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A. The Empirical Process Framework

We use the framework developed by Goldfarb, Iyengar, and Zhou (2017) for proving convergence of stochastic
algorithms. These results originate in empirical process theory (W. van der Vaart & Wellner, 1996). The problem
to be minimized has the form

min
x
F (x) = Eξf(x, ξ)

We require the following assumptions on F, f for our analysis:

Assumptions:

1. There exist constants L ≥ ` > 0 such that for every x ∈ Rn and every realization of ξ, the Hessian of f with
respect to x satisfies

`I � ∇2
xf(x, ξ) � LI

That is, f(x, ξ) is strongly convex for all ξ, with the eigenvalues of ∇2
xf(x, ξ) bounded below and above by

` and L, respectively.

2. Fk(x) is standard self-concordant for every possible sampling ξ1, . . . , ξmk
.

3. There exist compact sets D0 and D with x∗ ∈ D and D0 ⊆ D, such that if x0 is chosen in D0, then for all
possible realizations of the samples ξ1, . . . , ξmk

for every k, the sequence of iterates {xk}∞k=0 produced by
the algorithm is contained within D. We write D = sup{‖x− y‖ : x, y ∈ D} for the diameter of D.

Furthermore, we assume that the objective values and gradients are bounded:

u = sup
ξ

sup
x∈D

f(x, ξ) <∞

l = inf
ξ

inf
x∈D

f(x, ξ) > −∞

γ = sup
ξ

sup
x∈D
‖∇f(x, ξ)‖ <∞

The key theorem of this framework is a concentration bound which limits the divergence of Fk(x) from F (x).

Theorem A.1 (Corollary 1, (Goldfarb et al., 2017)). For any δ > 0 and 0 < ε < min{D, δ
2L}, we have

P(sup
x∈D
|Fk(x)− F (x)| ≥ δ) ≤ 2nn/2

Dn

εn
exp

[
−mk(δ − 2Lε)2

2(u− l)2

]
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Consequently, if mk ≥ 3, then we have

E sup
x∈D
|Fk(x)− F (x)| ≤ C

√
logmk

mk

and

E|Fk(x∗k)− F (x∗)| ≤ C
√

logmk

mk

where C is the constant

C = 4(|u|+ |l|)nn/2Dn exp

[
−n
(

log
u− l
2
√

2L

)]
+ (u− l)

√
n+ 1

We will also use Theorem A.1 to bound gk and Gk. Assumption 1 implies that the partial derivatives ∂F
∂xi

(x)

and ∂2F
∂xixj

(x) are also uniformly bounded for x ∈ D. Hence, we can apply Theorem A.1 to each of the n entries

∂F
∂xi

of the gradient, and each of the n2 entries ∂2F
∂xi∂xj

of the Hessian. Taking a union bound over the resulting

n2 + n inequalities, we obtain the following concentration inequality for the sampled gradients and Hessians:

Corollary A.2. For any δ > 0 and 0 < ε < min{D, δ
2L},

P(sup
x∈D
‖Gk(x)−G(x)‖ > δ or sup

x∈D
‖gk(x)− g(x)‖ > δ) ≤ C1ε

−n exp
[
−C2mk(δ − C3ε)

2
]

where C1, C2, C3 are constants depending only on F .

Recall the definitions of δk, ρk, αk, and ηk above. In our analysis of stochastic methods, the gradients and

Hessians are those of the empirical objective function. That is to say, ρk = gTkHkgk and δk =
√
dTkGkdk, where

gk and Gk are the gradient and Hessian of Fk.

We say that a constant c is global if it depends only on the properties of the function F , and is completely
independent of the realization of the samples ξ1, . . . , ξmk

.

For convenience, we state again the main result for adaptive step sizes:

Theorem A.3 (Lemma 4.1, (Gao & Goldfarb, 2016)). Let ρk = ∇f(xk)THk∇f(xk). If αk is chosen to be
αk = ρk

δ2k
, then

f(xk + tkdk) ≤ f(xk)− ω(ηk)

where ηk = ρk
δk

and ω is the function ω(z) = z − log(1 + z).

B. Convergence of SA-GD

The SA-GD method corresponds to Hk = I. More generally, we may assume that the sequence of matrices Hk

has bounded eigenvalues.
λI � Hk � ΛI for all Hk (1)

Since this condition is satisfied for L-BFGS, the following results also apply to L-BFGS (with slightly different
constants).

Theorem B.1. Let ε > 0 be fixed. At each iteration, we draw m i.i.d samples ξ1, . . . , ξm, where the size of m
satisfies

logm

m
≤
(

1− r
4C

)2

ε2

and C is the constant in Theorem A.1 and r = 1− λ2`3/2

(
√
`+γ)Λ2L

. Then we have

EF (xk+1)− F (x∗) ≤ ε

when k = log(ε−12(u− l))/ log r.
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For matrices Hk with bounded eigenvalues, ηk can readily be bounded in terms of the empirical gradients, and
the sequence {ηk}∞k=0 is bounded.

