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Abstract

We consider the problem of anomaly detection in finance. An application of interest is
the detection of first-time fraud where new classes of fraud need to be detected using
unsupervised learning to augment the existing supervised learning techniques that capture
known classes of frauds. This domain usually has the following requirements – (i) the
ability to handle data containing both numerical and categorical features, (ii) very low
latency real-time detection, and (iii) interpretability.

We propose the use of a variant of density estimation trees (DETs) (Ram and Gray,
2011) for anomaly detection using distributional properties of the data. We formally present
a procedure for handling data sets with both categorical and numerical features while
Ram and Gray (2011) focused mainly on data sets with all numerical features. DETs
have demonstrably fast prediction times, orders of magnitude faster than other density
estimators like kernel density estimators. The estimation of the density and the anomalous-
ness score for any new item can be done very efficiently. Beyond the flexibility and efficiency,
DETs are also quite interpretable. For the task of anomaly detection, DETs can generate a
set of decision rules that lead to high anomalous-ness scores. We empirically demonstrate
these capabilities on a publicly available fraud data set.
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1. Financial fraud detection

The problem of fraud detection has a large impact in the field of finance. We consider
the task of predicting whether a financial transaction or event in question is fraudulent or
honest. In most cases, the fraudulent transactions make up a very small fraction of the total
number of transactions. Given such a situation, there are two common ways of handling
fraud detection. One way is to look at historical data where we have significant number
of transactions which have been qualified as frauds and then treat this as a traditional
binary classification problem (supervised learning). Another approach is to treat each
fraudulent transaction as an outlier or anomaly because of it inherent rarity relative to the
honest transactions and then treat the problem as an anomaly detection (AD) problem
(unsupervised learning).

The favoured way of solving fraud detection is via binary classification (with some
way to balance the classes in the classification loss function using techniques like stratified
sampling or class-specific weights). An application of interest is the detection of first-time
fraud where new kinds of fraud need to be detected using unsupervised learning to augment
the existing supervised learning techniques that capture known kinds of frauds. Currently,

c© 2017 P. Ram & A.G. Gray.



Fraud Detection with Density Estimation Trees

in an usual real world setting, financial transactions constitute massive amounts of data,
and there is a human monitoring team which screens transactions for possible first-time
fraud via human-built rules. Any method aimed at facilitating or enhancing this setup will
have the following requirements – (i) the ability to handle data containing both numerical
and categorical features, (ii) very low latency real-time detection1, and (iii) interpretability
and auditability of the models and the predictions.

In this paper, we present preliminary results from our ongoing research for a solution
which addresses the aforementioned requirements. Our solution is based on density esti-
mation trees (DETs) (Ram and Gray, 2011). The rest of the paper is structured in the
following way: In section 2 we present existing methods for anomaly and outlier detection
and discuss why they are not ideal for fraud detection. Following that, we present our pro-
posed solution in section 3 and evaluate the solution in section 4. We conclude this paper
with some future directions and final remarks in section 5.

2. Outlier detection methods

Anomaly and outlier detection has been extensively studied in data mining literature with
applications in many fields (Hodge and Austin, 2004; Chandola et al., 2009; Zimek et al.,
2012). Among the unsupervised approaches, anomaly detection based on distributional
properties of the data (such as density) is the most natural – examples with very low den-
sity or examples deemed to be beyond the support of the distribution are considered outliers.
However, the estimation of densities and such quickly become hard and inaccurate in high
dimensional data. Distance based approaches such as the one proposed in Ramaswamy et al.
(2000) are widely used as a surrogate for density. Kernel machines based one-class support
vector machine (OCSVM) (Schölkopf et al., 2001) performs outlier detection by estimating
the high dimensional support of the data distribution and then classifying individual ex-
amples as being inside or outside that support. Neural networks based auto-encoders are
another way of performing outlier detection. There are also various tree-based approaches
such as isolation forest (Liu et al., 2008), RS-forest (Wu et al., 2014) and random projection
forest (Chen et al., 2015).

