 \left\| \bar{\boldsymbol{w}} \right\|_2^2 + \frac{1}{n} \left| \boldsymbol{v}^T Z \bar{\boldsymbol{w}} - \boldsymbol{y}^T \bar{X} \bar{\boldsymbol{w}} \right| \\ &\leq \frac{1}{2n} \left\| Q - \bar{X}^T \bar{X} \right\|_F \left\| \bar{\boldsymbol{w}} \right\|_2^2 + \frac{1}{n} \left| \boldsymbol{v}^T Z \bar{\boldsymbol{w}} - \boldsymbol{y}^T \bar{X} \bar{\boldsymbol{w}} \right| \\ &\leq \frac{1}{2n} \left\| Z^T Z - n\sigma^2 I_m - \bar{X}^T \bar{X} \right\|_F \left\| \bar{\boldsymbol{w}} \right\|_2^2 + \frac{1}{n} \left\| \boldsymbol{v}^T Z \bar{\boldsymbol{w}} - \boldsymbol{y}^T \bar{X} \bar{\boldsymbol{w}} \right| \\ &\leq \frac{1}{2n} \left\| E^T E - n\sigma^2 I_m \right\|_F \left\| \bar{\boldsymbol{w}} \right\|_2^2 + \frac{1}{n} \left\| \bar{X}^T E \right\|_F \left\| \bar{\boldsymbol{w}} \right\|_2^2 + \\ &\frac{1}{n} \left(\left\| E^T \boldsymbol{y} \right\|_2 + \left\| \bar{X}^T \boldsymbol{r} \right\|_2 + \left\| E^T \boldsymbol{r} \right\|_2 \right) \left\| \bar{\boldsymbol{w}} \right\|_2 \end{aligned}$$

From the property of random projection, we know $\|\bar{w}\|_2 \leq 1$ with high probability. Besides, as each entry in E is i.i.d. Gaussian, and $\mathbb{E}[E^T E] = n\sigma^2 I_m$, thus we have $\frac{1}{2n} \|E^T E - n\sigma^2 I_m\|_2 \leq O\left(\sigma\sqrt{\frac{\log m}{n}}\right)$ with high probability according to lemma 3, hence $\frac{1}{2n} \|E^T E - n\sigma^2 I_m\|_F \leq O(\sigma\sqrt{\frac{m\log m}{n}})$ with high probability.

As $\frac{1}{n^2} \|\bar{X}^T E\|_F^2 = \frac{1}{n^2} \sum_{j=1}^m (\sum_{i=1}^m (\boldsymbol{q}_j^T \boldsymbol{e}_i)^2)$, where $\boldsymbol{q}_j, \boldsymbol{e}_i$ are the *j*-th and *i*-th column of \bar{X} and E respectively. For each $j \in [m], \frac{1}{n^2} \sum_{i=1}^m (\boldsymbol{q}_j^T \boldsymbol{e}_i)^2$ obeys Chisquare distribution (with some scaling), thus with high probability, $\frac{1}{n^2} \sum_{i=1}^m (\boldsymbol{q}_j^T \boldsymbol{e}_i)^2 \leq O\left(\frac{m\|\boldsymbol{q}_j\|^2\sigma^2}{n^2}\right)$. Therefore, by union bound, we have $\frac{1}{n^2} \sum_{j=1}^m (\sum_{i=1}^m (\boldsymbol{q}_j^T \boldsymbol{e}_i)^2) \leq O\left(\frac{m\sum_j \|\boldsymbol{q}_j\|^2\sigma^2}{n^2}\right) = O\left(\frac{m\sigma^2}{n}\right)$, as $\sum_j \|\boldsymbol{q}_j\|^2 = O\left(\frac{m\sigma^2}{n^2}\right)$

