Proceedings of Machine Learning Research vol 72, 145-156, 2018 PGM 2018

Solving M-Modes in Loopy Graphs Using Tree Decompositions

Cong Chen CONG.CHEN @ QC.CUNY.EDU
Changhe Yuan CHANGHE.YUAN @ QC.CUNY.EDU
Ze Ye ZYE @ GRADCENTER.CUNY.EDU
Chao Chen CHAO.CHEN@QC.CUNY.EDU

CUNY Graduate Center and CUNY Queens College

Abstract

M-Modes is the problem of finding the top M labelings of a graphical model that are locally optimal.
The state-of-the-art M-Modes algorithm is a heuristic search method that finds global modes by
incrementally concatenating MAP solutions in local neighborhoods. The search method also relies
on the guidance of a heuristic function to explore the most promising parts of the search space.
However, due to the difficulty of coordinating mode search, heuristic function calculation and local
MAP computation in general loopy graphs, the method was only implemented and tested on special
graphical models such as trees or submodular grid graphs. This paper provides a more general
implementation of the search method based on tree decompositions that is applicable to general
loopy graphs. A tree decomposition allows a sequence of local subgraphs to be mapped to a set of
sub-trees sweeping through the tree decomposition, thus enabling a smooth and efficient transition
back and forth between mode search, heuristic function calculation and local MAP calculations. We
use both random and real datasets to evaluate the effectiveness of the tree-decomposition method.
Furthermore, we demonstrate the practical value of M-Modes in making multiple diverse structured
predictions for a gesture recognition task.

Keywords: Graphical Model, Exact Inference, Heuristic Search, M-Modes

1. Introduction

In the classic structured prediction task, one computes a single solution of a given graphical model,
i.e., the MAP. It has been shown that generating a set of M solutions that are both highly possible
and diverse can be very useful in computer vision (Prasad et al., 2014) and computational biology
(Fromer and Yanover, 2009). There are several popular approaches to the multiple-prediction prob-
lem. The classic M-Best methods (Dechter et al., 2012; Fromer and Globerson, 2009; Yanover and
Weiss, 2004; Nilsson, 1998) computes the M most probable predictions. Solutions found by M-Best
might be similar to each other and are not diverse. A recent method called Diverse M-Best (Prasad
etal., 2014; Batra et al., 2012; Lampert, 2011) has been developed to compute candidates with both
high probability and high diversity. Although the Diverse M-Best method shows impressive results
in a number of computer vision applications, some researchers (Kirillov et al., 2015) argue that it
suffers from its greedy nature—earlier solutions dominate ones found later.

M-Modes (Chen et al., 2013) is another approach for the multiple prediction problem that aims
to find a set of top solutions that not only have a high probability but also are the MAPs in respective
local neighborhoods. M-Modes is based on an inherent property of the distributional landscape
description and is not biased by different search strategies.

Existing attempts for solving M-Modes (Chen et al., 2016, 2014, 2013) demonstrate that the M-
Modes is a challenging problem even for a tree model. Dynamic programming is the first algorithm

145

CHEN ET AL.

proposed for solving M-Modes in chain and tree graphs (Chen et al., 2014, 2013). It builds on the
Global-Local property of modes, that is, a labeling is a global mode if and only if it is a local MAP
in every connected J-subgraph, where § defines the size of local neighborhoods. The algorithm first
computes all local MAPs of each subgraph conditional on different boundary configurations and
then searches through all their consistent concatenations. The drawback of the DP algorithm is that
most of its time is wasted on computing local MAPs that are never used in the global modes. A
heuristic search approach has been developed to improve the efficiency of solving M-Modes (Chen
et al., 2016). We will provide a more detailed review of this approach in a later section. Here
it suffices to say that the search algorithms do not compute local MAPs in advance. In stead, it
searches for a global mode by generating and verifying only necessary local MAPs on the fly.

The heuristic search method is in principle applicable to any graphical models. However, due
to the difficulty of coordinating mode search, heuristic function calculation and local MAP com-
putation in general loopy graphs, it was only implemented and tested on tree and submodular grid
graphs. For chains or trees, MAP inference can be solved with simple belief propagation (Pearl,
1988). Submodular grid graphs satisfy the following properties (Boykov and Kolmogorov, 2004):
1) all variables have binary labels, and 2) parameters are all submodular, i.e., for each edge (u,v),
Oup(1,1) + 040 (2,2) < Oyp(1,2) + 04,(2, 1). For such grids, a polynomial min-cut algorithm can
be used to compute local MAPs and heuristic functions (Chen et al., 2016).