These techniques usually only cater to numerical data. OCSVM would be able to handle
both numerical and categorical data if a domain specific kernel function has been developed,
but that is not a very common use case. Usually these methods require some categorical-
to-numerical transformation such as one-hot encoding. The choice of the transformation is
somewhat ad-hoc and they almost always remove the interpretability of the transformed
feature. Moreover, most of these methods have a computationally expensive prediction op-
eration – density-based methods and OCSVM require a kernel summation; distance-based
approaches require a nearest-neighbour search; auto-encoders require a traversal of a poten-
tially deep neural network. This makes it hard to get low latency real-time outlier detection.
Decision trees based machine learning methods are usually known to handle mixed numer-
ical and categorical features. However, the forest-based approaches to anomaly detection,
such as isolation forest (Liu et al., 2008), would require non-trivial enhancements to the

1. For example, the decision to flag a credit card transaction as an anomaly or not needs to be done in a
very short period of time
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algorithm2 to handle categorical features in the native form. Furthermore, none of these
methods (distance based, kernel machines based, neural networks based or forest based)
are inherently interpretable. All these limitations make them a less-than-ideal solution for
fraud detection.

3. Methodology

We take the approach of detecting outliers using distributional properties of the data (such
as densities and probabilities) to identify anomalies. While we understand that not all
outliers are anomalies, we are only focusing on the problem of outlier detection in this
work. The main challenge here is to develop and use a meaningful distributional property
that works with both numerical and categorical features. Probability mass function (PMF)
can be used if all features are categorical (albeit with issues we will discuss in the ensuing
subsection). Probability density functions (PDF) can be used to handle numeric features.
We wish to develop an estimator that can handle both kinds of features. The approach
we are considering is the conversion of numerical features to ordinal (ordered categorical)
features and then defining a PMF over all the categorical variables (natively categorical as
well as ordinal). However, estimating PMF with multiple categorical features (each with
multiple categories) is a non-trivial task because of the large number of parameters involved.

We believe that the choice of converting numerical to ordinal (ordered categorical) has
multiple advantages over the traditional categorical to numerical conversion. Firstly, usual
categorical to numerical transformations, such as one-hot encoding, generate multiple nu-
merical features for a single categorical feature. This makes it hard to judge (quantitatively)
and interpret the effect of the original categorical feature in the final learned model. Sec-
ondly, decision tree based methods usually rely only on the ordering of the numerical features
and not on the feature values themselves. By converting numerical values to ordinal values,
we still approximately maintain this order by converting the original ordering to a partial
ordering. There is some loss of information here for the resulting interpretability.

We present our decision tree based solution in the first subsection. In the following
subsection, we formally describe how categorical features are naively handled, the issues
that come with it and how we propose to handle those issues. We conclude this section
with our proposal of converting numerical variables to categorical variables in the final
subsection.

3.1. The decision tree

The decision tree (Breiman et al., 1984) is a widely used model for supervised learning. It
has the following desiderata that fits our requirements for first time fraud detection:

• Since it is a combination of multiple, hierarchical univariate decisions, the decision
tree model can seamlessly handle both categorical and numerical features,

• It allows for fast prediction times leading to low-latency real-time detection, and

2. For example, in isolation forest, the splits required for the tree construction are generated by uniform
randomly sampling within the range of the numerical feature, thereby separating outlier numerical
feature values from the rest of the feature values. This form of split generation is hard to translate for
categorical features.
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• It provides an interpretable model in the form of (i) a tree visualization, and (ii)
extractable rules to identify outliers.

The decision tree was used in an unsupervised setting in the form of DETs (Ram and Gray,
2011) for the task of estimating a probability density function (PDF). However, the primary
focus in that paper was on numerical features since a PDF is only defined with numerical
features. These density estimates could then be used to generate outlier scores for anomaly
detection.

For data with categorical features, the quantity to estimate would a probability mass
function or PMF. However, as we will describe in further detail in the next subsection, a
PMF defined on a multi-dimensional categorical data is very hard to estimate and interpret.
Instead, we propose representing a PMF in the form of a hierarchical decision tree with
each internal node containing a univariate set membership based decision and each leaf
node containing the estimate for the PMF for all point that filter to that leaf. Each node
in this tree represents a subset of all possible categorical combinations in the data. The
union of the sets of categorical combinations represented by all leaf nodes is equal to all
possible categorical combinations. This makes the PMF more interpretable and allows us
to leverage the inherent advantages of the decision tree.