$$\begin{split} \left\|\bar{X}\right\|_{F}^{2} &\leqslant n. \text{ Hence, there is } \frac{1}{n} \left\|\bar{X}^{T}E\right\|_{F} &\leqslant O\left(\sqrt{\frac{m\sigma^{2}}{n}}\right) \\ \text{with high probability. Using similar augument, we have} \\ \frac{1}{n} \left\|\bar{E}^{T}\boldsymbol{y}\right\|_{2} &\leqslant O\left(\sqrt{\frac{m\sigma^{2}}{n}}\right), \frac{1}{n} \left\|\bar{E}^{T}\boldsymbol{r}\right\|_{2} &\leqslant O\left(\sqrt{\frac{m\sigma^{2}}{n}}\right) \\ \text{with high probability. For } \frac{1}{n} \left\|\bar{X}^{T}r\right\|, \text{ according to matrix concentration inequality (Theorem 4.1.1 in (Tropp et al., 2015)), we have } \frac{1}{n} \left\|\bar{X}^{T}\boldsymbol{r}\right\|_{2} &\leqslant O\left(\frac{1}{\sqrt{n}}\right). \end{split}$$

Combine all these results together, we obtain the desired conclusion. $\hfill \Box$

Lemma 3 ((Vershynin, 2009)). Suppose $x \in \mathbb{R}^d$ be a random vector satisfies $\mathbb{E}[xx^T] = I_d$. Denote $||x||_{\phi_1} = M$, where $||\cdot||_{\psi_1}$ represents Orlicz ψ_1 -norm. Let x_1, \ldots, x_n be independent copies of x, then for every $\epsilon \in (0, 1)$, we have

$$\Pr\left(\left\|\frac{1}{n}\sum_{i=1}^{n}\boldsymbol{x}_{i}\boldsymbol{x}_{i}^{T}-\boldsymbol{I}_{d}\right\|_{2}>\epsilon\right)\leqslant de^{-n\epsilon^{2}/4M^{2}}$$

Theorem 1 (Theorem 3 in Main Body). Under the assumption in this section, set $m = \Theta\left(\sqrt{n\epsilon^2 \log d}\right)$ for $\beta > 0$, then with high probability, there is

$$L(\boldsymbol{w}^{priv}) - L(\boldsymbol{w}^*) = \tilde{O}\left(\left(\frac{\log d}{n\epsilon^2}\right)^{1/4}\right)$$

Proof. On one hand,

$$L(\boldsymbol{w}^{priv}) - L(\boldsymbol{w}^{*})$$

$$= L(\boldsymbol{w}^{priv}) - \bar{L}(\boldsymbol{w}^{priv}) + \bar{L}(\boldsymbol{w}^{priv}) - \bar{L}(\hat{\boldsymbol{w}}^{*})$$

$$+ \bar{L}(\hat{\boldsymbol{w}}^{*}) - \bar{L}(\boldsymbol{w}^{*}) + \bar{L}(\boldsymbol{w}^{*}) - L(\boldsymbol{w}^{*})$$

$$\leq \left[L(\boldsymbol{w}^{priv}) - \bar{L}(\boldsymbol{w}^{priv}) + \bar{L}(\boldsymbol{w}^{*}) - L(\boldsymbol{w}^{*})\right]$$

$$+ \bar{L}(\boldsymbol{w}^{priv}) - \bar{L}(\hat{\boldsymbol{w}}^{*})$$

$$\leq G[\max_{i}\{|\langle \boldsymbol{w}^{priv}, \boldsymbol{x}_{i} \rangle - \langle \Phi^{T}\boldsymbol{w}^{priv}, \Phi^{T}\boldsymbol{x}_{i} \rangle|\}$$

$$+ \max_{i}\{|\langle \boldsymbol{w}^{*}, \boldsymbol{x}_{i} \rangle - \langle \Phi^{T}\boldsymbol{w}^{*}, \Phi^{T}\boldsymbol{x}_{i} \rangle|\}$$

$$+ [\bar{L}(\boldsymbol{w}^{priv}) - \bar{L}(\hat{\boldsymbol{w}}^{*})] \qquad (4)$$