This paper presents a more general implementation of the heuristic search method based on
tree decompositions, which is applicable to general loopy graphical models. A tree decomposition
allows us to choose an ordering of subgraphs such that their corresponding sub-tree representations
sweep through the tree decomposition in an orderly fashion. This also allows the use of the Max-
Product belief propagation (Wainwright et al., 2005) to be used for both computing local MAPs and
for calculating heuristic functions. The heuristic functions are calculated only once in the reverse
subgraph ordering and stored for repeated queries by the global modes search.

Note that the focus of this work is to propose a more general implementation of an existing
method to overcome several technical difficulties presented by general loopy graphical models. In
contrast, the existing implementation in (Chen et al., 2016) was tailored for special models such
as trees and submodular graphs. Therefore, the new implementation, although more powerful,
has worse efficiency or scalability than the existing implementation if forced to run on trees or
submodular graphs.

2. Background

A discrete Markov random fields (MRF) (Kindermann and Snell, 1980; Wainwright and Jordan,
2008; Nowozin and Lampert, 2010) is a probabilistic graphical model that represents a joint discrete
distribution using an undirected graph and potential functions associated to its maximal cliques.
Random variables correspond to vertices in the graph. The terms of variable and vertex are used
interchangeably. A discrete value assigned to a variable is called a label. A label assignment for
all variables is called a labeling. We use lowercase letters to denote labelings, such as x, and L, to
denote the label size for vertex v. We denote f(x) = —log([[.cc % (zc)) as the energy of labeling
x, where 1 (x.) is the potential function over a maximal clique x.. The energy can be decomposed
into a sum, i.e., f(z) = Y ..o fe(xc), in which fe(z.) = —log(t(z.)). The energy is proportional
to the negative log probability. Thus, finding a solution with the maximal probability is equivalent
to minimizing the energy.

146

SOLVING M-MODES IN LOOPY GRAPHS USING TREE DECOMPOSITIONS

15 15
100 > 12.5 12.5
i éb 10 E 10 5 —~— M =3
10 Bno75 75 Sy -~~-- M =5
5 5 - M=7
01 2 3 4 5 6 01 2 3 4 5 6 01 2 3 4 5 6
1 1 1

Figure 1: The effect of ¢ on (Left) total number of modes, (Middle) the energy of the M -th mode (negatively proportional
to log probability), and (Right) the average pairwise hamming distance on dataset Child.

2.1 M-Modes

We define the precedence of a labeling x over another labeling y, i.e., x < ¥, as either (1) the energy
of x is less than that of y, or (2) they have the same energy, and x is smaller than y in lexicographical
order. We use lexicographical order as a tie breaker to ensure that there is at most one mode within
each given d-neighborhood. We say x < X when a labeling x has the highest precedence in the set
X (x precedes all the other labelings in set X).

We use the Hamming distance hd(-,-), i.e., the number of disagreed variables between two
labelings of equal length, as the distance metric. Given a non-negative integer J, called scale, the
§-neighborhood of x is defined as Ns(z) £ {2’ | hd(x,2’) < § }. We define J-modes as follows.

Definition 1 (6-Mode) x is a 6-mode if and only if v < Ns(x).

A d-mode labeling is defined to precede all other labelings in its J-neighborhood. This en-
sures the J-modes are diverse; any two modes are at least 6 away. The number of modes typi-
cally decreases exponentially as § increases. A larger J increases the diversity of the solutions.
But if § is too large, too many high-probability solutions are suppressed by superior neighbors,
and the top modes may contain too many low-probability solutions.

Therefore, § provides a tradeoff between the diversity and probabil-

ity of modes. Figure 1 provides visual illustrations of the effect of T
0 on a UCI dataset called Child. Finally, we define the main com-

putational problem as follows. For simplicity, we drop from the

notations hereafter.

Problem 1 (M-Modes) Given a graphical model and a scale 9, i i
compute the top M modes.

Figure 2: An example of a §-
2.2 Global-Local Theorem subgraph with 6 = 3. The gray ver-

To compute M-Modes, one has to leverage the relationship between ~tices are the interiors and the black
a mode and its local patterns. Given a graph GG, we are particu- Zre:;izr?é;the boundaries. Others
larly interested in its connected subgraphs with size J, called 4-

subgraphs. For a d-subgraph, S, all variables that are adjacent to

variables in S are its boundaries, denoted as 0S. Denote by cl(5)

the disjoint union of S and its boundaries, S W 95. All variables

outside cl(S) are exteriors. For convenience, we also call the variables in .S interiors. Figure 2
shows a d-subgraph with § = 3 in a grid graph. The interiors, boundaries and exteriors are colored
gray, black and white respectively.