Theorem B.2. There exists a global constant Γ = γ√
`

such that ηk ≤ Γ for all k. Furthermore, ηk ≥ λ
Λ
√
L
‖gk‖

for all k.

Proof. By Assumption 1 (strong convexity), Gk satisfies `I � Gk � LI. Thus, from the definition of ηk, we have

ηk =
gTkHkgk√

gTkHkGkHkgk

≤ ‖gk‖‖Hkgk‖√
`‖Hkgk‖

=
1√
`
‖gk‖

By Assumption 3, we find that ‖gk‖ = ‖gk(xk)‖ ≤ γ. Hence, we may take Γ = γ√
`
. We also find that

ηk =
gTkHkgk√

gTkHkGkHkgk

≥ λ

Λ
√
L
‖gk‖

Lemma B.3. The empirical objective function Fk(x) satisfies

Fk(xk+1)− Fk(x∗k) ≤ r(Fk(xk)− Fk(x∗k))

for the global constant r = 1− `
(1+Γ)L < 1.

Proof. Observe that the function ω(z) satisfies ω(z) ≥ 1
2 (1 + Γ)−1z2 for all z ∈ [0,Γ]. Also, recall that the

strongly convex function Fk satisfies ‖gk(x)‖2 ≥ 2`(Fk(x)−Fk(x∗k)). By Theorem A.3 and Theorem B.2, we find
that

Fk(xk+1)− Fk(x∗k) ≤ Fk(xk)− Fk(x∗k)− ω(ηk) ≤ Fk(xk)− Fk(x∗k)− 1

2
(1 + Γ)−1η2

k

≤ Fk(xk)− Fk(x∗k)− 1

2
(1 + Γ)−1 λ2

Λ2L
‖gk‖2

≤
(

1− λ2`

(1 + Γ)Λ2L

)
(Fk(xk)− Fk(x∗k))

Thus, we may take r = 1− λ2`
(1+Γ)Λ2L . For SA-GD in particular, λ = Λ = 1, so r = 1− `

(1+Γ)L .

We are now ready to prove Theorem B.1.

Proof. By Lemma B.3, we calculate that

Fk(xk+1)− Fk(x∗k) ≤ r(Fk(xk)− Fk(x∗k))

= r(Fk−1(xk)− Fk−1(x∗k−1))

+ r(Fk(xk)− F (xk)− Fk−1(xk) + F (xk))

+ r(Fk−1(x∗k−1)− F (x∗)− Fk(x∗k) + F (x∗))

≤ r(Fk−1(xk)− Fk−1(x∗k−1))

+ r(sup
x∈D
|Fk(x)− F (x)|+ sup

x∈D
|Fk−1(x)− F (x)|)

+ r(|Fk(x∗k)− F (x∗)|+ |Fk−1(x∗k−1)− F (x∗)|)
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By iterating this expansion, we find that

Fk(xk+1)− Fk(x∗k) ≤ rk(F0(x1)− F0(x∗0))

+

k∑
j=1

rj(sup
x∈D
|Fk+1−j(x)− F (x)|+ sup

x∈D
|Fk−j(x)− F (x)|)

+

k∑
j=1

rj(|Fk+1−j(x
∗
k+1−j)− F (x∗)|+ |Fk−j(x∗k−j)− F (x∗)|)

Decompose Fk(xk+1)− Fk(x∗k) as

Fk(xk+1)− Fk(x∗k) = F (xk+1)− F (x∗) + [Fk(xk+1)− F (xk+1)] + [F (x∗)− Fk(x∗k)]

We can move the terms in square brackets to the right hand side, and upper bound them, to obtain

F (xk+1)− F (x∗) ≤ rk(F0(x1)− F0(x∗0))

+ sup
x∈D
|Fk(x)− F (x)|

+

k∑
j=1

rj(sup
x∈D
|Fk+1−j(x)− F (x)|+ sup

x∈D
|Fk−j(x)− F (x)|) (2)

+ |Fk(x∗k)− F (x∗)|

+

k∑
j=1

rj(|Fk+1−j(x
∗
k+1−j)− F (x∗)|+ |Fk−j(x∗k−j)− F (x∗)|)

Suppose that we draw a constant number of samples mk = m at each iteration. Taking expectations on both
sides of equation (2) and applying the concentration bound of Theorem A.1, we obtain

EF (xk+1)− F (x∗) ≤ rk(u− l) + 2C

√
logm

m

k∑
j=0

rj

≤ rk(u− l) +
2C

1− r

√
logm

m

In order to obtain an ε-optimal solution, we may use sufficiently large samples, and take sufficiently many
iterations, so that

rk(u− l) ≤ ε

2

2C

1− r

√
logm

m
≤ ε

2

This yields the given bounds on m and k in Theorem B.1.