$$(\text{where } G \text{ is the Lipschitz constant})$$

On the other hand, for $\forall w \in C, \forall x \in D$, there is

$$\begin{aligned} &|\langle \boldsymbol{w}, \boldsymbol{x} \rangle - \left\langle \Phi^{T} \boldsymbol{w}, \Phi^{T} \boldsymbol{x} \right\rangle| \\ &= \left| \frac{\left\| \Phi^{T} (\boldsymbol{w} + \boldsymbol{x}) \right\|_{2}^{2} - \left\| \Phi^{T} (\boldsymbol{w} - \boldsymbol{x}) \right\|_{2}^{2}}{4} - \frac{\left\| \boldsymbol{w} + \boldsymbol{x} \right\|_{2}^{2} - \left\| \boldsymbol{w} - \boldsymbol{x} \right\|_{2}^{2}}{4} \right| \\ &\leq \left| \frac{\left\| \Phi^{T} (\boldsymbol{w} + \boldsymbol{x}) \right\|_{2}^{2} - \left\| \boldsymbol{w} + \boldsymbol{x} \right\|_{2}^{2}}{4} \right| + \left| \frac{\left\| \Phi^{T} (\boldsymbol{w} - \boldsymbol{x}) \right\|_{2}^{2} - \left\| \boldsymbol{w} - \boldsymbol{x} \right\|_{2}^{2}}{4} \right| \end{aligned}$$

According to the results of random projection w.r.t. additive error (Dirksen, 2016), we know with high probability, there is $|\langle \boldsymbol{w}, \boldsymbol{x} \rangle - \langle \Phi^T \boldsymbol{w}, \Phi^T \boldsymbol{x} \rangle| \leq O\left(\sqrt{\frac{\log d}{m}}\right)$, for

 $\forall \boldsymbol{w} \in \mathcal{C}, \forall \boldsymbol{x} \in D.$ Therefore, the first term in equation (4) is less than $O\left(\sqrt{\frac{\log d}{m}}\right).$

From lemma 2, we know $\overline{L}(\overline{w}^{priv}) - \overline{L}(\overline{w}^*) \leq \widetilde{O}\left(\sqrt{\frac{m}{n\epsilon^2}}\right)$ holds with high probability. Combine these two inequalities, it is easy to determine the optimal m, then obtain the conclusion.

Corollary 1 (Corollary 2 in Main Body). Algorithm LDP kernel mechanism satisfies (ϵ, δ) -LDP, and with high probability, there is

$$L_{\hat{H}}(\hat{\boldsymbol{w}}^{priv}) - L_{H}(f^{*}) \leq \tilde{O}\left(\left(\frac{d}{n\epsilon^{2}}\right)^{1/4}\right)$$
$$\sup_{\boldsymbol{x}\in\mathcal{X}} |\Phi(\boldsymbol{x})^{T}f^{*} - (\hat{\Phi}(\boldsymbol{x}))^{T}\hat{\boldsymbol{w}}^{priv}| \leq \tilde{O}\left(\left(\frac{d}{n\epsilon^{2}}\right)^{1/8}\right)$$

Proof. Algorithm satisfies local privacy is obvious. For excess risk, as $L_{\hat{H}}(\hat{w}^{priv}) - L_H(f^*) = L_{\hat{H}}(\hat{w}^{priv}) - L_{\hat{H}}(g^*) + L_{\hat{H}}(g^*) - L_H(f^*)$, follow nearly the same proof of lemma 5 of sparse linear regression, we have $L_{\hat{H}}(\hat{w}^{priv}) - L_{\hat{H}}(g^*) \leq \tilde{O}\left(\sqrt{\frac{d_p}{n\epsilon^2}}\right)$. On the other hand, nearly borrow the proof of Lemma 17 in (Rubinstein et al., 2012) and property of RRF, we have

$$L_{\hat{H}}(g^*) - L_H(f^*) \leqslant \tilde{O}\left(\sqrt{\frac{d}{d_p}}\right)$$

Combine above two inequalities, and choose optimal d_p as $\tilde{O}\left(\sqrt{dn\epsilon^2}\right)$, we obtain the first inequality of the conclusion. Then combine lemma 7 in this paper, it is easy to obtain the second inequality.