For constructing such a tree, we will define the estimate for each leaf node and the
splitting scheme with categorical features for each internal node in the next subsection.
Given these two pieces, we will be able to build a decision tree in a top down manner upto a
(user-specified) particular depth or number of leaf nodes or can be grown to purity, followed
by a cost-complexity pruning (Breiman et al., 1984). Note that this is an unsupervised
decision tree (that is, the tree is constructed without any labels or targets for the points),
in contrast to the supervised formulation for classification or regression trees.

3.2. Categorical features

For a categorical variable with k categories C = {c1, . . . , ck}, the categorical distribution is
defined as

p(x) =
k∏

i=1

pi(x)I(x=ci),

where pi = Pr(x = ci). This distribution has k (possibly distinct) parameters (let us call
this the expanded PMF). Alternately, the categories can be split into (say) 2 subsets C1

and C2 of C such that C1 ∪ C2 = C and C1 ∩ C2 = ∅ and set pi = pC1 ∀ci ∈ C1 and
pi = pC2 ∀ci ∈ C2 for some pC1 , pC2 ∈ [0, 1]. In that case, the categorical distribution is now
still defined by k parameters but with only two distinct values, forming a condensed PMF.
For estimation purposes with n samples S = {X1, . . . , Xn},

p̂i =

∑n
m=1 I(Xm = ci)

n
,

while

p̂C1 =

∑n
m=1 I(Xm ∈ C1)

n|C1|
.

We are essentially reducing the number of parameters by making different categories share
parameters (and equally distributing the mass among categories sharing a parameter). We
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are making use of the condensed PMF for interpretability and estimation purposes. For
an allowed number of parameters, the goal is to find the right grouping of the categories
such that this condensed PMF is not that far off from the expanded PMF (in terms of
say log-likelihood). One way to do this would a greedy top-down binary splitting of the
categories into a hierarchical tree structure until we have the desired number of leaves (each
leaf corresponding to a group of categories sharing a parameter).

This comes with a possible drawback – if a category (we are still discussing a single
categorical feature) indicates that a point is an outlier (and hence possibly anomalous), this
grouping of categories can potentially smudge that signal resulting in a case of underfitting.

Now consider a multi-dimensional categorical distribution with d dimensions and kj
categories Cj = {cj1, . . . , cjkj} in each dimension j = 1, . . . , d. The whole categorical distri-

bution will then be defined by
∏d

j=1 kj parameters Pr(x1 = c1i1 , . . . , xd = cdid) for each ij =
1, . . . , kj ∀j = 1, . . . , d.

Instead, if the categorical combinations are organized in a (possibly hierarchical) groups,
this would provide some form of “regularization” and reduce the number of parameters. Let

N be one such group and let Cj(N) be the categories of the jth categorical feature in the

group N . Then the total categorical combinations that end up in N is
∏d

j=1 |Cj(N)| and
all these categorical combinations share a single parameter (say)

pN = Pr(x1 = c1, . . . , xd = cd)∀(c1, . . . , cd) ∈ C1(N)× . . .× Cd(N).

Hence the total number of parameters in this PMF is controlled by the (possibly user-
specified) number of groups of categorical combinations. For the purposes of estimation,
we would spread the probability mass in N across all categorical combinations equally
(potentially underfitting). With n samples S = {X1, . . . , Xn},

p̂N =

∑n
m=1 I(Xm ∈ N)

n
∏d

j=1 |Cj(N)|
.

Splitting the group N in a decision-tree style top-down greedy fashion on a single feature
into two groups Nl and Nr, we would want to choose the feature which maximizes the
(empirical) reduction of some loss function. If we consider the log-likelihood as our loss
function of interest,

L(N) =
n∑

m=1

I(Xm ∈ N) log p̂N .

