
Supplementary Material for ”Collect at Once, Use Effectively:
Making Non-interactive Locally Private Learning Possible”

1. Omitted Proofs in Section 3
Lemma 1 (Lemma 3 in Main Body). Let
x1,x2, · · · ,xn ∼ i.i.d.D with µ = ED[x] and
supp(D) ⊆ B(0, 1). Let G and {yi}ni=1 defined in the
above procedure. For each of group Sj fixed, we have the
following with probability 2/3:

∥∥∥ 1

|Sj |
∑

yi∈Sj

yi −Gµ
∥∥∥

1
≤ O

(
p log(nd)

ε
√
|Sj |

)
(1)

Proof. Apparently 1
|Sj |

∑
i∈Sj

ri ∼ N (0, 2 log(1.25/δ)
|Sj |ε2 Id).

So we have ‖ 1
|Sj |

∑
i∈Sj

ri‖1 ≤ O

(
p logn

ε
√
|Sj |

)
with proba-

bility 1
9 . We then turn to bound the loss incurred by random

sample of data.

E
∥∥∥µ− 1

|Sj |
∑
i∈Sj

xi

∥∥∥2

=
1

|Sj |

d∑
l=1

var(x1l)

≤ 1

|Sj |

d∑
l=1

E[x2
1l] ≤

1

|Sj |
.

(2)

According to Markov Inequality, we have

P

∥∥∥µ− 1

|Sj |
∑
i∈Sj

xi

∥∥∥2

≥ 9

|Sj |

 ≤ 1

9

Given x1,x2, · · · ,xn fixed under this event, we can easily
derive upper bounds on entries of G(µ − 1

|Sj |
∑
i∈Sj

xi):
for g ∼ N (0, Id) and q = µ − 1

|Sj |
∑
i∈Sj

xi, we have

|gTq| ≤ 12
√

log d
|Sj | with probability 1− 1

9d . By union bound

we have the following with probability 2
9 :

∥∥∥G(µ− 1

|Sj |
∑
i∈Sj

xi)
∥∥∥

1
≤ O

(√
p log d

|Sj |

)
.

Putting the two inequalities together using union bound, we
get the result.

Lemma 2 (Lemma 6 in Main Body). Under the assump-
tions made in Section 3.2, given projection matrix Φ, with

high probability over the randomness of private mecha-
nism, we have

L̄(wpriv; X̄,y)− L̄(ŵ∗; X̄,y) 6 Õ

(√
m

nε2

)
(3)

Proof. Note, once we prove the uniform convergence of
|L̂(w;Z,v) − L̄(w; X̄,y)| 6 O

(√
m
nε2

)
for any w ∈ C,

then the conclusion holds directly. Now, we will prove
the uniform convergence. Note Z = X̄ + E, where
E ∈ Rn×m, and each entry eij ∼ N (0, σ2), v = y + r,
where r ∼ N (0, σ2In). Denote w̄ = ΦTw.∣∣∣L̂(w;Z,v)− L̄(w; X̄,y)

∣∣∣
=

∣∣∣∣ 1

2n
w̄T (Q− X̄T X̄)w̄ − 1

n

(
vTZw̄ − yT X̄w̄

)∣∣∣∣
6

1

2n

∥∥Q− X̄T X̄
∥∥

2
‖w̄‖22 +

1

n

∣∣vTZw̄ − yT X̄w̄∣∣
6

1

2n

∥∥Q− X̄T X̄
∥∥
F
‖w̄‖22 +

1

n
|vTZw̄ − yT X̄w̄|

6 1
2n

∥∥ZTZ − nσ2Im − X̄T X̄
∥∥
F
‖w̄‖22 + 1

n |v
TZw̄ − yT X̄w̄|

6
1

2n

∥∥ETE − nσ2Im
∥∥
F
‖w̄‖22 +

1

n

∥∥X̄TE
∥∥
F
‖w̄‖22 +

1

n

(∥∥ETy∥∥
2

+
∥∥X̄Tr

∥∥
2

+
∥∥ETr∥∥

2

)
‖w̄‖2

From the property of random projection, we know
‖w̄‖2 6 1 with high probability. Besides, as each en-
try in E is i.i.d. Gaussian, and E[ETE] = nσ2Im,

thus we have 1
2n

∥∥ETE − nσ2Im
∥∥

2
6 O

(
σ
√

logm
n

)
with high probability according to lemma 3, hence
1

2n

∥∥ETE − nσ2Im
∥∥
F
6 O(σ

√
m logm

n ) with high prob-
ability.