2. Omitted contents and proofs in Section 4

2.1. Relations between smooth generalized linear losses (SGLL) and generalized linear models (GLM)

Note that a model is called GLM, if for $x, w^* \in \mathbb{R}^d$, label y with respect to x is given by a distribution which belongs to the exponential family:

$$p(y|\boldsymbol{x}, \boldsymbol{w}^*) = \exp\left(\frac{y\theta - b(\theta)}{\Phi} + c(y, \Phi)\right)$$
 (5)

where θ, Φ are parameters, and $b(\theta), c(y, \Phi)$ are known functions. Besides, there is an one-to-one continuous differentiable transformation $g(\cdot)$ such that $g(b'(\theta)) = \mathbf{x}^T \mathbf{w}^*$.

According to the key equality $g(b'(\theta)) = \mathbf{x}^T \mathbf{w}^*$, usually we can obtain smooth function $\theta = h_1(\mathbf{x}^T \mathbf{w}^*), b(\theta) = h_2(\mathbf{x}^T \mathbf{w}^*)$, and what's more, univariate function $h_i(x)(i = 1, 2)$ satisfies the absolutely smooth property.

For such GLM, if we consider optimizing the expected negative logarithmic probability $-\mathbb{E}_{(\boldsymbol{x},y)\sim\mathcal{D}}\log p(\boldsymbol{x},y;\boldsymbol{w})$, once discarding unrelated terms to \boldsymbol{w} , we obtain the new population loss, $L(\boldsymbol{w}) := \mathbb{E}_{(\boldsymbol{x},y)\sim\mathcal{D}}\ell(\boldsymbol{w};\boldsymbol{x},y)$, where $\ell(\boldsymbol{w};\boldsymbol{x},y) = -yh_1(\boldsymbol{x}^T\boldsymbol{w}) + h_2(\boldsymbol{x}^T\boldsymbol{w})$, exactly the form of smooth generalized linear loss defined in section 4. Hence our SGLL is a natural loss defined by GLM with additional smoothness assumptions.

2.2. Omitted proofs

Lemma 4 (Lemma 8 in Main Body). *Given any* $\alpha > 0$, *by setting* $k = c \ln \frac{1}{\alpha}, p = \lceil k + e\mu_2(k;r) \rceil$, where c is a constant, we have $\left\| \hat{f}_p(x) - f(x) \right\|_{\infty} \leq \alpha$.

Proof. As $f, f', \dots, f^{(k-1)}$ are absolutely continuous over [-1, 1], and $\|f^{(k)}\|_T \leq \mu_1(k; r)\mu_2(k; r)^k$, according to the results in (Trefethen, 2008), we have

$$\begin{split} \left\| \hat{f}_{p}(x) - f(x) \right\|_{\infty} &\leq \frac{2 \left\| f^{(k)} \right\|_{T}}{\pi k (p-k)^{k}} \\ &\leq \frac{2\mu_{1}(k;r)}{\pi k e^{k}} \end{split}$$
(6)

It is easy to see there exists c > 0, such that the term (6) is less than α with chosen k, hence the conclusion holds. \Box

Lemma 5 (Lemma 9 in Main Body). For any $\gamma > 0$, setting $k = c \ln \frac{4r}{\gamma}$, $p = \lceil k + 2\mu_2(k;r) \rceil$, then algorithm 7 outputs a (γ, β, σ) stochastic oracle, where $\sigma = \tilde{O}\left(\sigma_0 + \gamma + \frac{p^{2p+1}(4r)^{p+1}}{\epsilon^{p+2}}\right)$.