147

CHEN ET AL.

A label assignment to a §-subgraph, S, is called a local labeling. Given a label assignment
to boundaries of .S, 0.9, the highest precedential local labeling of S is called a local MAP. Again
consider Figure 2, fixing the labels of boundaries (black) can uniquely determine the local MAP of
interiors (gray).

It was shown that there is a close connection between the modes of a graph and the local MAPs
of the §-subgraphs. In particular, any consistent combinations of local MAPs is a global mode, and
vice versa (Chen et al., 2014). This property has been exploited by several recent algorithms for
solving M-Modes (Chen et al., 2014, 2016). Formally, we have:

Theorem 2 (Global-Local) A labeling is a d-mode <> its local labelings of all §-subgraphs are
local MAPs.

3. Solving M-Modes using Tree Decompositions

The goal of this paper is to develop a general implementation of the heuristic search method for
solving M-Modes (Chen et al., 2016) to be applicable to general loopy graphs. The main idea
is to use tree decompositions of the models to coordinate various operations needed for the M-
Modes search. We first outline the major steps of the existing M-Modes search algorithms (Chen
et al., 2016). We then review the basics of tree decomposition. After that, we explain how the tree
decompositions can be used to coordinate cluster and vertex orderings, calculate heuristic functions,
map d-subgraphs to minimum sub junction trees, and compute local MAPs. Finally, we integrate
all these techniques into a tree-decomposition A* search algorithm.

3.1 M-Modes Search

The heuristic search algorithms for solving M-Modes proposed in (Chen et al., 2016), including
depth first branch and bound (DFBnB), and A star (A*), are developed based on Theorem 2 and
work as follows.

First, we create a list of all the J-subgraphs of a graphical model. Given a contiguous ordering of
the vertices in a graphical model, the §-subgraphs are created by recursively adding adjacent vertices
such that adjacent subgraphs are maximally overlapped to facilitate concatenating consistent local
MAPs.

Second, MAP inference in the reverse order of the d-subgraph ordering is used to calculate a
heuristic function. The heuristic function only needs to be calculated once and is stored for repeated
queries by the global mode search.

Third, we search for top modes as follows. The search tree is initialized with a root node
representing an empty labeling. The precomputed J-subgraphs are sequentially used to expand
the search tree. At each step, conditioning on a current frontier search node representing a partial
labeling of all variables, the next §-subgraph must have all interiors and some boundaries already
fixed, but other boundary variables remain unknown. For each labeling of the unknown boundaries,
the local MAP over the interiors is calculated. If the local MAP is consistent with the known values
of the interiors, a new successor node is created with a new partial labeling consisting of parent’s
partial labeling plus labeling of new boundaries. The new labeling is used to look up a heuristic
value from the stored heuristic function. The total score of the partial labeling plus heuristic value
is used to perform A* or DFBnB search. The search continues until M solutions are found by A*
or the search tree is exhausted by DFBnB.

148

SOLVING M-MODES IN LOOPY GRAPHS USING TREE DECOMPOSITIONS

The advantage of the search algorithms over dynamic programming (Chen et al., 2013, 2014) is
clear: They only compute local MAPs that are needed during the search, and the heuristic functions
guide the search to only explore the most auspicious search space. However, these existing M-
Modes search algorithms are not flexible enough to deal with general loopy graphs. We propose to
use tree decompositions to generalize these methods.

3.2 Tree Decompositions

A tree decomposition (Robertson and
Seymour, 1984), also called junction
tree, is a mapping of a graph into an
undirected tree. A junction tree con-
sists of clusters and sepsets. Each
vertex in a junction tree is a cluster
of variables; A sepset connecting two
(a) (b adjacent clusters represents the inter-
section of the clusters. The junction
tree satisfies two properties: (1) run-
ning intersection property: given two
clusters X and Y, all clusters on the
path between them contain X NY,
and (2) Markov property: any cluster d-separates its adjacent clusters. Figure 3 shows an exam-
ple of tree decomposition.

Figure 3: Example of Tree Decomposition: (a) the original graphical
model and (b) the junction tree. The ellipses are clusters, and the rectan-
gles are sepsets.