As 1
n2

∥∥X̄TE
∥∥2

F
= 1

n2

∑m
j=1(

∑m
i=1(qTj ei)

2), where
qj , ei are the j-th and i-th column of X̄ and E respec-
tively. For each j ∈ [m], 1

n2

∑m
i=1(qTj ei)

2 obeys Chi-
square distribution (with some scaling), thus with high
probability, 1

n2

∑m
i=1(qTj ei)

2 6 O
(
m‖qj‖2σ2

n2

)
. There-

fore, by union bound, we have 1
n2

∑m
j=1(

∑m
i=1(qTj ei)

2) 6

O

(
m

∑
j‖qj‖2σ2

n2

)
= O

(
mσ2

n

)
, as

∑
j ‖qj‖

2
=
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∥∥X̄∥∥2

F
6 n. Hence, there is 1

n

∥∥X̄TE
∥∥
F

6 O

(√
mσ2

n

)
with high probability. Using similar augument, we have
1
n

∥∥ĒTy∥∥
2
6 O

(√
mσ2

n

)
, 1
n

∥∥ĒTr∥∥
2
6 O

(√
mσ2

n

)
with high probability. For 1

n

∥∥X̄T r
∥∥, according to matrix

concentration inequality (Theorem 4.1.1 in (Tropp et al.,
2015)), we have 1

n

∥∥X̄Tr
∥∥

2
6 O

(
1√
n

)
.

Combine all these results together, we obtain the desired
conclusion.

Lemma 3 ((Vershynin, 2009)). Suppose x ∈ Rd be a ran-
dom vector satisfies E[xxT ] = Id. Denote ‖x‖φ1

= M ,
where ‖·‖ψ1

represents Orlicz ψ1-norm. Let x1, . . . ,xn be
independent copies of x, then for every ε ∈ (0, 1), we have

Pr

(∥∥∥∥∥ 1

n

n∑
i=1

xix
T
i − Id

∥∥∥∥∥
2

> ε

)
6 de−nε

2/4M2

Theorem 1 (Theorem 3 in Main Body). Under the assump-
tion in this section, set m = Θ

(√
nε2 log d

)
for β > 0,

then with high probability , there is

L(wpriv)− L(w∗) = Õ

((
log d

nε2

)1/4
)

Proof. On one hand,

L(wpriv)− L(w∗)

=L(wpriv)− L̄(wpriv) + L̄(wpriv)− L̄(ŵ∗)

+ L̄(ŵ∗)− L̄(w∗) + L̄(w∗)− L(w∗)

6
[
L(wpriv)− L̄(wpriv) + L̄(w∗)− L(w∗)

]
+ L̄(wpriv)− L̄(ŵ∗)

6G[max
i
{|
〈
wpriv,xi

〉
−
〈
ΦTwpriv,ΦTxi

〉
|}

+ max
i
{| 〈w∗,xi〉 −

〈
ΦTw∗,ΦTxi

〉
|}]

+ [L̄(wpriv)− L̄(ŵ∗)] (4)
(where G is the Lipschitz constant)

On the other hand, for ∀w ∈ C,∀x ∈ D, there is

| 〈w,x〉 −
〈
ΦTw,ΦTx

〉
|

=

∣∣∣∣‖ΦT (w+x)‖2
2
−‖ΦT (w−x)‖2

2

4 − ‖w+x‖22−‖w−x‖
2
2

4

∣∣∣∣
6

∣∣∣∣‖ΦT (w+x)‖2
2
−‖w+x‖22

4

∣∣∣∣+

∣∣∣∣‖ΦT (w−x)‖2
2
−‖w−x‖22

4

∣∣∣∣
According to the results of random projection w.r.t. ad-
ditive error (Dirksen, 2016), we know with high probabil-

ity, there is | 〈w,x〉 −
〈
ΦTw,ΦTx

〉
| 6 O

(√
log d
m

)
, for

∀w ∈ C,∀x ∈ D. Therefore, the first term in equation (4)

is less than O
(√

log d
m

)
.

From lemma 2, we know L̄(w̄priv)− L̄(w̄∗) 6 Õ
(√

m
nε2

)
holds with high probability. Combine these two inequali-
ties, it is easy to determine the optimal m, then obtain the
conclusion.

Corollary 1 (Corollary 2 in Main Body). Algorithm LDP
kernel mechanism satisfies (ε, δ)-LDP, and with high prob-
ability, there is

LĤ(ŵpriv)− LH(f∗) 6 Õ

((
d

nε2

)1/4
)

sup
x∈X
|Φ(x)T f∗ − (Φ̂(x))T ŵpriv| 6 Õ

((
d

nε2

)1/8
)

Proof. Algorithm satisfies local privacy is obvious. For
excess risk, as LĤ(ŵpriv) − LH(f∗) = LĤ(ŵpriv) −
LĤ(g∗) + LĤ(g∗) − LH(f∗), follow nearly the same
proof of lemma 5 of sparse linear regression, we have

LĤ(ŵpriv) − LĤ(g∗) 6 Õ

(√
dp
nε2

)
. On the other hand,

nearly borrow the proof of Lemma 17 in (Rubinstein et al.,
2012) and property of RRF , we have

LĤ(g∗)− LH(f∗) 6 Õ

(√
d

dp

)

Combine above two inequalities, and choose optimal dp as

Õ
(√

dnε2
)

, we obtain the first inequality of the conclu-
sion. Then combine lemma 7 in this paper, it is easy to
obtaint the second inequality.