Proof. According to lemma 4, we know the approximation error, $|\hat{m}(\boldsymbol{w}; \boldsymbol{x}, y) - m(\boldsymbol{w}; \boldsymbol{x}, y)| \leq \frac{\gamma}{2r}$. For any fixed (\boldsymbol{x}, y) , from the construction of stochastic inexact gradient oracle, there is $\mathbb{E}[\tilde{G}(\boldsymbol{w}; b)|\boldsymbol{x}, y] = \hat{G}(\boldsymbol{w}; \boldsymbol{x}, y)$. Denote $\hat{g}(\boldsymbol{w}) = \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}}[\hat{G}(\boldsymbol{w}; \boldsymbol{x}, y)]$, thus we have

$$\begin{split} \mathbb{E}\left[\left\|\tilde{G}(\boldsymbol{w};b) - \hat{g}(\boldsymbol{w})\right\|^{2}\right] = & \mathbb{E}\left[\left\|\tilde{G}(\boldsymbol{w};b) - \hat{G}(\boldsymbol{w};\boldsymbol{x},y)\right\|^{2}\right] \\ & + \mathbb{E}\left[\left\|\hat{G}(\boldsymbol{w};\boldsymbol{x},y) - \hat{g}(\boldsymbol{w})\right\|^{2}\right] \end{split}$$

For above two terms, combined with results given in lemma 6, we we obtain

$$\mathbb{E}\left[\left\|\tilde{G}(\boldsymbol{w};b) - g(\boldsymbol{w})\right\|^{2}\right] \leqslant \tilde{O}\left(\left(\frac{r(2rp)^{p+1}}{\epsilon^{p+2}} + \gamma + \sigma_{0}\right)^{2}\right)$$
.

As $L(\boldsymbol{v}) - L(\boldsymbol{w}) - \hat{g}(\boldsymbol{w})^T(\boldsymbol{v} - \boldsymbol{w}) = L(\boldsymbol{v}) - L(\boldsymbol{w}) - g(\boldsymbol{w})^T(\boldsymbol{v} - \boldsymbol{w}) + (g(\boldsymbol{w}) - \hat{g}(\boldsymbol{w}))^T(\boldsymbol{v} - \boldsymbol{w})$, and from the

approximation error, we know $|(g(\boldsymbol{w}) - \hat{g}(\boldsymbol{w}))^T(\boldsymbol{v} - \boldsymbol{w})| \leq \frac{\gamma}{2}$. What's more, as $L(\boldsymbol{w})$ is convex and β -smooth, that is $0 \leq L(\boldsymbol{v}) - L(\boldsymbol{w}) - g(\boldsymbol{w})^T(\boldsymbol{v} - \boldsymbol{w}) \leq \frac{\beta}{2} \|\boldsymbol{v} - \boldsymbol{w}\|^2$. Combined these inequalities, we obtain

$$-\frac{\gamma}{2} \leqslant L(\boldsymbol{v}) - L(\boldsymbol{w}) - \hat{g}(\boldsymbol{w})^{T}(\boldsymbol{v} - \boldsymbol{w}) \leqslant \frac{\beta}{2} \|\boldsymbol{v} - \boldsymbol{w}\|^{2} + \frac{\gamma}{2}$$
$$\iff 0 \leqslant L(\boldsymbol{v}) - (L(\boldsymbol{w}) - \frac{\gamma}{2}) - \hat{g}(\boldsymbol{w})^{T}(\boldsymbol{v} - \boldsymbol{w}) \leqslant \frac{\beta}{2} \|\boldsymbol{v} - \boldsymbol{w}\|^{2} + \gamma$$

Note the function value oracles in the stochastic oracle definition (either $F_{\gamma,\beta,\sigma}(\cdot)$ or $f_{\gamma,\beta,\sigma}(\cdot)$) do not play any role in the optimization algorithm, hence we can set it as $L(w) - \frac{\gamma}{2}$, though we do not know how to calculate. \Box

Lemma 6. Based on above statements, we have

$$\mathbb{E}\left[\left\|\tilde{G}(\boldsymbol{w};b) - \hat{G}(\boldsymbol{w};\boldsymbol{x},y)\right\|^{2}\right] \leqslant \tilde{O}\left(\frac{p^{4p+2}(4r)^{2p+2}}{\epsilon^{2p+4}}\right)$$
$$\mathbb{E}\left[\left\|\hat{G}(\boldsymbol{w};\boldsymbol{x},y) - \hat{g}(\boldsymbol{w})\right\|^{2}\right] \leqslant (\gamma + \sigma_{0})^{2}$$