The junction tree encodes a joint probability distribution of the labeling for the graph according

to: p(x) = Hz i ((gjg, where p(C;) and p(S;) are joint probability distributions for cluster C; and

sepset S; respectively. And for each cluster C' and neighboring sepset S, it holds that p(S) =
ZC\ ¢ P(C). As a sepset is a subset of its neighbor cluster, its probability marginalizes the cluster
probabilities. Besides, it also holds that p(X’) = >\ x, p(X), where X’ C X, marginalizing all
the other vertices in the same cluster.

Therefore, let f(C;) = —log(p(C;)) and f(S;) = log(p(S;)) (notice: removed negative), we
define the energy function of z as f(x) = . f(X;), where X; is the local labeling for each cluster.
We can do MAP inference using Max-Product belief propagation (Wainwright and Jordan, 2008)
to seek the minimum energy. Roughly speaking, the algorithm sums over branches at the clusters,
and performs minimizations at the sepsets; The minimizations take place when cluster energies are
being propagated to its neighboring sepsets. This algorithm is crucial and fundamental for local
MAP calculations used in the proposed M-Modes algorithm.

3.3 Select Cluster and Vertex Orderings

The first key step of existing M-Modes search is selecting the ordering of all d-subgraphs, which
were enumerated according to a given contiguous ordering of variables in the graphical model. The
d-subgraphs ordering is important because it affects both the ordering of the search steps and the
calculation of a heuristic function.

149

CHEN ET AL.

To work with tree decompositions, we have two orderings that have to be created in coordina-
tion: a cluster ordering of the junction tree and a vertex ordering of the original graph. Given a tree
decomposition, we create the cluster ordering by picking any cluster as the root and
performing a depth-first traversal. After that, we create
a vertex ordering by examining the clusters sequentially
and wait until the last chance to add a vertex to the vertex
ordering. Cons1der Flgure'?). Suppose we have created Input: € ordered cluster list
the following cluster ordering: Cy, C1, C2, C3, Cy and), _ nordered vertices set
Cs. Vertices 0, 1 and 2 belong to cluster Cyy. Vertex 0 does ~ Output: V - ordered vertices st

not appear in later clusters, so this is the last chance toadd ~ function CONSIST-ORDERING(C)
for VC € C do

Algorithm 1 Finding consistent vertices ordering
with clusters ordering

vertex 0O to the vertex ordering. However, vertices 1 and 2 for Vv € C do Cy,).Add(C)
appear in later clusters; we do not add them just yet. We for VC € C do
do the same for all subsequent clusters until a full vertex for Vv € V do

if C € Cy, then Cy,).Remove(C)
if C(,.Is-Empty() then

. V.Append(v)
return V

ordering is created. Algorithm 1 is a pseudo code for the
strategy. Inside, the Cy,, means a set of clusters which
vertex v belongs to. However, note that the strategy for
selecting when to add a vertex is not unique. For example,
we can also add a vertex when it first appears.

3.4 Minimum Sub Junction Trees

After getting the vertex ordering, we create a list of §-subgraphs using the method described in
Section 3.1 (Chen et al., 2016). The d-subgraphs are the basic search units of the existing M-
Modes search algorithm. In order to utilize tree decomposition in the search, we need to map
each J-subgraph onto the decomposition. Since a d-subgraph is always a connected graph, the
corresponding part of the junction tree that the subgraph spans must be contiguous; we call the
cluster(s) the §-subgraph spans as a sub junction tree:

Definition 3 (Sub Junction Tree) For §-subgraph S, a Sub junction tree Ts is a sub tree of a
Junction tree T that includes all the vertices in cl(S).

Sepsets are always subsets of its adjacent clusters in a junction tree. In Figure 3, assume we
want to identify the sub junction tree for 1-subgraph of vertex 0. The interior is vertex 0, and
the boundaries are vertices 1 and 2. So, a corresponding sub junction tree can either include just
the cluster Cy or include Cjy, Sg, and C. Either is serviceable. However, the latter sub junction
tree has a cluster containing an extra vertex 4 that needs to be marginalized out. In order not to
waste computation, we should find a minimum sub junction tree (MSJT) that adequately represents
a 0-subgraph for a local MAP calculations:

Definition 4 (Minimum Sub Junction Tree (MSJT)) Tg is a MSJT if it is a sub junction tree and
consists of fewest clusters.