2. Omitted contents and proofs in Section 4
2.1. Relations between smooth generalized linear losses

(SGLL) and generalized linear models (GLM)

Note that a model is called GLM, if for x,w∗ ∈ Rd, label
y with respect to x is given by a distribution which belongs
to the exponential family:

p(y|x,w∗) = exp

(
yθ − b(θ)

Φ
+ c(y,Φ)

)
(5)

where θ,Φ are parameters, and b(θ), c(y,Φ) are known
functions. Besides, there is an one-to-one continuous dif-
ferentiable transformation g(·) such that g(b′(θ)) = xTw∗.

According to the key equality g(b′(θ)) = xTw∗, usually
we can obtain smooth function θ = h1(xTw∗), b(θ) =
h2(xTw∗), and what’s more, univariate function
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hi(x)(i = 1, 2) satisfies the absolutely smooth prop-
erty.

For such GLM, if we consider optimizing the expected neg-
ative logarithmic probability −E(x,y)∼D log p(x, y;w),
once discarding unrelated terms to w, we obtain the new
population loss, L(w) := E(x,y)∼D`(w;x, y), where
`(w;x, y) = −yh1(xTw)+h2(xTw), exactly the form of
smooth generalized linear loss defined in section 4. Hence
our SGLL is a natural loss defined by GLM with additional
smoothness assumptions.

2.2. Omitted proofs

Lemma 4 (Lemma 8 in Main Body). Given any α > 0,
by setting k = c ln 1

α , p = dk + eµ2(k; r)e, where c is a

constant, we have
∥∥∥f̂p(x)− f(x)

∥∥∥
∞

6 α.

Proof. As f, f ′, · · · , f (k−1) are absolutely continuous
over [−1, 1], and

∥∥f (k)
∥∥
T
6 µ1(k; r)µ2(k; r)k, according

to the results in (Trefethen, 2008), we have∥∥∥f̂p(x)− f(x)
∥∥∥
∞

6
2
∥∥f (k)

∥∥
T

πk(p− k)k

6
2µ1(k; r)

πkek
(6)

It is easy to see there exists c > 0, such that the term (6) is
less than α with chosen k, hence the conclusion holds.

Lemma 5 (Lemma 9 in Main Body). For any γ > 0,
setting k = c ln 4r

γ , p = dk + 2µ2(k; r)e, then algo-
rithm 7 outputs a (γ, β, σ) stochastic oracle, where σ =

Õ
(
σ0 + γ + p2p+1(4r)p+1

εp+2

)
.

Proof. According to lemma 4, we know the approximation
error, |m̂(w;x, y) − m(w;x, y)| 6 γ

2r . For any fixed
(x, y), from the construction of stochastic inexact gradi-
ent oracle, there is E[G̃(w; b)|x, y] = Ĝ(w;x, y). Denote
ĝ(w) = E(x,y)∼D[Ĝ(w;x, y)], thus we have

E
[∥∥∥G̃(w; b)− ĝ(w)

∥∥∥2
]

=E
[∥∥∥G̃(w; b)− Ĝ(w;x, y)

∥∥∥2
]

+ E
[∥∥∥Ĝ(w;x, y)− ĝ(w)

∥∥∥2
]

For above two terms, combined with results given in lemma
6, we we obtain

E
[∥∥∥G̃(w; b)− g(w)

∥∥∥2
]
6 Õ

((
r(2rp)p+1

εp+2
+ γ + σ0

)2
)

.

As L(v) − L(w) − ĝ(w)T (v − w) = L(v) − L(w) −
g(w)T (v −w) + (g(w)− ĝ(w))T (v −w), and from the

approximation error, we know |(g(w)−ĝ(w))T (v−w)| 6
γ
2 . What’s more, as L(w) is convex and β-smooth, that
is 0 6 L(v) − L(w) − g(w)T (v − w) 6 β

2 ‖v −w‖
2.

Combined these inequalities, we obtain

−γ2 6 L(v)− L(w)− ĝ(w)T (v −w) 6 β
2 ‖v −w‖

2
+ γ

2

⇐⇒0 6 L(v)− (L(w)− γ
2 )− ĝ(w)T (v −w) 6 β

2 ‖v −w‖
2

+ γ

Note the function value oracles in the stochastic oracle
definition (either Fγ,β,σ(·) or fγ,β,σ(·)) do not play any
role in the optimization algorithm, hence we can set it as
L(w)− γ

2 , though we do not know how to calculate.