Proof. First, we calculate the variance of each t_k , $\operatorname{var}(t_j) \leq \prod_{i=j(j-1)/2+1}^{j(j+1)/2} (\operatorname{var}(\boldsymbol{w}^T \boldsymbol{z}_i) + (\mathbb{E}[\boldsymbol{w}^T \boldsymbol{z}_i])^2) \leq \tilde{O}\left((\frac{p(p+1)}{\epsilon})^{2j}\right).$

Next, we upper bound the coefficient c_k (as it is the same for c_{1k} and c_{2k} , hence we use c_k for short). Note $c_k = \sum_{m=k}^{p} a_m b_{mk}$, where a_m is the coefficient of original function represented by Chebyshev basis, b_{mk} is the coefficient of order k monomial in Chebyshev basis $T_m(x)$, where $0 \le k \le m$. According to the formula of $T_m(x)$ given in (Qazi & Rahman, 2007) and well-known Stirling's approximation, after some translation, we have

$$|b_{mk}| \leq \max_{\theta \in (0, \frac{1}{2})} O\left(\sqrt{m} \cdot \left[\frac{(1-\theta)^{1-\theta}}{\theta^{\theta}(1-2\theta)^{1-2\theta}}\right]^m\right)$$
$$\leq O\left(\sqrt{m}2^m\right)$$

Besides, from the absolutely smooth property of $h'_i(x)$ ($i \in \{1,2\}$) and the convergence results in (Trefethen, 2008), we have $a_m \leq O\left(\frac{1}{m^2}\right)$, thus $c_k = \sum_{m=k}^p a_m b_{mk} \leq O(2^p)$. Hence, there is

$$\operatorname{var}\left[(c_{2k} - c_{1k}z_y)t_kr^{k+1}\right] \leqslant r^{2k+2}\mathbb{E}\left[\left((c_{2k} - c_{1k}z_y)t_k\right)^2\right]$$
$$\leqslant O\left(\frac{p^{4k+2}(4r)^{2p+2}}{\epsilon^{2k+2}}\right)$$

As each $(c_{2k}-c_{1k}z_y)t_kr^{k+1}$ is independent with each other (for different k), which leads to

$$\operatorname{var}\left[\sum_{k=0}^{p} (c_{2k} - c_{1k} z_y) t_k r^{k+1}\right] \leqslant O\left(\frac{p^{4p+2} (4r)^{2p+2}}{\epsilon^{2p+2}}\right)$$

Moreover, $\operatorname{var}(\boldsymbol{z}_0) \leq O\left(\frac{1}{\epsilon^2}\right)$. Therefore,

$$\mathbb{E}\left[\left\|\tilde{G}(\boldsymbol{w};b) - \hat{G}(\boldsymbol{w};\boldsymbol{x},y)\right\|^{2}\right] \leqslant \tilde{O}\left(\frac{p^{4p+2}(4r)^{2p+2}}{\epsilon^{2p+4}}\right)$$

For second inequality in the conclusion, there is

$$\mathbb{E}\left[\left\|\hat{G}(\boldsymbol{w};\boldsymbol{x},y) - \hat{g}(\boldsymbol{w})\right\|^{2}\right]$$
$$\leq \mathbb{E}\left[\left\|\hat{G}(\boldsymbol{w};\boldsymbol{x},y) - G(\boldsymbol{w};\boldsymbol{x},y) + G(\boldsymbol{w};\boldsymbol{x},y) - g(\boldsymbol{w}) + g(\boldsymbol{w}) - \hat{g}(\boldsymbol{w})\right\|^{2}\right]$$
$$\leq \gamma^{2} + \sigma_{0}^{2} + 2\sigma_{0}\gamma = (\gamma + \sigma_{0})^{2}$$