There is only one such MSJT (uniqueness of MSJT) for each d-subgraph, i.e., removing one
more cluster does not form an adequate sub junction tree, and adding one more cluster makes
it not minimum. In that example, the cluster Cy is the MSJT consisting of just one cluster and
containing all relevant vertices. Then, how can we quickly find such an MSJT? Theorem 5 claims

150

SOLVING M-MODES IN LOOPY GRAPHS USING TREE DECOMPOSITIONS

that collecting the clusters which contains the interiors is sufficient to obtain an MSJT, which would
automatically include the boundaries.

Theorem 5 (Finding MSJT) T is an MSJT < T satisfies: (1)Yv € S, 3X € T, v € X, and (2)
VX €T, dve X,veS. Xare clusters of Ts.

Proof (1) essentially says that each interior of §-subgraph S must belong to some cluster in the
MSIJT, which is trivially true. (2) claims that at least one interior should be in each cluster in the
MSIJT. In other words, there is no cluster that only contains boundaries and maybe some other ex-
teriors, called boundaries clusters, in an MSJT. Otherwise, there must exist a neighboring cluster
that shares a sepset and the sepset only contains boundaries, which defies the need to include the
boundaries cluster. |

Therefore, an algorithm for getting an MSJT T fora d-subgraph S works as follows. First, starting
from an empty set 7, we enumerate all the interiors v € S. For each interior, we get all the clusters
containing it and insert them into the set. In the end, the set 7" is the MSIT for S.

3.5 Calculating local MAP in an MSJT

Each step of M-Modes search needs to perform a local MAP

inference. We now discuss how to perform the MAP infer- °

ence using MSJTs. Because of the need to distinguish interiors

and boundaries as well as exteriors, we have to tailor the Max- 0‘0“9
Product belief propagation algorithm to achieve that. There are "

riors, (2) there are both interiors and boundaries, or (3) there is

a mixture of interiors, boundaries and exteriors.
For scenario (1): Since all of the vertices are interiors, we

just enumerate all energies in the cluster. For scenario (2): there

are some boundaries which are fixed, so that we skip those en- o . .
. . . . ture of interiors, boundaries and exteri-

ergies whose labels disagree with the labels of the boundaries. .. (Top) the original graph and (Bot-

Again consider Figure 3, assuming in cluster Cy, the interior is tom) the junction tree, which introduces

vertex 0, the boundaries are vertices 1 and 2 with labels 2 and an edge from vertex 1 to vertex 3, so that

2, and the label size for all of them are 3. Therefore, we merely L r;ﬁ E’OJ Ol’v i’n ‘lir?tf;:iroir:i 2%0;1;3‘;12;?;'

itemize three J-labelings which are 022, 122, and 222. 0,2.4, ﬂire is an exterior 3 in the clus-
Scenario (3) is the trickiest situation. First let us look at (ers.

an example in Figure 4. After building a tree decomposition, we lost the d-separation between

vertices 1 and 3. It results in a situation where a cluster could contain interiors, boundaries and

exteriors altogether. Accordingly, the correct energy list involves not only fixing boundaries, but

also marginalizing exteriors by fixing them to an arbitrary value (because the dummy connection

has no real effect). For efficiency, this marginalization can be pre-calculated and stored in the energy

list of each cluster for subsequent usage.

three possible scenarios in one cluster: (1) all vertices are inte- e
.2,3

Figure 4: Example of clusters with mix-

151

CHEN ET AL.

Q

\% 20 300 300 40 500

g 15 200 200 30 300

w10 100 100 20 200

£ 5 10 100

E 0 0 0 0 0

é 0 50 100 150 0 2 4 6 8 0 2 4 6 0 5 10 15 20 2 3 4 5

(a) Number of Variables (b) Cluster size (c) 0 size (d) M modes (e) Label size

Figure 5: Experimental results for A* on synthetic binary tree decomposition models of different property settings

3.6 Tree Decomposition M-Modes Search

Finally, we integrate all the techniques in the pre-
vious sections into a new implementation of the A*
algorithm that uses tree decompositions of graphi- = -

1 dels t lve M-Mod The al ithm i t Input: ajunction tree; § size; number of modes
cal models to solve M-Modes. The algorithm is 0ut-~ gyeput; & set of modes
lined in Algorithm 2. The major differences are as |
follows. Instead of §-subgraphs, the new implemen-

Algorithm 2 Tree decomposition M-Modes search

. Get a cluster ordering of the clusters c (DFS)

2. Create vertex ordering Y with € (see Alg. 1)
tation takes a list of MSJTs as input. The heuristic 3. Find 6-subgraph list S by (Chen et al., 2016)
function is calculated in the reverse order of the clus- 4 Get T s.t.VS; € Sy, MSIT Ts € T (see Thm. 5)
ter ordering. The search layers correspond to differ- 5. Use Max-Product algorithm on the Coreverse() to
ent MSJTs. At each search step, it is necessary to calculate heuristic functions
perform a local MAP inference at the corresponding 6. Perform A* M-Modes search over T
MSIJT.