In particular, it suffices to take m = O(ε−2 log ε−1) and k = O(log ε−1).

C. Convergence of SA-BFGS

Our goal in this section is to prove that SA-BFGS converges superlinearly with probability 1.

Theorem C.1. Suppose that we draw mk samples on the k-th step, where m−1
k converges R-superlinearly to 0.

Then SA-BFGS converges to the optimal solution x∗ almost surely.

Our arguments closely follow the proofs given in (Powell, 1976) and (Griewank & Toint, 1982) for the deterministic
BFGS method.
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Along the way, we will also consider the behavior of SA-BFGS when ε-optimality suffices, and mk is held constant.
Note that the results preceding Lemma C.10 do not depend on any particular choice of sample sizes mk.

We introduce the following assumption in this section:

4. The Hessian G(x) is Lipschitz continuous with constant LH .

The adaptive step size is known to satisfy the Armijo-Wolfe conditions in the deterministic setting. A similar
property holds for the empirical objective functions.

Theorem C.2 (Theorem 6.2, (Gao & Goldfarb, 2016)). The adaptive step size tk satisfies the Armijo condition
for α = 1

2 , for the empirical objective function Fk(x).

Recall that the SA-BFGS algorithm performs a BFGS update at step k only if tk satisfies the Wolfe condition.
If tk does not satisfy the Wolfe condition, then we take a SA-GD step instead. In this case, the direction is −gk
and the step size is the adaptive step size for SA-GD.

We use q(j) to denote the the index of the j-th BFGS step, or equivalently, the index at which the j-th BFGS
update is performed. The steps {q(j)}∞j=1 where we perform BFGS updates will be referred to as update times.
Later on, we will see that if mk grows at a sufficient rate, then all q(j) exist with probability 1.

The following technical lemma is used in the analysis of BFGS; it can also be found in (Byrd et al., 1987) and
(Powell, 1976).

Lemma C.3. Let k = q(j) be an update time. Let Gk =
∫ 1

0
Gk(xk + τsk)dτ , and let θk denote the angle between

the vectors −gk and sk. Then

1. yk = Gksk, and sTk yk ≤ L‖sk‖2.

2. ‖sk‖ ≤ 1
` ‖gk‖ cos θk

3. If the Wolfe condition is satisfied on step k, then 〈yk, sk〉 ≥ (1− β)〈−gk, sk〉 and ‖sk‖ ≥ (1−β)
L ‖gk‖ cos θk.

Proof. The first statement follows from the definition yk = gk(xk+1) − gk(xk). Since Gk(x) � LI for all x, we
also have Gk � LI, and hence sTk yk = sTkGksk ≤ L‖sk‖2.

The second statement follows from the Armijo condition (Theorem C.2) and Taylor’s theorem. Let x be a point
on the line [xk, xk+1] with Fk(xk+1) = Fk(xk) + 〈gk, sk〉+ 1

2s
T
kGk(x)sk. Since Fk(xk+1)−Fk(xk) ≤ 1

2 〈gk, sk〉, we
have 1

2 〈−gk, sk〉 ≥
1
2s
T
kGk(x)sk ≥ 1

2m‖sk‖
2 as desired.

The Wolfe condition implies that 〈yk, sk〉 = 〈gk(xk+1) − gk(xk), sk〉 ≥ (1 − β)〈−gk, sk〉. Writing 〈−gk, sk〉 =
‖gk‖‖sk‖ cos θk, we have L‖sk‖2 ≥ (1− β)‖gk‖‖sk‖ cos θk, which gives the last statement.

The next result is the key technical lemma in proving that SA-BFGS converges R-linearly. Its proof is identical
to the deterministic case (Powell, 1976).

Lemma C.4. There exists a global constant c such that

k∏
j=1

‖gq(j)‖2

〈−gq(j), sq(j)〉
≤ ck

Proof. By considering the BFGS update formula, we have

Tr(Bj+1) = Tr(Bj)−
sTj B

2
j sj

sTj Bjsj
+
yTj yj

sTj yj

Recall from Lemma C.3 that yj = Gjsj . Therefore, writing zj = G
1/2

j sj , we have

yTj yj

sTj yj
=
zTj Gjzj

zTj zj
≤ L
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where the last inequality follows from Assumption 1. Let c1 = Tr(B0) + kL. The BFGS formula implies that
Tr(Bq(k+1)) ≤ Tr(B0) + kL ≤ c1k, and since Bq(k+1) is positive definite, we also have

k∑
j=1

sTq(j)B
2
q(j)sq(j)

sTq(j)Bq(j)sq(j)
≤ Tr(B0) + kL ≤ c1k

Observe that sTj B
2
j sj = t2j‖gj‖2 and that sTj Bjsj = tj〈−gj , sj〉. By the arithmetic mean-geometric mean (AM-