Proposition 1. $f(x) = \ln(1 + e^{-x})$ is absolutely smooth with $\mu_1(k;r) = r\sqrt{4k\pi^3}, \mu_2(k;r) = \frac{rk}{e}$

Proof. For any r, k > 0, the absolutely continuous of $f^{(k)}(rx)$ is obvious, now consider $||f^{(k+1)}(rx)||_T$:

$$\begin{split} \left\| f^{(k+1)} \right\|_{T} &= \int_{-1}^{1} \frac{|f^{(k+2)}(rx)|}{\sqrt{1-x^{2}}} \mathrm{d}x \\ &\leqslant \pi \left\| f^{(k+2)}(rx) \right\|_{\infty} \\ &\leqslant \pi r^{k+2} \left\| \sum_{j=1}^{k+1} (-1)^{k+j} A_{k+1,j-1} f^{j} (1-f)^{k+2-j} \right\|_{\infty} \\ &\leqslant \pi r^{k+2} \sum_{j=1}^{k+1} A_{k+1,j-1} \\ &\leqslant \pi (k+1)! r^{k+2} \\ &\leqslant \sqrt{4\pi^{3}} r^{k+2} (k+1)^{k+3/2} e^{-k-1} \\ &= r \sqrt{4\pi^{3} (k+1)} \left(\frac{r(k+1)}{e} \right)^{k+1} \end{split}$$

Theorem 2 (Theorem 6 in Main Body). For any $\alpha > 0$, set $\gamma = \frac{\alpha}{2}, k = c \ln \frac{4r}{\gamma}, p = \lceil k + 2\mu_2(k;r) \rceil$, if $n > O\left(\left(\frac{8r}{\alpha}\right)^{4r \ln \ln(8r/\alpha)} \left(\frac{4r}{\epsilon}\right)^{2cr \ln(8r/\alpha)+2} \left(\frac{1}{\alpha^2 \epsilon^2}\right)\right)$, using algorithms 6,7,8, then we have $L(\boldsymbol{w}^{priv}) - L(\boldsymbol{w}^*) \leq \alpha$.

Proof. According to lemma 10 in main body, with a (γ, β, σ) stochastic oracle, SIGM algorithm converges with rate $O\left(\frac{\sigma}{\sqrt{n}} + \gamma\right)$. In order to have $O\left(\frac{\sigma}{\sqrt{n}} + \gamma\right) \leq \alpha$, it suffices if $n > O\left(\frac{p^{4p+2}(4r)^{2p+2}}{\alpha^{2}\epsilon^{2p+4}}\right) =$ $O\left(\left(\frac{8r}{\alpha}\right)^{4r \ln \ln(8r/\alpha)} \left(\frac{4r}{\epsilon}\right)^{2cr \ln(8r/\alpha)+2} \left(\frac{1}{\alpha^{2}\epsilon^{2}}\right)\right)$, as $\sigma =$ $O\left(\frac{p^{2p+1}(4r)^{p+1}}{\epsilon^{p+2}}\right)$ according to lemma 5 (ignoring negligible σ_{0}, γ).

References

- Dirksen, Sjoerd. Dimensionality reduction with subgaussian matrices: a unified theory. *Foundations of Computational Mathematics*, 16(5):1367–1396, 2016.
- Qazi, MA and Rahman, QI. Some coefficient estimates for polynomials on the unit interval. *Serdica Mathematical Journal*, 33(4):449p–474p, 2007.
- Rubinstein, B., Bartlett, P. L., Huang, L., and Taft, N. Learning in a large function space: Privacy-preserving mechanisms for svm learning. *Journal of Privacy and Confidentiality*, 4(1):4, 2012.
- Trefethen, Lloyd N. Is gauss quadrature better than clenshaw–curtis? *SIAM review*, 50(1):67–87, 2008.
- Tropp, Joel A et al. An introduction to matrix concentration inequalities. *Foundations and Trends* (R) *in Machine Learning*, 8(1-2):1–230, 2015.
- Vershynin, Roman. A note on sums of independent random matrices after ahlswede-winter. *Lecture notes*, 2009.