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Abstract

Financial services and technology companies invest significantly in monitoring their com-
plex technology infrastructures to allow for quick responses to technology failures. Because
of the volume and velocity of signals monitored (e.g., customer transaction volume, API
calls, server CPU utilization, etc.), they require sophisticated models of normal system be-
havior to determine when a component falls into an anomalous state. Gaussian processes
(GPs) are flexible, Bayesian nonparametric models that have successfully been used for
time series forecasting, interpolation, and anomaly detection in complex data sets. Despite
the growing use of GPs for time series analysis in the literature, these methods scale poorly
with the size of the data. In particular, data sets containing multiple timescales can pose
a problem for GPs, as they can require a large number of points for training.

We describe a novel method for including long and short timescale information with-
out including an impractical number of data points through the use of a binned process,
defined as the definite integral over a latent Gaussian process. This results in a binned
covariance function for the time series, which we use to fit and forecast data at multiple
resolutions. The resulting models achieve higher accuracy with fewer data points than their
non-binned counterparts, and are more robust to long tailed noise, heteroskedasticity, and
data artifacts.
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1. Introduction

Financial services and technology companies leverage complex technology infrastructures
to deliver valuable digital experiences to customers. These corporations must monitor
technology operations to identify interruptions in service and hardware/software failures,
enabling rapid root cause analysis and mitigation before adverse customer impacts occur.
In practice, operations monitoring involves contextual anomaly detection in time series data
from a variety of sources, including customer transaction volume, software API calls, server
CPU utilization, etc. Anomalies can be identified in a number of ways, for example, by
fitting a model to training data and assessing misfit between the model forecast and future
data, or by fitting sequential changepoint or fault detection models (e.g., Garnett et al.,
2010).

A significant challenge in controlling the false positive rate of incident alerts is the
presence of multiple timescales in the data, which appear anomalous unless an impractical
amount of data are used for model training. Obvious drops or spikes in traffic volume on the
minute or hour timescale are readily identified using a variety of methods (see, e.g., Woodall
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Figure 1: Financial transaction data exhibiting multiple timescales with hourly, daily, and
weekly variation.

and Montgomery, 1999). However, successfully identifying more subtle faults might involve,
for example, comparing minute level forecasts for several hours, or hour level forecasts over
the course of a day, to new data and creating an alert when the model unsuccessfully
captures the covariance structure of the underlying signal.

As an example, consider the time series of financial transaction data in Figure 1. These
data exhibit noise on the minute timescale, with quasi-periodic fluctuations on the hour,
day, and weekly timescales. Consider the increase in overall traffic on July 15, 2017; it is
clear from examining the time series that the enhanced volume is not associated with an
anomaly, but rather an overall weekly pattern. Imagine now that, on the morning of July
15, we create a forecast of the signal over the next few hours, conditioned only on hourly
data from the past few days. In this case, there is no failure, but we would create a false
alert, based on the increase in transaction volume over our prediction.

These kinds of false positives are inevitable when monitoring large enterprise technology
infrastructures, in which we need to identify anomalies that occur in between multiple
timescales of interest. As an example, a failure in one data center might lead to increasing
transaction volume routed to a different data center. Such a failure might manifest as an
increase in traffic over several hours before the backup data center fails under the enhanced
transaction load; the underlying fault in the original data center could only be detected by
identifying the deviation in time series data from the forecasted daily pattern.

For this reason, and due to the volume, velocity, and variety of actionable data in large
enterprises, we require sophisticated models of system behavior to avoid generating an im-
practical number of alerts while identifying critical software and hardware failures. Gaussian
processes (GPs) represent an extremely flexible, powerful modeling approach for capturing
the covariance structure of data in a wide range of applications. A number of recent works
discuss time series applications of GPs for anomaly detection and changepoint modeling
(see, e.g., Adams and MacKay, 2007; Saatci, 2011; Roberts et al., 2012, and the references
therein). Gaussian processes have also been used to create Bayesian nonparametric general-
izations of standard state-space models for linear dynamical systems, with applications to,
for example, stochastic volatility (e.g., Wu et al., 2014; Frigola-Alcalde, 2015). In addition,
a number of authors have used GPs to model the correlations between time series, with
applications to financial data (e.g., Wilson and Ghahramani, 2011; Wilson et al., 2012). A
comprehensive introduction to the Gaussian process literature can be found in Rasmussen
and Williams (2006)
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Despite the promise of GPs for time series modeling, a major practical drawback is the
unfavorable scaling of GP learning algorithms with the size of the data set. For T data
points, inference in GP models requires matrix decompositions that scale as O

(
T 3
)
. For

models in which time is the only variable, and is laid out on a grid with equal spacing, the
complexity can be reduced to O

(
T 2
)

using Toeplitz methods (Zhang et al., 2005). More
generally, other authors have introduced a variety of approximate methods for learning
GPs which effectively downsample the data to reduce the effective scaling (e.g., Smola and
Bartlett, 2001; Quiñonero Candela and Rasmussen, 2005; Snelson and Ghahramani, 2006;
Wilson and Nickisch, 2015).