GM) inequality,
k∏
j=1

tq(j)‖gq(j)‖2

〈−gq(j), sq(j)〉
≤ ck1 (3)

Next, we use the recursive formula for the determinant:

det(Bj+1) =
yTj sj

sTj Bjsj
det(Bj)

Since the Wolfe condition is satisfied, we have

yTj sj = (gj(xj+1)− gj(xj))T sj ≥ (1− β)〈−gj , sj〉

Therefore,

det(Bq(k+1)) ≥ det(B0)

k∏
j=1

1− β
tq(j)

By the AM-GM inequality applied to the eigenvalues of Bq(k+1), we find that det(Bq(k+1)) ≤ (c1k/n)n ≤ ck2 for a

global constant c2. Hence,
∏k
j=1

1−β
tq(j)
≤ ck2 . Multiplying this together with inequality (3), and taking c = c1

(1−β)c2
,

we find that
k∏
j=1

‖gq(j)‖2

〈−gq(j), sq(j)〉
≤ ck

as desired.

Lemma C.5. At least 1
2k of the angles θq(1), . . . , θq(k) satisfy cos2 θq(j) > (`/c)2, where c is the constant of

Lemma C.4.

Proof. By Lemma C.3, ‖sj‖ ≤ 1
` ‖gj‖ cos θj . Substituting this in Lemma C.4 yields

ck ≥
k∏
j=1

‖gq(j)‖2

〈−gq(j), sq(j)〉
≥

k∏
j=1

`

cos2 θq(j)
= `k+1

k∏
j=1

1

cos2 θq(j)

Hence,
∏k
j=1 cos2 θq(j) ≥ (`/c)k. It follows that at least 1

2k of the angles must satisfy cos2 θq(j) ≥ (`/c)2.

We can proceed to show that stochastic adaptive BFGS converges R-linearly. The argument proceeds by showing
that if k is not an update time, then SA-BFGS inherits the Q-linear convergence rate of SA-GD, and if k = q(j),
then we can measure the decrement with Lemma C.4.

Lemma C.6. If k is not an update time, then

Fk(xk+1)− Fk(x∗k) ≤ r(Fk(xk)− Fk(x∗k))

where r = 1− `3/2

(
√
`+γ)L

.

Proof. This follows from Lemma B.3 for SA-GD.
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Lemma C.7. Let k = q(j). Then

Fk(xk+1)− Fk(x∗k) ≤
(
1− (1− β)`L−1 cos2 θk

)
(Fk(xk)− Fk(x∗k))

Proof. Since the adaptive step size tk satisfies the Armijo condition for α = 1
2 , we have

Fk(xk+1)− Fk(xk) ≤ 1

2
〈gk, sk〉 = −1

2
‖gk‖‖sk‖ cos θk

Using Lemma C.3, we rewrite ‖sk‖ in terms of ‖gk‖, cos θk to obtain

Fk(xk+1)− Fk(xk) ≤ −1

2
(1− β)L−1‖gk‖2 cos2 θk

Since ‖gk‖2 ≥ 2`(Fk(xk)− Fk(x∗k)), we rearrange to obtain

Fk(xk+1)− Fk(x∗k) ≤ (1− (1− β)`L−1 cos2 θk)(Fk(xk)− Fk(x∗k))

Theorem C.8. Suppose that we draw samples of size mk at step k, where m−1
k converges superlinearly to 0.

With probability 1, SA-BFGS converges R-linearly.

Proof. Let ν = max{1 − (1 − β)`L−1(`/c)2, r} < 1. Let I1(k) be the 0-1 indicator variable for the event that
k is a BFGS update time, and let I2(k) be the indicator for the event that k is a BFGS update time and
cos2 θk ≥ (`/c)2. Combining Lemma C.6 and Lemma C.7 by using these indicator variables, we have

Fk(xk+1)− Fk(x∗k) ≤ (1− (1− β)`L−1 cos2 θk)I1(k)r1−I1(k)(Fk(xk)− Fk(x∗k))

≤ (1− (1− β)`L−1(`/c)2)I2(k)r1−I1(k)(Fk(xk)− Fk(x∗k))

≤ νI2(k)+1−I1(k)(Fk(xk)− Fk(x∗k))

For any t ≤ k, let b(t) =
∑t
j=0 I1(j). Rewritten with indicators, Lemma C.5 states that