If N is split along some feature d′ into Nl(d
′) and Nr(d

′) such Cd′(Nl) and Cd′(Nr) are the
categories of the feature d′ in Nl(d

′) and Nr(d
′) respectively and Cd′(Nl)∪Cd′(Nr) = Cd′(N)

and Cd′(Nl) ∩ Cd′(Nr) = ∅. For estimation purposes, with Xmd denoting the dth feature
of the point Xm ∈ S, let nNl

, the number of points in S that would end up in Nl(d
′), be

defined as

nNl
=

n∑
m=1

I(Xm ∈ N ∧Xmd′ ∈ Cd′(Nl)),

with the number of points nNr in Nr(d
′) defined as

nNr =

n∑
m=1

I(Xm ∈ N ∧Xmd′ ∈ Cd′(Nr)) =

(
n∑

m=1

I(Xm ∈ N)

)
− nNl

.
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Then the log-likelihood of the resulting groups Nl(d
′) and Nr(d

′) are given by:

L(Nl(d
′)) = nNl

log
nNl

n|Cd′(Nl)|
∏d

j=1,j 6=d′ |Cj(N)|
,

and
L(Nr(d

′)) = nNr log
nNr

n|Cd′(Nr)|
∏d

j=1,j 6=d′ |Cj(N)|
.

We would want to solve the following problem to find the split of the group N into two
subgroups:

max
d′=1,...,d

max
Nl(d′),Nr(d′)

L(Nl(d
′)) + L(Nr(d

′))− L(N). (1)

Since the categories in a categorical feature usually do not have any inherent order,
finding the best decision tree split for that feature can be a combinatorial problem – for a
feature with k categories, there are k! possible ordering and all of them must be tried to
find the best split. For regression, there exists an efficient heuristic that is proven to find
the best split. For our purposes of identifying outliers, we propose the following intuitive
splitting heuristic for a categorical feature:

• Sort the categories based on their frequency in the tree node which we are trying to
split, with the most frequent category on the left and least frequent on the right.

• Given this ordering of the categories, we pick the split along this order which maxi-
mizes the gain in Equation (1).

This heuristic is promoting the separation of points in regions of high probability mass
in the left branch from points in regions of low probability mass in the right branch. This
will attempt to separate outliers from the rest of the inliers. Moreover, at prediction time,
we will handle unseen categories by filtering them down the right branch since the point
contains a previously unseen category, implying that this point could potentially be an
outlier relative to the training set.

3.3. Converting numerical features to ordinal features

A straightforward way of converting a numerical feature into an ordinal feature would be
via quantization. We can then define a multi-dimensional categorical distribution (or a
PMF) on a dataset which originally contained both categorical and numerical features and
would now contain only contain categorical and ordinal variables post quantization. Here
we consider standard one-dimensional quantization via uniform binning in the range of the
numerical feature to a user-specified resolution. Note that, with these ordinal features, we
pick the split along their inherent order while maximizing the gain in Equation (1).

4. Empirical evaluation

While we plan to comprehensively evaluate the proposed method on its estimation per-
formance in our ongoing work, here we focus on the problem of outlier detection. To
demonstrate the ability of the proposed scheme to handle both categorical and numerical
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(a) 5 frauds, 700 non-frauds (b) 300 frauds, 700 non-frauds

Figure 1: ROC curves for detecting fraud cases. For each of the 7 numerical features,
we quantized the feature into 5, 15 and 25 ordinal values for each ROC curve.

features while maintaining their interpretabilty, we restrict ourselves to data sets containing
both numerical and categorical features. While our proposed scheme will be seamlessly ap-
plicable to data sets with all categorical or all numerical columns, we believe that they are
special cases of the situation we consider and have existing specialized schemes which we
should consider as baselines. We plan to perform these evaluations in the ongoing research.

Figure 2: Tree visualization of the top of a tree. The feature on which a node is
split is mentioned in the tree node. Numerical features that have been converted
to an ordinal features are marked with an O(·). For example, see the numer-
ical features num dependents and credit usage. Categorical features such as
personal status are mentioned as is. The split decision is annotated on the cor-
responding branches and the leaf node contains the the number of points (Count)
in it and then distribution function value (Pr) which is inversely proportional to
the “outlier-ness” score.
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We consider the German credit dataset from the UCI repository (Lichman, 2013) which
contains 300 fraud and 700 non-fraud examples. The data contains 20 features – 13 cate-
gorical features and 7 numerical features3. Since 300 fraud cases in 1000 examples does not
really represent a problem of outlier detection, we emulate that by using a dataset with 700
non-fraud examples and 5 randomly sampled fraud examples. These 705 examples are pre-
sented to our proposed method without any labels. On this dataset, we build an optimally
pruned decision using the log-likelihood based notion of gain (Equation (1)) and utilizing
the minimum cost complexity pruning with 10-fold cross-validation (Breiman et al., 1984).