In applications of GPs to data with multiple variation time scales, the data burden
can become restrictive. For example, the ability to forecast multiple hours ahead, taking
into account daily and weekly variation, requires training data at the hourly scale over
several weeks. This can quickly become restrictive, even when using Toeplitz methods or
downsampling of the data. We present a simple alternative method for learning time series
behavior on multiple, disparate timescales, leading to improved forecasts and concomitantly
lower false positive alert rates, with significantly reduced data requirements.

Time series data for monitoring are often binned over specific timescales to increase
signal-to-noise and facilitate understanding of patterns in the data. For example, aggregat-
ing CPU utilization over an hour time interval might yield a clear periodic daily pattern
using many fewer data points than at a minute-level bin size. To exploit this intuition, we
model the data with a latent, unaggregated time series, which is given a GP prior. We
then define transformations of the data, consisting of aggregations over multiple, distinct
timescales (e.g., minute, hour, day, etc.). The GP prior on the latent time series induces
a GP on each of these aggregations. The kernel functions describing the covariance within
and between the transformed quantities can be written as integrals over the bin size on the
latent GP kernel. These integrals can be carried out by taking the Fourier transform of the
latent kernel and applying the aggregation in the spectral domain. This procedure results in
covariance and cross-covariance functions between data aggregated with different bin sizes.
From the properties of the GP, posterior predictions for future data are calculated using
linear combinations of the data at all timescales.

The outline of the rest of the paper is as follows: in §2, we describe the binned kernel
approach, and derive practical methods for incorporating these into standard GP model
training; in §3, we test our methodology on synthetic and actual transactional time series
data and demonstrate the benefits of the binned kernel approach; finally, in §4, we discuss
implications for anomaly detection and make connections between the binned approach and
other models.

2. Methods

Our modeling approach assumes the existence of a latent function, f , of a single time
variable t. We place a Gaussian process prior on f :

f |t, θ ∼ N (0,K) , (1)

where N is the multivariate normal distribution, t is a set of T time values, Kij ≡ k(ti, tj |θ),
with k denoting the kernel function, and θ the collection of hyperparameters for the GP
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kernel (c.f., Rasmussen and Williams, 2006). We assume that latent, unbinned data are
generated from a normal sampling distribution:

y|f, σ2 ∼ N
(
f, σ2IT

)
, (2)

where σ2 is the variance parameter for the Gaussian likelihood, and IT denotes the T × T
identity matrix.

The standard approach for learning with Gaussian process models is to place a prior,
p(θ), on the hyperparameters, and to marginalize over the function values:

p (θ|t, y) =

∫
dfp(θ, f |t, y) = N

(
y|0,K + σ2IT

)
p(θ), (3)

where we obtain the result on the right due to the fact that the convolution of two Gaus-
sians is a Gaussian. We can sample from the posterior distribution for hyperparameters in
Equation (3) using a Markov Chain Monte Carlo algorithm (e.g., Hamiltonian Monte Carlo
or slice sampling; see Neal 1998 and Neal 2000). The GP kernel function determines the
class of functions with appreciable density in the prior, and is a primary place for the model
builder to inject inductive bias into the specification (see, e.g., the discussion in Wilson,
2014). For example, one of the most common kernel functions is the squared-exponential
kernel:

k(ti, tj |η2, `2) = η2e−(ti−tj)2/2`2 , (4)

where the hyperparameters η2 and `2 determine the magnitude and scale of variation of the
class of smooth functions with significant support in the prior.

For time series forecasting, an important kernel function is the locally periodic kernel:

k(ti, tj |η2, w, ν, `2) = η2e− sin2[πν(ti−tj)]/w2
e−(ti−tj)2/2`2 , (5)

which is the combination of periodic and squared-exponential kernels. As shown below,
this kernel has broad support for functions whose spectra contain strong contributions
at frequencies that are multiples of ν; these correlations vanish on the timescale `. The
parameter w governs the number of harmonics of ν that contribute appreciably to the
Fourier transform of Equation (5); see §2.3 below. This covariance structure is critical in
time series forecasting for signals that exhibit quasi-periodic behavior.

