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Abstract

In this paper, we study the problem learning structure of Bayesian networks from data. The problem
of Bayesian networks structure learning (BNSL) takes a dataset as input and produces a directed
acyclic graph (DAG) as the output. This problem is known to be NP-hard which is commonly
solved using the heuristic methods. There are generally three main approaches to the BNSL prob-
lem: score-based , constraint-based and hybrid learning. We propose a new simple and fast algo-
rithm for addressing BNSL problem. The proposed hybrid algorithm is based on a partial ordering
learned from data. We reduce the super-exponential search space of structures to the smaller order-
ing space of nodes. We evaluate the proposed algorithm using some standard benchmark datasets
and compare the results with those of some state-of-the-art algorithms. Finally, we show that our
algorithm is competitive with recent algorithms.

Keywords: Bayesian network; structure learning; score-based algorithms; constraint-based algo-
rithm.

1. Introduction

Bayesian networks (BNs) have a broad range of applications in various areas of artificial intelli-
gence. BNs are graphical representations of multivariate joint probability distributions and have
been widely used in various data-mining tasks to produce causal networks. A Bayesian network
includes two components: structure and parameters. A Bayesian network structure is a directed
acyclic graph whose nodes represent the random variables X1, ..., X, in the problem domain and
whose edges correspond to the direct probabilistic dependencies. A Bayesian network structure G
encodes a set of conditional independence assumptions: each variable is conditionally independent
of its non-descendants given its parents. With the above semantics, a Bayesian network structure
provides a compact representation for joint distributions and supports efficient algorithms for han-
dling probabilistic queries.

Generally, there are three approaches to the BNSL problem: score-based, constraint-based and
hybrid methods. Constraint-based methods use statistical testings such as x? to identify conditional
independence relations from the data and construct a Bayesian network structure that best fits those
independence relations.

Score-based learning evaluates the quality of Bayesian network structures using a scoring func-
tion and selects the one that has the best score. The scoring function computes a measure of good-
ness of fitting a network to a dataset (Heckerman et al., [1995). Score-based learning algorithms for-
mulate the learning problem as a combinatorial optimization problem. They work well for datasets
with few variables, but may fail to find optimal solutions for large datasets (Yuan et al., 2013).
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Hybrid learning aims to integrate the advantages of constraint-based and score-based approaches
and uses a combination of them for solving the BNSL problem (Perrier et al., [2008]; Tsamardinos
et al., 2006; (Gasse et al., 2014;|Gamez et al.,[2011)) . One popular strategy is to use constraint-based
learning to create a skeleton graph and then use score-based learning to find a high-scoring network
structure that is a subgraph of the skeleton.

This paper presents a new algorithm for learning Bayesian networks based on a partial order of
nodes that learned from data. A novel contribution of our hybrid method is using the best parent set
for each variable to aid the learning algorithm in inferring a partial order of nodes. We reduce the
super-exponential search space of structures to the smaller ordering space of nodes. We evaluate
the proposed algorithm using some standard benchmark datasets and compare the results with the
results obtained from some state of the art algorithms.

The rest of the paper is organized as follows. In Section [2] we review the structure learning
problem and the necessary background. In Section [3] we review some search algorithms based on
a given node ordering. Then, and in Section ] we introduce the proposed algorithm. Finally, in
Section[5] we give experiment results. We conclude with case studies and discussion in Section [6]

2. Structure Learning

We are given a data set D = {dj,ds,...,dyx} of N instances on the n categorial random variable
X = {X1,Xs,...,X,,}. The goal is to find a DAG G = (V, E) that best fits D that means that
encodes the conditional independencies present in the data D. We assume all variables are discrete
and there is no missing values in data D. Next, we give a brief review of the three main for the
BNSL problem.