Once the decision tree is constructed, the distribution function value for a point is used to
determine its “outlier-ness”. For any given set of points, the predicted distribution function
values are sorted in the ascending order, with the lowest values predicted to be most likely
to be outliers (and hence frauds). Using these scores, we generate ROC curves for any given
set of points. Each evaluation is averaged over 10 runs. For numerical features, we utilize
uniform binning with different number of bins as the quantization scheme. The ROC curves
are presented in Figure 1. Figure 1(a) corresponds to a test set with 5 fraud cases and 700
non-fraud cases, while figure 1(b) corresponds to a test set with 300 fraud cases and 700
non-fraud cases.

These results are generated for different resolutions of quantization for each numerical
feature. While the results indicate that our proposed scheme perform significantly better
than random guessing, we are yet unable to figure out the optimal level of quantization for
the purposes of outlier detection. Investigating the effect of the quantization scheme and
resolution on the outlier detection performance is part of our ongoing research.

Beyond predictive performance, decision trees are also known for their interpretability.
For example, Figure 2 presents a visualization of the learned decision tree for better in-
terpretation of the model4. Moreover, we can extract rules corresponding to leaves in the
decision tree that are most likely to contain outliers. For example, the following are rules
(and some statistics) for 2 leaves in the tree most likely to contain outliers:

O(‘num_dependents’) > 0

AND ‘personal_status’ NOT in set(["‘male single’"])

AND O(‘current_balance’) > 1

- Count in leaf: 2

- Number of categorical combinations in leaf: 9.72e+11

- Distribution function value in leaf: 2.9e-15

O(‘num_dependents’) <= 0

AND O(‘existing_credits’) > 1

AND ‘credit_history’ NOT in set(["‘critical/other existing credit’"])

- Count in leaf: 1

- Number of categorical combinations in leaf: 2.6e+11

- Distribution function value in leaf: 5.43e-15

3. We are restricted to a single data set mostly because we were unable to find publicly available fraud
datasets which contain both categorical and numerical features.

4. Note. We only present the top 3 levels of the tree. The trees tend to be quite deep and are hard to
visualize within the confines of a manuscript. For the present tree, there was only a single leaf node that
was reachable from the top 3 levels and hence is presented in Figure 2.

92



Fraud Detection with Density Estimation Trees

For each rule, we have added some statistics for the tree leaf corresponding to this
rule. The numerical features are again marked with an O(·). These rules allow the user
to understand the decisions that went into flagging an example as a fraud. Moreover,
these rules can be used as a SQL query in some database or datastream. These rules (and
the tree visualization in Figure 2) demonstrate the ability of the learned model to utilize
both numerical (num dependents, existing credits) and categorical (personal status,
credit history) features.

5. Conclusion and future directions

In this paper, we presented our ongoing work on the development of an interpretable solution
for fraud detection via outlier detection. We extended the decision-tree based DETs to
handle numerical and categorical data at the same time. We achieve this by creating an
estimator which can handle multiple categorical features and then proceed by pre-processing
the numerical features into ordinal features and using the proposed estimator. While we
believe that the initial results demonstrate the interpretability of the solution and show
promise in terms of their predictive accuracy, we plan to evaluate the proposed solution
more thoroughly across multiple axes against some existing baseline which can handle both
numerical and categorical features at the same time. This includes the evaluation of the
different quantization schemes such as uniform binning (which we presented here), quantiles,
one dimensional k-means and Fayyad-Irani discretization (Fayyad and Irani, 1993).

More generally, given our strategy of converting numerical features to ordinal features,
we wish to answer the following main questions:

• How to quantize the numerical feature?

• To what resolution should the numerical feature be quantized to?

To this end, we are also actively investigating estimators and training schemes which
will allow us to perform the quantization of the numerical features as part of the training
process to a level of resolution as required by the training. So instead of quantizing all
numerical features in the same way to some (possibly arbitrary) level of resolution as a
pre-processing step, we want to allow the model to have different quantization schemes and
different resolutions for different numerical features as directed by the training process.
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