∑t
j=0 I2(j) ≥ 1

2b(t).
Therefore

k∑
j=0

(I2(j) + 1− I1(j)) ≥ k − 1

2
b

Define I3(k) = I2(k) + 1− I1(k). Iterating the above expansion, we have

Fk(xk+1)− Fk(x∗k) ≤ νI3(k)(Fk(xk)− Fk(x∗k))

≤ νI3(k)(Fk−1(xk)− Fk−1(x∗k−1) + (Fk(xk)− Fk−1(xk)) + (Fk−1(x∗k−1)− Fk(x∗k))

≤ ν
∑k

i=0 I3(i)(F0(x0)− F0(x∗0))

+

k∑
j=1

ν
∑k

i=j I3(i)[sup
x∈D
|Fj(x)− F (x)|+ sup

x∈D
|Fj−1(x)− F (x)|]

+

k∑
j=1

ν
∑k

i=j I3(i)[|Fj(x∗j )− F (x∗)|+ |Fj−1(x∗j−1)− F (x∗)|]

≤ νk−b/2(F0(x0)− F0(x∗0))

+ 2
∑

0≤j≤k−b/2

νk−b/2−j(sup
x∈D
|Fj(x)− F (x)|+ |Fj(x∗j )− F (x∗)|)

+ 2

k∑
j>k−b/2

(sup
x∈D
|Fj(x)− F (x)|+ |Fj(x∗j )− F (x∗)|)
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In the last inequality, we have simply split the sums into two sums, one running over the indices 0 ≤ j ≤ k− b/2
and the other over k − b/2 < j ≤ k. Writing the left side as

Fk(xk+1)− Fk(x∗k) = F (xk+1)− F (x∗) + (Fk(xk+1)− F (xk+1)) + (F (x∗)− Fk(x∗k))

we can move terms to the right to obtain

F (xk+1)− F (x∗) ≤ νk−b/2(F0(x0)− F0(x∗0))

+ sup
x∈D
|Fk(x)− F (x)|+ |Fk(x∗k)− F (x∗)|

+ 2
∑

0≤j≤k−b/2

νk−b/2−j(sup
x∈D
|Fj(x)− F (x)|+ |Fj(x∗j )− F (x∗)|)

+ 2

k∑
j>k−b/2

(sup
x∈D
|Fj(x)− F (x)|+ |Fj(x∗j )− F (x∗)|)

Taking expectations, and applying Theorem A.1 on the right, we have

EF (xk+1)− F (x∗) ≤ νk−b/2(u− l) + 4C
∑

0≤j≤k−b/2

νk−b/2−j

√
logmj

mj
+ 4C

k∑
j>k−b/2

√
logmj

mj
(4)

Our choice of mj satisfies mj = Ω(ν−2j), so
√

logmj

mj
= O(νj

√
j). Hence, by bounding each term with a multiple

of νk−b/2, we may find a global constant φ, with 1 > φ > ν, and a global constant c3, such that

EF (xk+1)− F (x∗) ≤ c3φk−b/2

Clearly b ≤ k, and thus we find that
EF (xk+1)− F (x∗) ≤ c3φk/2

Now, fix any constant ϕ with φ < ϕ < 1. By Markov’s inequality,

P(F (xk)− F (x∗) ≥ ϕk/2) ≤ E(F (xk)− F (x∗))

ϕk/2
≤ c3

(
φ

ϕ

)k/2
Since

∑∞
k=0

(
φ
ϕ

)k/2
<∞, the Borel-Cantelli Lemma implies that the sequence of events Ak with

Ak = {F (xk)− F (x∗) > ϕk/2}

occurs finitely often with probability 1. Therefore, with probability 1, SA-BFGS converges R-linearly.

Before proceeding further, let us digress briefly to consider the behavior of SA-BFGS when we are satisfied with
an ε-optimal solution, and wish to hold the number of samples constant.

Lemma C.9. Let ε > 0. Suppose we draw m i.i.d samples at each step, where m = O(ε2(log ε−1)3). Then
SA-BFGS converges in expectation to an ε-optimal solution after k steps, where k = O(ε−1).

Proof. Note that equation (4) in the proof of Theorem C.8 holds in the absence of any assumptions on the sample
sizes mk. Suppose that we take mk = m. Then we have

EF (xk+1)− F (x∗) ≤ νk−b/2(u− l) + 4C
∑

0≤j≤k−b/2

νk−b/2−j

√
logmj

mj
+ 4C

k∑
j>k−b/2

√
logmj

mj

≤ νk/2(u− l) + 4C

√
logm

m

(
1

1− ν
+ k/2

)
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Therefore, in order to obtain an ε-optimal solution from SA-BFGS, we may take

νk/2(u− l) ≤ ε

2

4C

1− r

√
logm

m

(
1

1− ν
+ k/2

)
≤ ε

2

Thus, it suffices to take k = log(ε−12(u − l))/ log ν. Substituting this value of k into the second inequality, we
see that it suffices to take m = O(ε2(log ε−1)3).