2.1 Constraint-based learning methods

These methods typically use statistical tests to identify conditional independence relations from the
data and build a Bayesian network structure that best fits those independence relations (Pearl, 2014).
Therefore, by using a set of statistical tests, we determine which random variables are conditionally
independent of each other.The algorithms that belong to this category include: the PC (Spirtes
and Glymour, [1991), the Max-Min Parents and Children (MMPC) (T'samardinos et al., [2003a)), the
Incremental Association Markov Boundary (IAMB) (Tsamardinos et al., 2003b)), the Incremental
IAPC Association Parents and Children IAPC) (De Morais and Aussem, 2010) and the Hybrid
Parents and Children (HPC) (De Morais and Aussem, 2010). Almost, all constraint-based structure
learning algorithms have two phases. A constraint-based learning algorithm in the first phase learns
the skeleton of the DAG, and then, in the second phase, arc directions are established.

2.2 Score-based learning methods

Score-based learning methods evaluate the quality of Bayesian network structures using a scoring
function and select the one with the best score (Cooper and Herskovits, [1992; [Heckerman et al.,
1995). A scoring function is a metric that measures the goodness of fitting a network structure to
data set D. These methods formulate the learning problem as a combinatorial optimization problem.
A score-based algorithm can be formulated as follows, given a dataset D = {d1, da, ..., dy}, search
for a DAG G* such that

G* = arg max score(G
gGegn ( )
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where G, is the family of all the DAGs defined on X = {X1, Xo,..., X, }.

A score function is usually defined as a measure of fitness between the structure graph and the
data. There are so many scoring functions that can be used to measure the quality of a network
structure. These functions can be classified into two main categories: Bayesian, and information-
theoretic scoring functions.

The local search learning algorithms can be more efficient if the scoring function being used
has the property of decomposability. A scoring function s is decomposable if the score assigned to
each network decomposed over the network structure in such a way that can be expressed as a sum
of local scores that depends only on each node and its parents. That means,

score(G) = Zscore(Xi|Hi) (1)

i=1

2.3 Hybrid learning algorithms

We now summarize the pros and cons of both score-based and constraint-based approaches. Bayesian
and MDL scoring functions are well-defined regardless of the data generating distribution P, or the

size of the data set D. In that sense, the score-based approach is theoretically well-suited in every

situation, and in practice, it is known to produce better structures than the constraint-based ap-

proach. Its major drawback, however, is an exponential time complexity with respect to the number

of variables considered, which makes it rather prohibitive for high-dimensional datasets (Gasse,

2017).

On the other hand, constraint-based approaches require two major assumptions: 1) the indepen-
dence model I(p) is faithful to a DAG; and 2) the conditional independence (CI) tests performed on
D accurately reflect I(p). Both of these assumptions are problematic. Firstly, the DAG-faithfulness
assumption forbids many simple kinds of interactions between the variables of interest, such as de-
terministic relationships which violate the intersection property. In practice, such relationships are
frequent in many systems, making the DAG-faithfulness assumption rather unrealistic. Secondly,
even when I(p) is faithful to a DAG, it may very well be that the independence model extracted
empirically with CI tests, (D), is not. As a result, constraint-based methods are known to be quite
unstable, and are prone to cascading effects where a single early error on in the building process can
result in very a different DAG structure. This is particularly true during the edge-orientation step.
Still, constraint-based methods are in practice rather fast, as their computational complexity relates
closely to the maximum in-degree of any node in the DAG, regardless of the total size of the graph
(Dash and Druzdzel, [1999)),(Gasse), [2017]).

Hybrid methods integrate the advantages of constraint-based methods and score-based methods
for solving the structure learning problem (Dash and Druzdzel, |1999). Several hybrid methods have
been proposed recently such as (Gamez et al., 2011) which in the neighbourhood is dynamically
constrained to speed the search. The Min—Max Hill Climbing (MMHC) algorithm (Tsamardinos
et al., |2006) is one of the most used algorithms for BN structure learning capable of dealing with
high dimensional data in a reasonable time. MMHC start first with a skeleton that is learned using
the constraint-based MMPC algorithm, then a high-scoring DAG is found using a greedy search
within the restricted search space of the skeleton, enhanced with a TABU list as in (Friedman et al.,
1999) to escape local maxima.
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3. Ordering-Based Search Algorithms

The search for the network structure can be carried out in the space of DAGs, the space of equiv-
alence classes and the space of orderings among the domain variables (Alonso-Barba et al., 2011).
We know the search space of Bayesian network structures is super exponential in the number of

nodes:
n

f(n) = Z(—l)”l(

po n —i)ln!