There are a wide variety of kernel functions that are useful for time series modeling, as
well as recent literature on techniques for kernel learning (see, e.g., Rasmussen and Williams,
2006; Garnett et al., 2010; Wilson and Adams, 2013; Oliva et al., 2016). In the rest of this
paper, we focus on the locally periodic kernel, and the challenges inherent in evaluating
binned kernels based on it.

2.1. Binned Kernels

A linear transformation of a GP results in another GP (Rasmussen and Williams, 2006). If
we define two binned functions with GP priors:
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f∆(t) ≡ 1

∆

∫ t+∆/2

t−∆/2
y(ξ)dξ, (6)

f∆′(t′) ≡ 1

∆′

∫ t′+∆′/2

t′−∆′/2
y(ξ)dξ, (7)

this results in GPs defined on intervals t∆ ≡ (t−∆/2, t+ ∆/2), t′∆′ ≡ (t′−∆′/2, t′+ ∆′/2).
The cross-covariance between these functions is given by (e.g., Lawrence et al., 2006):

k̄
(
t∆, t

′
∆′
)

=
1

∆∆′

∫ t+∆/2

t−∆/2

∫ t′+∆′/2

t′−∆′/2
k(ξ, ξ′)dξdξ′, (8)

where k denotes the kernel function for the base GP, f , plus the contribution from the latent
white noise kernel defined in Equation (2). This form for the cross-covariance between
binned GPs has been used to build differentially private GP learning algorithms (Smith
et al., 2016).

Given the noise model for the latent function in Equation (2), we can derive noise terms
for the cross-covariance of the binned functions. To derive this relationship, consider a
sequence of kernel functions of the form:

kn(t, t′) =
nσ2

2
e−n|t−t

′|, n = 1, 2, . . . (9)

Consider two intervals, t∆ and t′∆′ . If we denote the amount of overlap between the two
intervals as ∆o, then substituting Equation (9) into (8) yields the following contribution
from the latent noise:

1

∆∆′

∫ t+∆/2

t−∆/2

∫ t′+∆′/2

t′−∆′/2
kn(ξ, ξ′) dξ dξ′ =

∆oσ
2

∆∆′
. (10)

If we take the limit as n → ∞, we recover the standard latent noise kernel σ2δ(t − t′);
since Equation (10) is independent of n, this is the contribution of the latent noise to the
cross-covariance.

With the binned cross-covariance defined, we can train the kernel hyperparameters
and derive the posterior predictive forecast using standard methods (e.g., Rasmussen and
Williams, 2006). For example, to create an hourly forecast taking into account daily and
weekly patterns, we might decompose our recent time series data into the 100 most recent
hourly data points, along with the most recent 50 additional data points binned at half-day
intervals. This allows us to learn hourly and weekly patterns using 150 data points, as
opposed to taking, for example, 500 hourly data points over the previous three weeks. The
binned data contain more information than if we simply took 150 randomly sampled time
points over a three week period (see §3).

2.2. Spectral Evaluation of Binned Kernels

In general, it is difficult to evaluate the integral in Equation (8). Except in the case of the
squared-exponential kernel (c.f., Smith et al., 2016), the integrals do not reduce to simple
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analytic or semi-analytic forms. Evaluating the double integral using standard numerical
quadrature techniques is computationally too slow for MCMC algorithms.

It turns out, however, that the double integral can be evaluated efficiently if we have a
simple form for the Fourier transform of the latent kernel. With the binned cross-covariance
defined as in Equation (8), it can be shown that the following identity holds (see Appendix
A):

k̄(t∆, t
′
∆′) =

1

∆∆′

∞∫
−∞

sinc(∆f)sinc(∆′f)k̂(f)ei2πf(t−t′)df, (11)

where k̂(f) is the Fourier transform of the latent kernel k(t, t′). From Bochner’s theorem,
we know that k̂(f) is proportional to a probability measure (e.g., Rudin, 1990). Thus, we
can evaluate the integral in Equation (11) using Monte Carlo integration as:

k̄(t∆, t
′
∆′) ≈

k̂(0)

S∆∆′

S∑
s=1

sinc(∆fs)sinc(∆′fs) cos(2πfs|t∆ − t′∆′ |), (12)

where
fs ∼ P (f) = k̂(f)/k̂(0), s = 1, . . . , S. (13)