We now concern ourselves with R-superlinear convergence to the true optimal solution. Henceforth, we assume
that the sample sizes grow so that m−1

k converges R-superlinearly to 0.

Lemma C.10. We have
∑∞
k=0 ω(ηk) <∞ with probability 1. In particular, ηk → 0 almost surely.

Proof. By Theorem A.3, we find that

Fk(xk+1) ≤ Fk(xk)− ω(ηk)

= Fk−1(xk) + (Fk(xk)− Fk−1(xk))− ω(ηk)

≤ F0(x0) +

k∑
j=1

(Fj(xj)− Fj−1(xj))−
k∑
j=0

ω(ηj)

≤ F0(x0) +

k∑
j=1

sup
x∈D
|Fj(x)− Fj−1(x)| −

k∑
j=0

ω(ηj)

≤ F0(x0) + 2

k∑
j=1

sup
x∈D
|Fj(x)− F (x)| −

k∑
j=0

ω(ηj)

≤ F0(x0) + 2

∞∑
j=1

sup
x∈D
|Fj(x)− F (x)| −

k∑
j=0

ω(ηj)

Let Y =
∑∞
j=1 supx∈D |Fj(x)− F (x)|. By the monotone convergence theorem and Theorem A.1, we have

EY =

∞∑
j=1

E sup
x∈D
|Fj(x)− F (x)| ≤ C

∞∑
j=1

√
logmj

mj

By our choice of mj , the latter sum is finite. This implies that P(Y < ∞) = 1. Since Fk(x) is bounded below
on D by Assumption 3, we necessarily have

∑∞
k=0 ω(ηk) < ∞ whenever Y < ∞. Thus ηk → 0 with probability

1.

Theorem C.11. Fix any β < 1. With probability 1, there exists a finite index k0 such that the Wolfe condition
is satisfied for all k ≥ k0.

Proof. This follows from Theorem 6.3 in (Gao & Goldfarb, 2016), for any realization of the empirical objective
functions F0, F1, . . . such that ηk → 0. By Lemma C.10, the event ηk → 0 occurs with probability 1.

In particular, this implies that with probability 1, there exists a finite time k0 after which every step is a BFGS
step, and BFGS updates are always performed.

Corollary C.12. With probability 1, we have
∑∞
k=0 ‖xk − x∗‖ <∞.

Proof. This follows from Theorem C.8. Let {xk}∞k=0 be any instance of the algorithm where F (xk) ≤ F (x∗)+ϕk/2

for all k ≥ k0, for some index k0. Since F (x) is strongly convex,

‖xk − x∗‖ ≤
2

`
(F (xk)− F (x∗)) ≤ 2

`
ϕk/2

for all k ≥ k0. Hence
∑∞
k=0 ‖xk − x∗‖ <∞. By Theorem C.8, this occurs with probability 1.
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Let us define ek = max{‖xk − x∗‖, ‖xk+1 − x∗‖}. Corollary C.12 implies that
∑∞
k=0 ek <∞.

Next, we perform a detailed analysis of the evolution of Hk+1. By applying Corollary A.2, we can use a modified
form of the classical argument ((Griewank & Toint, 1982)) on a path-by-path basis.

Corollary C.13. Let σk = m
−2/5
k . By taking δ = σk in Corollary A.2, we can find global constants c4 and

ω < 1 such that

P(sup
x∈D
‖Gk(x)−G(x)‖ > σk or sup

x∈D
‖gk(x)− g(x)‖ > σk) ≤ c4ωk

Hence, with probability 1, there exists an index k0 such that for all k ≥ k0, we have both sup
x∈D
‖Gk(x)−G(x)‖ < σk

and sup
x∈D
‖gk(x)− g(x)‖ < σk.

By construction, {σk} converges to 0 at a R-superlinear rate.

Proof. The first part follows by Corollary A.2. Taking ε = δ
2L+1 , our probability bound is

P(sup
x∈D
‖Gk(x)−G(x)‖ > σk or sup

x∈D
‖gk(x)− g(x)‖ > σk) ≤ C1 exp(

2

5
n logmk − C2(1− C3

2L+ 1
)2m

1/5
k )

Since
m

1/5
k

logmk
→ 0 and mk = Ω(k5) by construction, we can find the desired ω < 1. The second statement then

follows immediately from the Borel-Cantelli Lemma.