| . .
n: Qz(n—z)f<n - 1)

Fortunately, for a given ordering < on the nodes of a Bayesian network, the problem of finding the
best-scoring networks consistent with respect to < is not NP-hard. Indeed, if the in-degree of nodes
are bounded to k, then the best-scoring network can be learned in time O(n*). However, deter-
mining a true ordering of nodes is a very difficult problem. A very simple and easy-to-implement
method for addressing this problem is given by (Teyssier and Koller, |2005)). For a given ordering <
defined as the possible parent sets for each node X; with an upper bound & on the number of parents
per node is given as:
U~ ={U U < X;,|U| <k},

where all nodes in U precede X; in <. Then, the optimal parent set for each node Xj is:

II; < = arg max score(X;,U)
€U, <

The possible parent sets for the all nodes can be computed in time O(n**1). We can find the optimal
network by searching the optimal ordering, where the score of an ordering is the score of the best
network consistent with it. The search operator over the orderings space is called neighbor-swapping
operator:

(Xilﬂ“WXijaXi )’_>(X7,1,,X

419

X,,,..)

e

The search is done by considering all (n — 1) candidate successors of the current ordering. The
algorithm than compares the delta-scores of the successor orderings obtained by these swaps i.e., the
difference between their scores and the current one, and takes the one that gives the highest delta-
score. The TABU list is used to prevent the algorithm from reversing a swap that was executed
recently in the search. The process is continued until a local maximum is reached (Teyssier and
Koller, 2005). This search is performed using a greedy hill-climbing with random restarts and a
TABU list.

The Ordering-based Max-Relevance and Min-Redundancy Greedy (OMRMRG) is an Ordering-
based Max Relevance and Min Redundancy Greedy algorithm (Liu et al. 2007). OMRMRG
presents an ordering-based greedy search method with a greedy pruning procedure, applies Max-
Relevance and Min-Redundancy feature selection method, and proposes Local Bayesian Increment
function according to BIC score function. The OMRMRG algorithm is divided into two parts. The
first part is to learn Bayesian network given an ordering on the variables. The second part is to learn
Bayesian network without the constraint of an ordering on the variables.

At the first part, MRMRG algorithm initializes the current parents set II; of the variable X; to
NULL, and then adds the variables one by one, which acquire the maximal value for Local Bayesian
Increment (LBI) function, into the parents set I1; from Pre; — II;, until the result of LBI function is
no more than 0. Repeating the above steps for every variable, we can obtain an approximately opti-
mal Bayesian network. Pre; denotes the set of variables that precede X; and II; denotes the current
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parents set of the variable X;. At the second part, the OMRMRG Algorithm apply the neighbor-
swapping operator and iterative greedy search method over the space of orderings in OMRMRG
algorithm. In each iteration, OMRMRG algorithm firstly performs the search by considering all
(n — 1) candidate successors of the current ordering, then compares the scores of the current order-
ing and the successor orderings, finally takes the one that gives the highest score. The process is
continued until a local maximum is reached. OMRMRG algorithm restarts a new iteration by select-
ing a new current ordering at random, and try the process MAX times to avoid local maximum. In
comparison to other ordering-based greedy learning algorithms such as (Teyssier and Koller, 2005),
given an ordering on the variables, OMRMRG algorithm replaces traditional greedy BN learning
algorithms with the procedure MRMRG() in order to learn more accurately and efficiently on lim-
ited datasets. Furthermore, OMRMRG algorithm uses a greedy pruning procedure based on Max
Relevance and Min Redundancy technology, which pre-selects a more accurate set of candidate
parents for each variable X; than the current candidate parents set selection methods described in
(Friedman et al.,{1999) on limited datasets (Liu et al., 2007). Another most popular ordering-based
search algorithm is K2 (Cooper and Herskovits, |1992) that we will explain it in the next subsection.
There are some algorithms for search in the space of equivalence classes. The most important of
these is GES (greedy equivalence search) (Chickering), 2002a). However, original GES which takes
greedy strategy into account may easily fall into local optimization trap because of the empty initial
structure. Recently, some improvements of GES method are proposed (Alonso-Barba et al., 2011,
2013; [Zhang et al., 2013} |Chickering and Meek, 2015)).