This procedure is equivalent to using the method of random Fourier features for the ap-
proximation of kernels, taking into account the effect of the binning procedure (see Rahimi
and Recht, 2009). This leads to efficient evaluation of the kernel and subsequent linear
algebra for sampling the posterior distribution for the hyperparameters in Equation (3). If
we expand the cosine term in Equation (12), the kernel evaluation can be written as:

k̄(t∆, t
′
∆′) ≈ k̂(0)φ(t∆)Tφ(t′∆′), (14)

where

ϕ(t∆)T ≡ [sinc(∆f1) cos(2πf1t∆), . . . , sinc(∆fS) cos(2πfSt∆), . . . ,

sinc(∆f1) sin(2πf1t∆), . . . , sinc(∆fS) sin(2πfSt∆)]
/(√

S∆
)
. (15)

In this case, the covariance and cross-covariance matrices take the form:

K ≈ k̂(0)UU ′T, (16)

where
U ′T ≡

[
ϕ(t′∆′,1), . . . , ϕ(t′∆′,T ′)

]
, (17)

and T ′ is the number of points in the binned grid. This decomposition allows the linear
algebra associated with sampling from Equation (3) to be performed inO

(
S3 + S2(T + T ′)

)
operations, since the calculations can all be performed in the primal space of ϕ(t∆), rather
than constructing large Gram matrices (see the discussion in Oliva et al., 2016).

Thus, for any kernel function with a simple Fourier transform, we can efficiently evaluate
the binned kernel function and sample the posterior distribution for the GP hyperparameters
with linear algebra that scales linearly with the number of points in the time grid.

107



KDDADF2017

2.3. Binned Locally Periodic Kernel

Unfortunately, the locally periodic kernel does not have a simple form for its Fourier trans-
form. As shown in Appendix B, the periodic part of the kernel in Equation (5) can be
expanded in a Fourier series:

e− sin2[πν(ti−tj)]/w2
= a0/2 +

∞∑
n=1

an cos(2πnν|t− t′|), (18)

with
an = 2e−1/2w2

In(1/2w2), (19)

where In is the modified Bessel function of the first kind. The Fourier series expansion can
be used to show that the Fourier transform for the locally periodic kernel is:

k̂(f) = (a0/2)N
(
f |0, σ2

`

)
+
∞∑
n=1

(an/2)
[
N(f |nν, σ2

` ) +N(f | − nν, σ2
` )
]
, (20)

where σ` ≡ 1/4π2`2. We can then apply the spectral binning procedure to Equation (20),
where the total number of frequency points required is N × S, and N is the component
at which the Fourier series is truncated. For models with a wide range of values for w
and `, we have NS . T , where T is the total number of binned data points. Thus, the
binned kernel function and associated linear algebra for learning the kernel hyperparameters
can be performed efficiently, despite the absence of an analytic form for the kernel Fourier
transform.

3. Results

To test our approach, we generated synthetic data using a locally periodic kernel for the
latent function, as described in §2, with hyperparameters η2 = 1, w = 2−1/2, ν = 1, ` = 10,
over a time grid ranging from (−3, 3) in (arbitrary) units of “days.” In Figure 2, we show
the resulting training (thin grey curve) and test (thick red line) data sets for three levels of
the latent noise σ2: 3×10−4 (left panels), 10−2 (middle panels), and 3×10−2 (right panels).
We then fit this data using two approaches: 1) we sampled 36 intervals of 5 minutes from
the training set at random and to build the small-bin model and 2) we replaced 18 of those
5 minute intervals with 4 hour intervals to build the large-bin model. Each model included
the same number of data elements, but we hypothesized that the larger bins would allow
for a more reliable forecast past a few minutes.

In the low noise scenario depicted in the left panels, the only difference between the
small- and large-bin approaches is a slight reduction in uncertainty for the large-bin model
(bottom left panel). However, as the latent noise increases from left to right, we see a
significant improvement of the large-bin model over its small-bin counterpart.

We then performed a more systematic investigation of small bin vs large bin performance
across a wide range of synthetic data sets. Keeping the η2, w, ν hyperparameters fixed as
above, we varied the signal-to-noise ratio η/σ from 1 to 104, taking 75 draws of synthetic
data for each ratio. We then analyzed the data with binned and non-binned models as
described above, and compared relative accuracy on the test data using the Mean Absolute
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Figure 2: Test of binned kernel methodology on synthetic data. From left to right, panels
show data generated with increasing values of the noise variance. For noisy data,
the binned model significantly outperforms its non-binned counterpart using the
same number of data points.

Scaled Error (MASE) metric (e.g., Frances, 2016). The results are shown in Figure 3, in
which the performance of the small and large bin models are shown by the light green and
dark red regions, respectively. It is clear from the figure that, for a wide range of function
draws and signal-to-noise ratios, the large-bin model outperforms its small-bin counterpart
using the same number of data points. For extremely low or high signal-to-noise ratios,
there are smaller differences in performance between the two models.