Let Ω denote the space of paths where
∑∞
k=0 ek < ∞ and for some k0, supx∈D ‖Gk(x) − G(x)‖ ≤ σk and

supx∈D ‖gk(x) − g(x)‖ ≤ σk for all k ≥ k0. By Corollary C.12 and Corollary C.13, P(Ω) = 1. Henceforth, we
restrict our analysis to the paths belonging to Ω.

The BFGS algorithm is invariant under a linear change of variables, so without loss of generality, we may assume
that G(x∗) = I. This corresponds to the change of variables F̃ (y) = F (G(x∗)−1/2y), y = G(x∗)1/2x. Define two
‘hypothetical’ updates:

B̂k+1 = Bk −
Bksks

T
kBk

sTkBksk
+
Gk(x∗)sks

T
kGk(x∗)

sTkGk(x∗)sk

B̃k+1 = Bk −
Bksks

T
kBk

sTkBksk
+
G(x∗)sks

T
kG(x∗)

sTkG(x∗)sk

Lemma C.14. We have

‖B̃k+1 − I‖2F ≤ ‖Bk − I‖2F
and

‖H̃k+1 − I‖2F ≤ ‖Hk − I‖2F

Proof. For brevity, we write s = sk, B = Bk, H = Hk. By a routine calculation (see §4 of (Griewank & Toint,
1982)), we have

‖B̃k+1 − I‖2F − ‖Bk+1 − I‖2F = −

[(
1− sTB2s

sTBs

)2

+ 2

(
sTB3s

sTBs
−
(
sTB2s

sTBs

)2
)]

and

‖H̃k+1 − I‖2F − ‖Hk+1 − I‖2F = −

[(
1− sTHs

sT s

)2

+ 2

(
sTH2s

sT s
−
(
sTHs

sT s

)2
)]

The Cauchy-Schwarz inequality implies that the latter terms in the brackets are non-positive, which gives the
desired result.
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Lemma C.15. Every path in Ω satisfies

‖Bk+1 − B̃k+1‖ ≤ O(ek + σk)

and
‖Hk+1 − H̃k+1‖ ≤ (‖Hk − I‖+ 1)O(ek + σk)

Proof. We again write s = sk, y = yk, B = Bk, H = Hk for brevity.

We can bound the difference ‖Bk+1 − B̂k+1‖, as both updates are performed with sampled gradients, and then

use Corollary C.13 to bound ‖B̂k+1 − B̃k+1}.

Take ∆ = Gk(x∗)s− y. By Lemma C.3, we can write y = Gk(x̂)s for some x̂ on the line segment [xk, xk+1], and
we deduce that:

1. `‖s‖2 ≤ yT s ≤ L‖s‖2

2. ‖∆‖ ≤ LHek‖s‖.

3. yT ∆
sT y
≤ LLHek

Hence, writing 1
sT y+∆T s

= 1
sT y
− yT ∆

sT y+yT ∆
, we have

‖Bk+1 − B̂k+1‖ =

∥∥∥∥yyTsT y
− (y + ∆)(y + ∆)T

(y + ∆)T s

∥∥∥∥
=

∥∥∥∥−y∆T + ∆yT + ∆∆T

sT y
+
yT∆(yyT + y∆T + ∆yT + ∆∆T )

sT y + yT∆

∥∥∥∥
≤ O(ek)

Next, write ŷ = Gk(x∗)s and ỹ = G(x∗)s. Since our path lies in Ω, we know that ‖Gk(x∗)−G(x∗)‖ ≤ σk. Let
∆ = ŷ − ỹ, so ‖∆‖ ≤ σk‖s‖, and perform the same calculation as above to obtain

‖B̂k+1 − B̃k+1‖ =

∥∥∥∥− ỹ∆T + ∆ỹT + ∆∆T

sT ỹ
+
ỹT∆(ỹỹT + ỹ∆T + ∆ỹT + ∆∆T )

sT ỹ + ỹT∆

∥∥∥∥
≤ O(σk)

Hence, ‖Bk+1 − B̃k+1‖ ≤ O(ek + σk).

A similar calculation holds for H.

‖Hk+1 − Ĥk+1‖ = ‖ ssT

(y + ∆)T s
− ssT

sT y

+

(
s(y + ∆)T

(y + ∆)T s
− syT

sT y

)
H +H

(
(y + ∆)sT

(y + ∆)T s
− ysT

sT y

)
+
s(y + ∆)TH(y + ∆)sT

((y + ∆)T s)2
− syTHysT

(sT y)2
‖

It is elementary, though tedious, to verify that ssT

(y+∆)T s
− ssT

sT y
≤ O(ek) and that the other terms are bounded by

O(‖H‖ek). The same calculation shows that ‖Ĥk+1−H̃k+1‖ ≤ O(σk+‖H‖σk). Thus, we have ‖Hk+1−H̃k+1‖ ≤
(‖Hk − I‖+ 1)O(ek + σk).