3.1 k2 Algorithm

The K2 algorithm (Cooper and Herskovits| [1992)) is a one of the most important ordering-based
search algorithms that learns the BN structure. This greedy algorithm uses a prior ordering of nodes
as input for reducing the complexity of the search space.

Let r; be the maximum number of possible values for variable X;. also r be the defined by
7 = maxj<j<n 75 and N = |D|. Therefore, the time complexity of K2 algorithm is O(mn?k?r). In
worst case , k = n — 1 and its time is O(Nn’r).

A novel algorithm that obtains a node ordering from data has been proposed by (Chen et al.,
2008)). By using this ordering as input to the K2 algorithm the structure of the BN is learned. This
algorithm aims to identify information for the correct ordering of nodes and runs in three phases.
First, it finds an undirected network (UDN) using mutual information (MI) and interdependence
tests. Second, the UDN is refined using d-separation and the conditional independence test to elimi-
nate possible false edges and add true edges that may have been missed in the original UDN. Finally,
orientations are assigned for each edge using interdependency tests and Bayesian scoring metrics.
The MI between two random variables X and Y denoted I(X :Y) is defined as follows:

I(X:Y)=H(X)- HX|Y) )
where H(X) and H(Y") are the entropy of random variables X and Y respectively, and H (X |H)

is the conditional entropy of random variable X given Y. The entropy and conditional entropy are
defined as follows:

H(X) ==Y P(X;)logP(X;) 3)
=1
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HX|Y) ==Y Y P(X =Y =y;) x logP(X = a;]Y =) (4)
=1 j=1

To construct the UDN, we first compute MI for all nodes, and then determine the maximum
MI (MM]) for each node X; denoted by M M I(X;). If either one of the following conditions is
satisfied, an edge (X, X;) will be added between variables X; and X;:

where 0.5 < o < 1. The parameter o determines the number of connections at this stage. If
« is close to 1.0, there is a high probability of several true edges being rejected at this stage of
the algorithm. If « is close to 0.0, this could lead to the inclusion of several wrong edges at this
stage. For all the structure-learning problems in this study, the parameter « is set to 0.9 and is found
to include most of the true edges while allowing the addition of only a few wrong edges into the
network structure.(Chen et al., 2008))

Let NV and n be the number of samples and the number of variables, respectively. Let r be the
maximum number of possible values for any variable. The time complexity of this algorithm is
O(n*) +O(Nn?), which is polynomial with respect to the number of nodes and linear with respect
to the number of samples.

4. Learning structure via learning the order of nodes

As we have seen, all the ordering-based search methods use a predefined order given on nodes.
But there exist no information about how this order has been made. In this paper, we show how
one can obtain a partial ordering on nodes given data. First, we find the optimal parent sets(those
with maximum scores) for each variable X; by ignoring the acyclic constraints. This method was
described by (Yuan et al.,[2013) to find optimal parents for a variable X; out of a candidate set. For
each variable, there exist a parent graph. For n variables, there are 2" nodes in the order graph, and
n parent graphs with 27~! parent nodes each. In total, n2"~! parent scores need to be computed.
As the number of variables increases, computing and storing the order and parent graphs quickly
becomes infeasible (Yuan et al., 2013). However, the following theorem (de Campos and Ji, 2010;
Teyssier and Koller, [2005) helps us to prune a significant portion of the candidate parent sets for
each node.

Theorem 1 Let U and S be two candidate parent sets for X , UC S and Score(X,U)< Score(X,S).
Then S is not an optimal parent set of X for any candidate set.

We now explain the workings of our algorithm, which relies on three concepts, namely, strongly
connected components, strongly connected components graph and topological sorting.

A strongly connected component of a directed graph G = (V, E)) is a maximal set of vertices
C C V such that for every pair of vertices v and v in C, vertices v and v are reachable from each
other.