4. Computational Complexity of M-Modes

We briefly discuss the computational complexity of M-Modes inference. Consider a graphical
model with n variables and label size [. The number of all J-subgraphs is (’)((’g)), where (g) is
the binomial coefficient. However, only J-subgraphs with new boundaries result in branching lay-
ers in the search tree, while others lead to verification layers (no branching). The maximum number
of branching layers is n, so the number of branching nodes is O({™). The number of verification
layers is O((’s)), resulting in O(I"(’;)) verification nodes. Each branching or verification node need
a local MAP inference, which is O(1°). Therefore, the total complexity is O(1°T"(%)).

Tree decomposition indicates the presence of conditional independence in a graphical model
and can effectively reduce the number of d-subgraphs, and hence computational complexity. Let
the maximum size of clusters be ¢, number of clusters be &, and the maximum number of clusters
that a -subgraph can span be s. The number of all -subgraphs is now (’)((I;”j) (C;)) The total
complexity is reduced to O(1%+"(*~1)(%)). In any case, M-Modes is believed to be much more
difficult than M-Bests, which aims to find M top labelings with highest probabilities.

5. Experiments

The existing A* implementation in (Chen et al., 2016) was tailored for trees and submodular graphs.
In comparison, the new implementation targets general loopy graphs. Consequently, it has worse
efficiency and cannot scale to the large submodular graphs tested in (Chen et al., 2016). We there-
fore focus on evaluating the new implementation on general loopy graphs. The experiments were

152

SOLVING M-MODES IN LOOPY GRAPHS USING TREE DECOMPOSITIONS

performed on an IBM System with 32 core 2.67GHz Intel Xeon Processors and 512G RAM. And
the program is written in language C++ using the GNU compiler G++ on a Linux system.

5.1 Synthetic Models

We first generated random tree decompositions with different settings to test the impact of various
properties of the decompositions on M-Modes. We generate a tree decomposition as follows: We
start by creating a root cluster with certain size, randomly select a number vertices from the root as
separator, and create another cluster with the same size sharing the separator. Then, we randomly
pick an existing cluster and create A neighboring cluster in the same way until we create enough
clusters. Last, we add random potentials to each cluster. We want to test five properties, including
the number of variables, cluster size, J size, size of M, and label size. Each time we fixed four
properties and varied the remaining one. The base setting has the number of variables being around
100, the cluster size being 6, J size being 3, M being 4 and label size being 3. For each setting, we
generated ten different models and computed the median running time. See Figure 5 for empirical
results of synthetic models.

The results show that all of the properties affect the running time of M-Modes. However, several
of the properties have more significant impact than others. In particular, cluster size, § and label size
seem to impact the running time exponentially. The cluster size and § directly impact the number
of possible J-subgraphs. The label size affects the number of label combinations and, hence, size
of search space. It is quite understandable why they have an exponential impact on running time
M-Modes. In comparison, The number of modes, M, only has a linear impact because the cost
to obtain each mode is roughly the same. Finally, the impact of number of variables is less clear
and has a much higher variance. We offer the following explanation. Even though the number of
variables directly affects the number of §-subgraphs, but because the cluster size is fixed, so the
increase in running time is somewhat constrained. The empirical observations are mostly consistent
with our analysis of the computational complexity of M-Modes.