After testing our methodology on synthetic data, we fit binned and non-binned models
to data collected from financial transaction volume monitoring in a real world use case. The
top panel of Figure 4 shows the data, split into a training set (solid black curve) and test set
(solid red curve). The middle and bottom panels show the fit of the binned and non-binned
models, respectively. For the non-binned approach, we randomly sampled 50 minutes in the
training set and used the the locally periodic kernel (without binning) to create a ten day
forecast. For the binned approach, we sampled 30 minute intervals as well as 20 four-hour
intervals throughout the training set and used a binned locally periodic kernel to create the
forecast. (Note: in both cases the kernel was defined to be the sum of two locally periodic
kernels to account for the weekly and daily periodicities.)

Though the data are noisy, the binned model does a better job of capturing the un-
derlying signal than the non-binned version for the same number of data points. This
demonstrates one of the benefits of using binned data: aggregating data over larger bins
tends to smooth out noise, making binned models more robust to time series exhibiting
deviations from Gaussian noise (i.e., long tailed likelihoods), heteroskedasticity, and poor
data quality.
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Figure 3: Systematic investigation of large- vs small-bin performance over a wide range
of synthetic data generated by taking 75 function draws for each value of the
signal-to-noise ratio determined by the latent function hyperparameters. Except
at the extreme ends of low and high noise, the large-bin models outperform their
small-bin counterparts on the Mean Absolute Scaled Error metric.

Figure 4: Test of model methodology on a real world transaction volume time series. The
raw data are shown in the top panel, while the middle and bottom panels show
results for the binned and non-binned models, respectively. The binned models
do a much better job of capturing the underlying signal, despite significant, long-
tailed noise in the raw signal.
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4. Discussion

We have derived a novel approach to constructing binned kernels that capture multiple
timescales in a unified modeling framework. Except at the extremes of low or high noise,
models constructed using binned kernels have lower data requirements than their non-binned
counterparts, improving the efficiency of fitting a GP as well as generating forecasts for
multi-timescale data. In addition, due to the reduction in error for larger intervals, binned
models can exhibit increased robustness with respect to long-tailed or heteroskedastic noise,
as well as data artifacts.

Monitoring enterprise IT infrastructure can involve modeling hundreds to thousands of
time series. Unless our models achieve extremely low false detection rates, more alerts will
be generated than can be efficiently resolved. Thus, models with high forecast accuracy
are required to simultaneously achieve reasonable false positive and negative rates, which is
why we have focused on forecast accuracy here. The binned kernel approach will have the
biggest impact on accuracy for subtle anomalies that occur gradually at the boundaries of
multiple timescales (versus, e.g., drastic changes in output scale; see §4.4 of Garnett et al.
2010). Though this approach might only result in a small reduction in the absolute false
positive rate, this could be crucial for reducing the absolute number of alerts to a manageable
number. One additional consideration not included in this work is how to choose the size
and location of each of the bins. We plan to systematically explore the effects of binned
kernel techniques – including bin selection – on anomaly detection performance in a future
work.

As discussed in §2, integrals over latent functions have been used to create differentially
private GPs (Smith et al., 2016). In their paper, Smith et al. consider integrated kernels
based on a squared-exponential kernel for a latent Gaussian process. Their calculations
exploited the analytic properties of integrals over a Gaussian kernel. The work in our paper
could be used to extend their results to create efficient differentially private models using a
broader class of latent kernel functions.

Finally, we briefly mention a connection between the work in this paper and the spectral
mixture kernel introduced by Wilson and Adams (2013). The spectral mixture kernel is
derived by starting with a scale-location mixture of Gaussians in the Fourier domain, and
taking the inverse Fourier transform to derive an analytic form for the kernel in the time
domain. Because a scale-location mixture of Gaussians can approximate any distribution
to arbitrary accuracy, a spectral mixture kernel with enough components can, in principle,
accurately model a GP with any stationary kernel function.

The Fourier series representation of the locally periodic kernel is equivalent to an infinite
spectral mixture kernel expansion. The form of the series shows that periodic behavior
implies a restrictive set of constraints on the amplitudes and frequencies of the components
of the spectral mixture. This suggests that it might be difficult in practice to train spectral
mixture models on data with recurring patterns, due to the fact that kernels with periodic
components occupy a very small region in the space of functions implied by all possible
stationary kernels. Some initial experiments on the data sets presented in this paper suggest
that this is indeed the case. This suggests a potential avenue for further research, in which
hierarchical prior distributions on the amplitudes and frequencies of the spectral mixture
kernel place additional probability mass on regions of kernel space that exhibit periodic
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behavior; such a process over kernels could make it easier to perform kernel learning on
data sets containing periodic signals.
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