Suppose that G has strongly connected components C', Cy, ..., Cg. The vertex set
{v1,v2,...,vn}, and it contains a vertex v; for each strongly connected component C; of G. There
is an edge (v;,v;) € ESCY if G contains a directed edge (X, Y) for some X € C; andsome Y € C;

Vel g
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(a) Real BN ASTA (b) Initial Bayesian network (c) The SCC graph (d) Final learned BN ASIA
ASIA

Figure 1: Real BN ASIA, initial BN ASIA the SCC graph and the final learned BN

. The key property is that the component graph GS¢¢ = (VSCC, ESCC) is a DAG (Cormen et al.,
2009) and therefore has a topological order.

Furthermore, a topological order (sort) of a DAG G = (V, E) is a linear ordering of all its
vertices such that if G contains an edge (u, v), then u appears before v in the ordering. Topological
sorting for a graph is not possible when the graph is not a DAG. We can view a topological sort of a
graph as an ordering of its vertices along a horizontal line so that all directed edges go from left to
right (Cormen et al., 2009).

By using the Sparse Parent Graph Algorithm in (Yuan et al.,|2013)) and setting & as the maximum
parent size for each node, we use pre-computed best parent sets for each node. We then construct
structure graph G = (V, E) from the possible parent sets for each node. This directed graph may
not be a DAG. In the next step, the algorithm computes the strongly connected components of
graph G = (V, E) and form the component graph G°C¢ = (V5¢C ESCC) Then we construct
the component graph G°C¢ = (V5¢C pSCCY in linear time O(V + E) as follows. We obtain
a topological sort (v;,, iy, ... ,v;,, ) of the component graph G5¢C = (V5¢C ESCC) For each
node v;; € VSCC where j = 1,2,...,m, if |vi;| > 2, then we take a random permutation on all
its variables. This give us a ordering on all nodes of graph G = (V, E). Finally, using this ordering
and given ordering-based search algorithm K2 in (Chen et al., 2008)), we can find a high-scoring
network structure effectively. The pseudocode of the our algorithm are shown in Algorithm 1]

In the next subsection, we illustrate the workings of our algorithm through an example.

4.1 Anillustrative example

The ASIA network is a small BN, which is used for a fictional medical example. The network asks
whether a patient has tuberculosis, lung cancer, or bronchitis, and consists of eight nodes and eight
edges. Each random variable is discrete and can take two states. Figure [Ia]shows the true structure
for the ASIA BN.
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Algorithm 1: Learning the structure via learning the order of the nodes

Input : Variables X = {X,..., X,,} and dataset D on X.
Output: A Bayesian network structure G

1 for X; + 1tondo

2 ‘ POPYi] < Potential-Optimal-ParentSets(X;,D)

3 end

4 for X; « 1tondo

5

6

Create node X;;

U; = arg max score(S);
SEPOPi]

7 for X, € U; do
add directed edge (X;, X;) to the £;
end

10 end

11 Construct G*¢ = (V¢ E*°“) from the graph G = V, E);

12 Let C1,. .., Cy be the strongly connected components graph G = (V, E). Therefore,
Vel = {vg, .., vk}

13 Make a topological sort on graph G*°° and call it OCsee;

14 for v; € O do

15 | if |v;| > 1 then

16 ‘ consider a random order O’[i] on nodes in v;
17 end

18 else

19 | set O'[i] as {v;}

20 end

21 end

22 Construct Total order O on all vertices of graph G By concatenating of O’ order elements;
23 G* < Ordering-Based-Search(X,D, O);
24 return G*

The BIC scores for potential parent sets with max parent size k = 2 for each node are given
in Table (I} The initial graph G is shown in Figure The strongly connected components graph
G5 = (V5e¢, B5°°) graph of G = (V, E) is shown in Figure[Id]

A topological sort of graph Figure[ldis (L, T, E), A, X, (S, B, D). By expanding it, we obtain
ordering L, T, FE, A, X, S, B, D on vertices graph GG. The final graph which is learned using this
node ordering and K2 algorithm is shown in Figure

5. Experiments

In this section, we present the experimental results obtained from our algorithm and compare with
three others algorithms on five BNs taken from the Bayesian network repository included in the bn-
learn R packageﬂ We selected one small size network( 20 nodes), three medium size networks(20-
50 nodes) and one large size networks(50-100 nodes). Table |2| shows detailed information about