5.2 Benchmark Models

We also tested A* on several benchmark models that
are created from either benchmark Bayesian networks,

Name N L ClI Sub Time including Child (Spiegelhalter and Cowell, 1992) and
Adult 15 3 5 59 093 Alarm (Belnhc'h et al., 1989), or learn‘ed f.rom UCI
Child 20 6 4 92 157 datasets. Bayesian networks are first moralized into undi-
Flag 29 3 7 133 87.69 rected Markov networks. We then create tree decomposi-
Alarm 3745 177 0.20 tions for the models using greedy heuristic such as min-
Spectf 45 2 9 190 380.15 fill

In these experiments, we set § = 3 and M = 4. Fig-

Figure 6: Running time of A* on benchmark ure 6 show the performance of A*. We also list some

models (sec): N is the number of variables, L jmportant properties of the benchmark models: the num-
is maximum label size, Cl is maximum cluster

ber of variables, maximum label size, maximum cluster

size, Sub is number of §-subgraphs, and Time is
the running time (sec). size, and number of d-subgraphs.
The results are mostly consistent with what we have
observed on the synthetic datasets. The two most difficult

models are Flag and Spectf. They are difficult because they have relatively large maximum cluster

153

CHEN ET AL.

size. Even though Alarm has a large number of J-subgraphs, its tree decomposition has smaller
cluster sizes than Flag, indicating smaller branching factor. As a result, it is still a easy model to
solve for A*.

5.3 Diverse Structured Prediction

Finally, we demonstrate the practical value of M-Modes in a gesture recognition task and show
that modes can significantly outperform the state-of-the-art diverse structured prediction method
called Diverse M-Best (Batra et al., 2012). We use the gesture recognition dataset from Chal.earn
challenge (Guyon et al., 2011). This dataset consists of 20 video batches (devel 01-20), each of
which includes 47 RGB video sequences and 47 corresponding depth videos recorded with the
Kinect camera. In each video sequence, one actor made 1-5 gestures drawn from 8 to 15 gesture
vocabularies. See Figure 7(Top) for example frames. The local features employed were HOG
and HOF descriptors from both RGB and depth images, based on STIP detector. Finally, each
video segment of 30 frame-length was represented by a 60-dimensional bag-of-word (BOW) feature
vector. Within each batch, the first 30 video sequences was used for training and the rest for testing.
We train a Conditional Random Field (CRF) (Lafferty et al., 2001) for the task. The graphical model
has tree-width three; each node (corresponding to a 30 frames video segment) is connected to the
two nodes before it and the two nodes after it. See Figure 7(Middle). Each sample ranges from 9 to
60 nodes with average 27.
Following the tradition of other diverse prediction

problem, we let the methods predict up to M solutions r L ?
and evaluate those by their oracle accuracy, i.e., the high- '8 = I

est accuracy of one of the M solutions compared with the Example Frames
ground truth. The task of selecting one labeling out of
M candidates is beyond the scope of this paper. The ac- % -

curacy of a solution is measured as the number of cor-
rect labels normalized by the total number of nodes of
the graph (one minus the normalized Hamming distance
between a labeling and the ground truth). Each method
has its own parameter (the parameter for M-Modes is 0).
We select the optimal parameter for each method using
the first batch, and then evaluate the accuracy on the re-
maining 19 batches. Note that for different M the optimal
parameter value are different. Figure 7: Comparison of prediction methods
The results at different M are shown in Figure

7(Bottom). M-Modes performs significantly better than Diverse M-Best; at M = 3, M-Modes
reaches a much higher accuracy than Diverse M-Best. The accuracy of both M-Modes and Di-
verse M-Best monotonically increases as M increases, because both methods propose monotonically
growing set of solutions as M increases.

o
° & °
> & o

Accuracy
o
5
3

0.7

6. Conclusions

We have developed a new implementation of the M-Modes search method (Chen et al., 2016) based
on tree decompositions in order to be applicable in general loopy graphical models. A tree de-
composition allows us to map the d-subgraphs of a graphical model to their respective minimum

154

SOLVING M-MODES IN LOOPY GRAPHS USING TREE DECOMPOSITIONS

sub junction trees on the decomposition. Such a mapping further allows easy coordination between
three things that are critical in solving M-Modes: 1) creating a sequence of all §-subgraphs, 2)
computing local MAPs, and 3) calculating heuristics for each search step. We have evaluated the
proposed methods with A* on a set of synthetic and benchmark datasets. The results demonstrate
that various properties of a graphical models affect the difficulty of the M-Modes problems. Among
them, the induced widths of tree decompositions, the size, and the label size seem to have the
largest impact.

Although promising, the proposed M-Modes methods are shown to only scale to relatively small
graphical models with just dozens of variables, laughable compared to other inference problems
such as MAP. Although heuristic functions already help A* tremendously in achieving better prac-
tical performance, the inherent difficulty of solving M-Modes makes larger graphical models out of
reach, still.

We believe, however, our proposed methods are the first tries. More advanced M-Modes are yet
to be developed. For example, it is well known that formulating a search space as a graph rather
than a tree usually brings tremendous improvements. Also, tree decomposition is a way to utilize the
conditional independence relations present in a graphical model, but more sophisticated approaches
for exploring such independence relations can further help.