Lemma 6. Based on above statements, we have

E
[∥∥∥G̃(w; b)− Ĝ(w;x, y)

∥∥∥2
]
6 Õ

(
p4p+2(4r)2p+2

ε2p+4

)
E
[∥∥∥Ĝ(w;x, y)− ĝ(w)

∥∥∥2
]
6 (γ + σ0)2

Proof. First, we calculate the variance of each tk,
var(tj) 6

∏j(j+1)/2
i=j(j−1)/2+1(var(wTzi) + (E[wTzi])

2) 6

Õ
(

(p(p+1)
ε )2j

)
.

Next, we upper bound the coefficient ck (as it is the same
for c1k and c2k, hence we use ck for short). Note ck =∑p
m=k ambmk, where am is the coefficient of original

function represented by Chebyshev basis, bmk is the co-
efficient of order k monomial in Chebyshev basis Tm(x),
where 0 6 k 6 m. According to the formula of Tm(x)
given in (Qazi & Rahman, 2007) and well-known Stirling’s
approximation, after some translation, we have

|bmk| 6 max
θ∈(0, 12 )

O

(√
m ·

[
(1− θ)1−θ

θθ(1− 2θ)1−2θ

]m)
6O

(√
m2m

)
Besides, from the absolutely smooth property of h′i(x)(i ∈
{1, 2}) and the convergence results in (Trefethen, 2008),
we have am 6 O

(
1
m2

)
, thus ck =

∑p
m=k ambmk 6

O (2p). Hence, there is

var
[
(c2k − c1kzy)tkr

k+1
]
6r2k+2E

[
((c2k − c1kzy)tk)

2
]

6O

(
p4k+2(4r)2p+2

ε2k+2

)
As each (c2k−c1kzy)tkr

k+1 is independent with each other
(for different k), which leads to

var

[
p∑
k=0

(c2k − c1kzy)tkr
k+1

]
6 O

(
p4p+2(4r)2p+2

ε2p+2

)
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Moreover, var(z0) 6 O
(

1
ε2

)
. Therefore,

E
[∥∥∥G̃(w; b)− Ĝ(w;x, y)

∥∥∥2
]
6 Õ

(
p4p+2(4r)2p+2

ε2p+4

)
For second inequality in the conclusion, there is

E
[∥∥∥Ĝ(w;x, y)− ĝ(w)

∥∥∥2
]

6E
[∥∥∥Ĝ(w;x, y)−G(w;x, y) +G(w;x, y)− g(w) + g(w)− ĝ(w)

∥∥∥2
]

6γ2 + σ2
0 + 2σ0γ = (γ + σ0)2

Proposition 1. f(x) = ln(1 + e−x) is absolutely smooth
with µ1(k; r) = r

√
4kπ3, µ2(k; r) = rk

e

Proof. For any r, k > 0, the absolutely continuous of
f (k)(rx) is obvious, now consider

∥∥f (k+1)(rx)
∥∥
T

:

∥∥∥f (k+1)
∥∥∥
T

=

∫ 1

−1

|f (k+2)(rx)|√
1− x2

dx

6π
∥∥∥f (k+2)(rx)

∥∥∥
∞

6πrk+2
∥∥∥∑k+1

j=1 (−1)k+jAk+1,j−1f
j(1− f)k+2−j

∥∥∥
∞

6πrk+2
k+1∑
j=1

Ak+1,j−1

6π(k + 1)!rk+2

6
√

4π3rk+2(k + 1)k+3/2e−k−1

=r
√

4π3(k + 1)

(
r(k + 1)

e

)k+1

Theorem 2 (Theorem 6 in Main Body). For any α > 0,
set γ = α

2 , k = c ln 4r
γ , p = dk + 2µ2(k; r)e, if n >

O
(

( 8r
α )4r ln ln(8r/α)

(
4r
ε

)2cr ln(8r/α)+2 ( 1
α2ε2

))
, using al-

gorithms 6,7,8, then we have L(wpriv)− L(w∗) 6 α.

Proof. According to lemma 10 in main body, with
a (γ, β, σ) stochastic oracle, SIGM algorithm con-
verges with rate O

(
σ√
n

+ γ
)

. In order to have

O
(
σ√
n

+ γ
)
6 α, it suffices if n > O

(
p4p+2(4r)2p+2

α2ε2p+4

)
=

O
(

( 8r
α )4r ln ln(8r/α)

(
4r
ε

)2cr ln(8r/α)+2 ( 1
α2ε2

))
, as σ =

O
(
p2p+1(4r)p+1

εp+2

)
according to lemma 5 (ignoring negligi-

ble σ0, γ).
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