1. http://www.bnlearn.com/bnrepository/
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Table 1: Potential parent sets for BN ASIA
NODE | BEST POTENTIAL PARENT SET
{T}:-117.247665
{L,B}:-3155.790283
{L,E}:-53.389854
{T,E}:-44.909386
{T,L}:-17.034386
{S,D}:-2498.392334
{D}:-1701.340454
{B,E}:-2336.587158

O X @ | o 13| | >

each network consist: number of the variables, edges and parameters. For each network we inde-
pendently sampled one dataset containing 10000 instances.

Table 2: Datasets used

Dataset # of variables | #of edges | # of parameters
ASIA 8 8 18
INSURANCE 27 52 984
MILDEW 35 46 540150
ALARM 37 46 509
HAILFINDER 56 66 2656

5.1 Results

We compare our algorithm against the state-of-the-art algorithm (Bartlett and Cussens), 2013) re-
ferred to as Gobnil;ﬂ the greedy hill-climbing search (Gamez et al.,|2011) and the Greedy Equiva-
lence Search Algorithm (GES) (Chickering, [2002b).

use both greedy hill-climbing search (Gamez et al., 2011) and exact learning algorithm (Bartlett
and Cussens!, [2013)) referred to as Gobnil;ﬂ

To compare the three searches, we recorded the best scoring network found by each one. We
report, for each dataset, the score of the maximum reached by each algorithm. The results of our
experiments is given in Table [3| In Table [3| we have reported, for each dataset, the score of the
maximum reached by each algorithm.

We use the quality of the network (BDe score) as performance measure. The use of CPU times
as measure has the disadvantage of being dependent on the actual implementation and hardware.
However we include them here as an indication. For each network, 3 datasets were randomly
sampled in size of 10000. The performance metrics of an algorithm were the averages over those 3
datasets for each network. All experiments are conducted on 2.6 GHz Intel Core i7 PC with 8 GB
of RAM. We have used Tetrad 4EI software to run the GES algorithm.

2. https://www.cs.york.ac.uk/aig/sw/gobnilp/
3. https://www.cs.york.ac.uk/aig/sw/gobnilp/
4. http://www.phil.cmu.edu/projects/tetrad/
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The results are shown in Table [3] We can see that our algorithm outperforms greedy hill-
climbing and GES algorithm in terms of precision. Moreover, our algorithm, which we implemented
in Python, is the fastest among all algorithms except greedy hill-climbing algorithm.

Table 3: Comparison of results
Score Results

Dataset Exact hill-climbing | GES algorithm | Our algorithm
ASIA —22629.67 —22629.67 —22629.67 —22834.30
INSURANCE | —132563.50 | —134017.90 —133761.41 —132831.82
MILDEW —462641.22 | —503568.30 —475561.78 —455478.60
ALARM —106251.4 —107176.3 —109140.07 —106899.43
HAILFINDER | —472322.31 | —498918.2 —54.041.12 —484455.63
Time Results
Dataset Exact | hill-climbing | GES algorithm | Our algorithm
ASIA 2.60s 0.02s 0.059s 0.10s
INSURANCE | 3.51s 0.27s 4.236s 1.21s
MILDEW 14.33s 0.31s 5.10s 1.27s
ALARM 20.22s 0.39s 6.663s 1.14s
HAILFINDER | 67.40s 0.69s 56.729s 2.18s

6. Conclusion

We described a simple and fast algorithm for learning Bayesian networks from data. Our method
has two stage. First, we learn a partial order of nodes from data. Second, we learn the structure
using this node ordering. We evaluated our algorithm on a variety of commonly used benchmark
datasets against current state-of-the-art algorithms. In most cases, we showed that our algorithms
outperformed existing methods by running faster, and finding better solutions more quickly. In
comparison, our algorithm is very fast and gives reasonable results and is scalable to large networks.
Our main contribution is obtaining a partial ordering on nodes from given data. Improving the
scalability of optimal structure learning algorithms has many practical applications.

In future, we will work on both other orderings and also we will work on finding out components
with the almost the same size.
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