Corollary C.16. By Lemma C.15, Lemma C.14, and the triangle inequality,

‖Bk+1 − I‖ ≤ ‖Bk+1 − B̃k+1‖+ ‖B̃k+1 − I‖ ≤ ‖Bk − I‖+O(ek + σk)

and

‖Hk+1 − I‖ ≤ ‖Hk+1 − H̃k+1‖+ ‖H̃k+1 − I‖ ≤ (‖Hk − I‖+ 1)O(ek + σk)
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A lemma of Griewank and Toint shows that this forces the convergence of {‖Bk − I‖} and {‖Hk − I‖}.
Lemma C.17 (Lemma 3.3 of (Griewank & Toint, 1982)). Let {φk} and {δk} be sequences of non-negative
numbers such that φk+1 ≤ (1 + δk)φk + δk and

∑∞
k=1 δk <∞. Then {φk} converges.

In our case, we take δk = ek + σk, as
∑∞
k=0(ek + σk) <∞ by Corollary C.12 and Corollary C.13.

Following §4 of (Griewank & Toint, 1982), our previous results yield the Dennis-Moré ((Dennis Jr. & Moré,
1974)) condition:

lim
k→∞

‖(Bk − I)sk‖
‖sk‖

= 0

It only remains to show that this implies R-superlinear convergence in the stochastic setting. Since I = G(x∗),
we have

‖Bksk −G(x∗)sk‖ = ‖ − gk −G(x∗)sk + gk(xk+1)− gk(xk+1)‖
= ‖gk(xk+1)− gk −G(x∗)sk − gk(xk+1)‖

= ‖
∫ 1

0

(Gk(xk + τsk)−G(x∗))skdτ − gk(xk+1)‖

= ‖
∫ 1

0

(G(xk + τsk)−G(x∗))skdτ +

∫ 1

0

(Gk(x+ τsk)−G(xk + τsk))skdτ − gk(xk+1)‖

≥ ‖gk(xk+1)‖ − (LHek + σk)‖sk‖

and therefore ‖gk(xk+1)‖
‖sk‖ → 0. By Assumption 1, the empirical objective function Fk(x) is strongly convex, and

therefore

‖gk(xk+1)‖
‖sk‖

≥ |‖gk(xk+1)− gk(x∗)‖ − ‖gk(x∗)− g(x∗)‖|
‖xk+1 − x∗‖+ ‖xk − x∗‖

(5)

To complete the analysis, let ak = ‖gk+1‖
‖sk‖ , bk = ‖gk(x∗) − g(x∗)‖, and zk = ‖xk − x∗‖. Our above results show

that ak → 0, and bk ≤ σk tends to 0 R-superlinearly. For convenience, we assume without loss of generality that
{bk} converges Q-superlinearly, by replacing {bk} by the Q-superlinear sequence bounding σk if necessary.

Rearrange inequality (5) to obtain

`zk+1 = `‖xk+1 − x∗‖ ≤ ‖gk(xk+1)− gk(x∗)‖ ≤ ak(zk+1 + zk) + bk

Eventually, ak <
1
2`, as ak → 0. Beyond that point, we find that

zk+1 ≤
ak

`− ak
zk + bk ≤

2

`
akzk + bk (6)

Let ck = max{akzk, bk}. Clearly zk+1 ≤ (2+ 2
` )ck, so it suffices to prove that {ck} converges superlinearly. There

are two cases to consider. If ck+1 = ak+1zk+1, then

ck+1

ck
=
ak+1zk+1

ck
≤ ak+1

(2 + 2
` )ck

ck
=

(
2 +

2

`

)
ak+1

and ak → 0. Otherwise, if ck+1 = bk+1, then

ck+1

ck
=
bk+1

ck
≤ bk+1

bk

and by construction, {bk} converges to 0 superlinearly, so bk+1

bk
→ 0.

This proves that zk converges R-superlinearly, and completes the proof of Theorem C.1.
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D. Additional Experiments

To complement the numerical experiments for general stochastic optimization problems, we provide additional
results for ERM (empirical risk minimization) problems. We compare all the algorithms in section 8 on ridge
regression problems, that is,

min
w∈Rp

1

n

n∑
i=1

(yi −Xiβ)2 + λ‖w‖22,

where we set n = 106, Xi ∼ N(0,Σ(ρ)), Σ(ρ) = (1 − ρ2)Ip + ρ2J (here J is the all-ones matrix), β is a fixed p
dimensional vector and λ = 1. We test problems of size p = 100, 500 and ρ = 0, 0.5, 0.9. From the figures, we
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may draw similar conclusions as to those in section 6 for the methods that use an adaptive step length. One
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interesting finding in this set of experiments is that the robust SGD methods do not work well especially for
p = 500.
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