Acknowledgements

This research is partially supported by the NSF grants IIS 1718802, IIS 1829560, and CCF 1733866.

References

D. Batra, P. Yadollahpour, A. Guzman-Rivera, and G. Shakhnarovich. Diverse M-best solutions in markov
random fields. Computer Vision—-ECCV 2012, pages 1-16, 2012.

I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The ALARM monitoring system: A case
study with two probabilistic inference techniques for belief networks. Springer, 1989.

Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for energy
minimization in vision. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(9):1124—
1137, 2004.

C. Chen, V. Kolmogorov, Y. Zhu, D. Metaxas, and C. H. Lampert. Computing the M most probable modes
of a graphical model. In International Conf. on Artificial Intelligence and Statistics (AISTATS), 2013.

C. Chen, H. Liu, D. Metaxas, and T. Zhao. Mode estimation for high dimensional discrete tree graphical
models. In Advances in neural information processing systems, pages 1323-1331, 2014.

C. Chen, C. Yuan, and C. Chen. Solving m-modes using heuristic search. In Proceedings of the 25th
International Joint Conference on Artificial Intelligence (IJCAI-16), New York, NY, 2016.

R. Dechter, N. Flerova, and R. Marinescu. Search algorithms for m best solutions for graphical models. In
Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, AAAT’ 12, pages 1895-1901.
AAAI Press, 2012. URL http://dl.acm.org/citation.cfm?id=2900929.2900996.

M. Fromer and A. Globerson. An LP view of the M-best MAP problem. Advances in Neural Information
Processing Systems, 22:567-575, 2009.

155

CHEN ET AL.

M. Fromer and C. Yanover. Accurate prediction for atomic-level protein design and its application in diversi-
fying the near-optimal sequence space. Proteins: Structure, Function, and Bioinformatics, 75(3):682-705,
2009.

I. Guyon, V. Athitsos, P. Jangyodsuk, and H.-J. Escalante. = Chalearn gesture challenge, 2011.
https://sites.google.com/a/chalearn.org/gesturechallenge/2011-one-shot-learning, [Accessed: Nov. 2012].

R. Kindermann and J. L. Snell. Markov random fields and their applications, volume 1. American Mathe-
matical Society, 1980.

A. Kirillov, B. Savchynskyy, D. Schlesinger, D. Vetrov, and C. Rother. Inferring M-Best diverse labelings in
a single one. In IEEE International Conference on Computer Vision (ICCV). IEEE, 2015.

J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In Proceedings of the Eighteenth International Conference on
Machine Learning (ICML), pages 282-289, 2001. ISBN 1-55860-778-1.

C. Lampert. Maximum margin multi-label structured prediction. NIPS, 2011.

D. Nilsson. An efficient algorithm for finding the m most probable configurationsin probabilistic expert
systems. Statistics and Computing, 8(2):159-173, 1998.

S. Nowozin and C. Lampert. Structured learning and prediction in computer vision. Foundations and Trends
in Computer Graphics and Vision, 6(3-4):185-365, 2010.

J. Pearl. Probabilistic reasoning in intelligent systems. palo alto. Morgan Kaufmann. PEAT, J., VAN DEN
BERG, R., & GREEN, W.(1994). Changing prevalence of asthma in australian children. British Medical
Journal, 308:1591-1596, 1988.

A. Prasad, S. Jegelka, and D. Batra. Submodular meets structured: Finding diverse subsets in exponentially-
large structured item sets. In Advances in Neural Information Processing Systems, pages 2645-2653,
2014.

N. Robertson and P. D. Seymour. Graph minors. iii. planar tree-width. Journal of Combinatorial Theory,
Series B, 36(1):49-64, 1984.

D. J. Spiegelhalter and R. G. Cowell. Learning in probabilistic expert systems. Bayesian statistics, 4:447—
465, 1992.

M. J. Wainwright and M. 1. Jordan. Graphical models, exponential families, and variational inference. Foun-
dations and Trends in Machine Learning, 1(1-2):1-305, 2008.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. Map estimation via agreement on trees: message-passing
and linear programming. Information Theory, IEEE Transactions on, 51(11):3697-3717, 2005.

C. Yanover and Y. Weiss. Finding the M most probable configurations using loopy belief propagation. In
Advances in Neural Information Processing Systems, 2004.

156

